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PREFACE

This volume contains the proceedings of the Colloquium celebrat-
ing the opening of the Franco-Uruguayan Institute of Mathematics
(IFUM), which is an International Associate Laboratory (LIA) of the
French National Center for Scientific Research (CNRS). This meet-
ing took place in December 8-11, 2009, in Punta del Este, Uruguay,
and was enriched with the participation of many specialists in the ar-
eas of Probability, Algebra and Dynamical Systems, from Argentina,
France and Uruguay.

We are grateful to the Scientific Committee, specially to Viviane
Baladi, for entrusting to us the edition of these proceedings. We
are also indebted to CSIC, PEDECIBA-Matemática and IFUM for
supporting the edition of this volume.

Last but not least, we counted on the generous collaboration of the
authors and the referees, without whom this volume would have not
been possible. We wish to express our gratitude to all of them.

Jana Rodriguez Hertz
Montevideo, November 2011.





A REVIEW OF SOME RECENT RESULTS ON
RANDOM POLYNOMIALS OVER R AND OVER C.

DIEGO ARMENTANO

Abstract. This article is divided in two parts. In the first part
we review some recent results concerning the expected number
of real roots of random system of polynomial equations. In the
second part we deal with a different problem, namely, the dis-
tribution of the roots of certain complex random polynomials.
We discuss a recent result in this direction, which shows that
the associated points in the sphere (via the stereographic pro-
jection) are surprisingly well-suited with respect to the minimal
logarithmic energy on the sphere.

1. Introduction

Let us consider a system of m polynomial equations in m unknowns
over a field K,

fi(x) :=
∑

‖j‖≤di

a
(i)
j x

j (i = 1, . . . ,m).(1)

The notation in (1) is the following: x := (x1, . . . , xm) denotes a
point in Km, j := (j1, . . . , jm) a multi-index of non-negative integers,

‖j‖ =
∑m

h=1 jh, x
j = xj1 · · ·xjm , a

(i)
j = a

(i)
j1,...,jm

, and di is the degree
of the polynomial fi.

We are interested in the solutions of the system of equations

(2) fi(x) = 0 (i = 1, . . . ,m),

lying in some subset V of Km. Throughout this review we are mainly
concerned with the case K = R or K = C.

Key words and phrases. Random Polynomials; System of Random Equations;
Bernstein Basis, Logarithmic Energy, Elliptic Fekete Points.
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2 DIEGO ARMENTANO

If we choose at random the coefficients {a(i)j }, then the solution of
the system (2) becomes a random subset of Km. This is the main
object of this review.

In the first part of this paper we focus on the real case. The main
problem we consider is that of understanding N f (V ): the number of
solutions lying in the Borel subset V of Rm.

In the second part we deal with a different problem: How are the
roots of complex polynomials distributed?

This article is organized as follows:
In Section 2 we start with some historical remarks on random polyno-
mials. After that we move to the case of random systems of equations.
We mention some recent results for centered Gaussian distributions.
In Section 2.1 we consider the non-centered case, which has also been
called “smooth-analysis” in the last years. That is, we start with a
fixed (non-random) polynomial system, then we perturb it with a
polynomial noise, and we ask what can be said about the number
of roots of the perturbed system. In Section 2.2 we review a result
which computes the expected number of roots of a random system
of polynomial equations expressed in a different basis, namely, the
Bernstein basis. Finally in Section 3 we focus on the complex case.
We discuss a recent result concerning the distribution of points in the
sphere associated with roots of random complex polynomials.

This review follows the talk given by the author in the colloquium
which was held the inauguration of the Franco-Uruguayan Institute
of Mathematics, in Punta del Este, Uruguay, on December 2009.

2. The Number of Real Roots of Random Polynomials

The study of the expectation of the number of real roots of a
random polynomial started in the thirties with the work of Block
and Polya [7]. Further investigations were made by Littlewood and
Offord [14]. However, the first sharp result is due to M. Kac (see
Kac[11, 12]), who gives the asymptotic value

E
(
N f (R)

)
≈ 2

π
log d, as d→ +∞,
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when the coefficients of the degree d univariate polynomial f are
Gaussian centered independent random variables N(0, 1) (see the
book by Bharucha–Reid and Sambandham [6]).

The first important result in the study of real roots of random
system of polynomial equations is due to Shub and Smale [20] in
1992, where the authors computed the expectation of N f (Rm) when
the coefficients are Gaussian centered independent random variables
having variances:

E
[
(a

(i)
j )2

]
=

di!

j1! · · · jm! (di − ‖j‖)!
.(3)

Their result was

E
(
N f (Rm)

)
=
√
d1 · · · dm,(4)

that is, the square root of the Bézout number associated to the sys-
tem. The proof is based on a double fibration manipulation of the co-
area formula. Some extensions of their work, including new results for
one polynomial in one variable, can be found in Edelman–Kostlan[10].
There are also other extensions to multi-homogeneous systems in
McLennan[16], and, partially, to sparse systems in Rojas[17] and
Malajovich–Rojas[15]. A similar question for the number of critical
points of real-valued polynomial random functions has been consid-
ered in Dedieu–Malajovich[9].

The probability law of the Shub–Smale model defined in (3) has
the simplifying property of being invariant under the action of the
orthogonal group in Rm. In Kostlan[13] one can find the classification
of all Gaussian probability distributions over the coefficients with this
geometric invariant property.

In 2005, Azäıs and Wschebor gave a new and deep insight to this
problem. The key point is using the Rice formula for random Gauss-
ian fields (cf. Azäıs–Wschebor[5]). This formula allows one to extend
the Shub–Smale result to other probability distributions over the co-
efficients. A general formula for E(N f (V )) when the random func-
tions fi (i = 1, . . . ,m) are stochastically independent and their law
is centered and invariant under the orthogonal group on Rm can be
found in Azäıs–Wschebor[4]. This includes the Shub–Smale formula
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(4) as a special case. Moreover, Rice formula appears to be the in-
strument to consider a major problem in the subject which is to find
the asymptotic distribution of N f (V ) (under some normalization).
The only published results of which the author is aware concern as-
ymptotic variances as m → +∞. (See Wschebor[25] for a detailed
description in this direction and a simpler proof of Shub–Smale re-
sult).

2.1. Non-centered Systems. The aim of this section is to remove
the hypothesis that the coefficients have zero expectation.

One way to look at this problem is to start with a non-random
system of equations (the “signal”)

Pi(x) = 0 (i = 1, . . . ,m),(5)

perturb it with a polynomial noise Xi(x) (i = 1, . . . ,m), that is,
consider

Pi(x) +Xi(x) = 0 (i = 1, . . . ,m),

and ask what one can say about the number of roots of the new
system, or, how much the noise modifies the number of roots of the
deterministic part. (For short, we denote N f = N f (Rm)).

Roughly speaking, we prove in Theorem 1 that if the relation signal
over noise is neither too big nor too small, in a sense that will be made
precise later on, there exist positive constants C, θ, where 0 < θ < 1,
such that

E(NP+X) ≤ C θmE(NX).(6)

Inequality (6) becomes of interest if the starting non-random sys-
tem (5) has a large number of roots, possibly infinite, and m is large.
In this situation, the effect of adding polynomial noise is a reduction
at a geometric rate of the expected number of roots, as compared to
the centered case in which all the Pi’s are identically zero.

For simplicity we assume that the polynomial noise X has the
Shub-Smale distribution. However, one should keep in mind that the
result can be extended to other orthogonally invariant distributions
(cf. Armentano–Wschebor[2]).
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Before the statement of Theorem 1 below, we need to introduce
some additional notations.

In this simplified situation, one only needs hypotheses concerning
the relation between the signal P and the Shub-Smale noise X, which
roughly speaking should neither be too small nor too big.

Since X has the Shub-Smale distribution, from (3) we get

Var(Xi(x)) = (1 + ‖x‖2)di , ∀x ∈ Rm, (i = 1, . . . ,m).

Define

H(Pi) := sup
x∈Rm

{
(1 + ‖x‖) ·

∥∥∥∥∇
(

Pi
(1 + ‖x‖2)di/2

)
(x)

∥∥∥∥
}
,

K(Pi) := sup
x∈Rm\{0}

{
(1 + ‖x‖2) ·

∣∣∣∣
∂

∂ρ

(
Pi

(1 + ‖x‖2)di/2
)

(x)

∣∣∣∣
}
,

for i = 1, . . . ,m, where ‖ · ‖ is the Euclidean norm, and ∂
∂ρ

denotes

the derivative in the direction defined by x
‖x‖ , at each point x 6= 0.

For r > 0, put:

L(Pi, r) := inf
‖x‖≥r

Pi(x)2

(1 + ‖x‖2)di (i = 1, . . . ,m).

One can check by means of elementary computations that for each P
as above, one has

H(P ) <∞, K(P ) <∞.
With these notations, we introduce the following hypotheses on the
systems as m grows:

H1)

Am =
1

m
·
m∑

i=1

H2(Pi)

i
= o(1) as m→ +∞(7a)

Bm =
1

m
·
m∑

i=1

K2(Pi)

i
= o(1) as m→ +∞.(7b)

H2) There exist positive constants r0, ` such that if r ≥ r0:

L(Pi, r) ≥ ` for all i = 1, . . . ,m.
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Theorem 1. Under the hypotheses H1) and H2), one has

E(NP+X) ≤ C θmE(NX),(8)

where C, θ are positive constants, 0 < θ < 1.

2.1.1. Remarks on the statement of Theorem 1.

• It is obvious that our problem does not depend on the order
in which the equations

Pi(x) +Xi(x) = 0 (i = 1, . . . ,m)

appear. However, conditions (7a) and (7b) in hypothesis H3)
do depend on the order. One can state them by saying that
there exists an order i = 1, . . . ,m on the equations, such that
(7a) and (7b) hold true.
• Condition H1) can be interpreted as a bound on the quotient

signal over noise. In fact, it concerns the gradient of this
quotient. In (7b) the radial derivative appears, which happens
to decrease faster as ‖x‖ → ∞ than the other components of
the gradient.

Clearly, if H(Pi), K(Pi) are bounded by fixed constants,
(7a) and (7b) are verified. Also, some of them may grow as
m→ +∞ provided (7a) and (7b) remain satisfied.
• Hypothesis H2) goes – in some sense – in the opposite direc-

tion: For large values of ‖x‖ we need a lower bound of the
relation signal over noise.
• A result of the type of Theorem 1 can not be obtained without

putting some restrictions on the relation signal over noise. In
fact, consider the system

Pi(x) + σXi(x) = 0 (i = 1, . . . ,m),(9)

where σ is a positive real parameter. If we let σ → +∞,
the relation signal over noise tends to zero and the expected
number of roots will tend to E(NX). On the other hand, if
σ ↓ 0, E(NX) can have different behaviours. For example, if
P is a “regular” system, the expected value of the number of
roots of (9) tends to the number of roots of Pi(x) = 0, (i =
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1, . . . ,m), which may be much bigger than E(NX). In this
case, the relation signal over noise tends to infinity.
• As it was mentioned before we can extend Theorem 1 to other

orthogonally invariant distributions. However, for the general
version we need to add more hypotheses.

In the next paragraphs we are going to give two simple examples.
For the proof of Theorem 1 and more examples with different noises

see Armentano–Wschebor[2].

2.1.2. Some Examples. We assume that the degrees di are uniformly
bounded.

For the first example, let

Pi(x) = ‖x‖di − rdi ,
where di is even and r is positive and remains bounded as m varies.
Then, one has:

∂

∂ρ

(
Pi

(1 + ‖x‖2)di/2
)

(x) =
di ‖x‖di−1 + di r

di ‖x‖
(1 + ‖x‖2) di

2
+1

≤ di(1 + rdi)

(1 + ‖x‖2)3/2

∇
(

Pi
(1 + ‖x‖2)di/2

)
(x) =

di ‖x‖di−2 + di r
di

(1 + ‖x‖2) di
2
+1

x

which implies
∥∥∥∥∇
(

Pi
(1 + ‖x‖2)di/2

)
(x)

∥∥∥∥ ≤
di(1 + rdi)

(1 + ‖x‖2)3/2 .

Again, since the degrees d1, . . . , dm are bounded by a constant that
does not depend on m, H1) follows. H2) also holds under the same
hypothesis.

Notice that an interest in this choice of the Pi’s lies in the fact that
obviously the system Pi(x) = 0 (i = 1, . . . ,m) has an infinite number
of roots (all points in the sphere of radius r centered at the origin are
solutions), but the expected number of roots of the perturbed system
is geometrically smaller than the Shub–Smale expectation, when m
is large.
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Our second example is the following: Let T be a polynomial of
degree d in one variable that has d distinct real roots. Define:

Pi(x1, . . . , xm) = T (xi) (i = 1, . . . ,m).

One can easily check that the system verifies our hypotheses, so that
there exist C, θ positive constants, 0 < θ < 1 such that

E(NP+X) ≤ C θmdm/2,

where we have used the Shub–Smale formula when the degrees are
all the same. On the other hand, it is clear that NP = dm so that
the diminishing effect of the noise on the number of roots can be
observed. A number of variations of these examples for P can be
constructed, but we will not pursue the subject here.

2.2. Other Polynomial Basis. Up to now all probability measures
were introduced in a particular basis, namely, the monomial basis
{xj}‖j‖≤d. However, in many situations, polynomial systems are ex-
pressed in different basis, for example, orthogonal polynomials, har-
monic polynomials,Bernstein polynomials, etc. So, it is a natural
question to ask: What can be said about N f (V ) when the randomiza-
tion is performed in a different basis?

For the case of random orthogonal polynomials see Barucha-Reid
and Sambandham[6], and Edelman–Kostlan[10] for random harmonic
polynomials.

In this section following Armentano–Dedieu[3] we give an answer
to the average number of real roots of a random system of equations
expresed in the Bernstein basis. Let us be more precise:

The Bernstein basis is given by:

bd,k(x) =

(
d

k

)
xk(1− x)d−k, 0 ≤ k ≤ d,

in the case of univariate polynomials, and

bd,j(x1, . . . , xm) =

(
d

j

)
xj11 . . . x

jm
m (1− x1 − . . .− xm)d−‖j‖, ‖j‖ ≤ d,

for polynomials in m variables, where j = (j1, . . . , jm) is a multi-
integer, and

(
d
j

)
is the multinomial coefficient.
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Let us consider the set of real polynomial systems in m variables,

fi(x1, . . . , xm) =
∑

‖j‖≤di

a
(i)
j bd,j(x1, . . . , xm) (i = 1, . . . ,m).

Take the coefficients a
(i)
j to be independent Gaussian standard ran-

dom variables.
Define

τ : Rm → P
(
Rm+1

)

by

τ(x1, . . . , xm) = [x1, . . . , xm, 1− x1 − . . .− xm].

Here P (Rm+1) is the projective space associated with Rm+1, [y] is
the class of the vector y ∈ Rm+1, y 6= 0, for the equivalence relation
defining this projective space. The (unique) orthogonally invariant
probability measure in P (Rm+1) is denoted by λm.

With the above notation the following theorem holds:

Theorem 2. (1) For any Borel set V in Rm we have

E
(
N f (V )

)
= λm(τ(V ))

√
d1 . . . dm.

In particular
(2) E

(
N f
)

=
√
d1 . . . dm,

(3) E
(
N f (∆m)

)
=
√
d1 . . . dm/2

m, where

∆m = {x ∈ Rm : xi ≥ 0 and x1 + . . .+ xm ≤ 1} ,

(4) When m = 1, for any interval I = [α, β] ⊂ R, one has

E
(
N f (I)

)
=

√
d

π
(arctan(2β − 1)− arctan(2α− 1)) .

The fourth assertion in Theorem 2 is deduced from the first as-
sertion but it also can be derived from Crofton’s formula (see for
example Edelman–Kostlan[10]).

For the proof of Theorem 2 see Armentano–Dedieu[3]
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3. Distribution of Complex Roots of Random
Polynomials

In this part we will see that points in the sphere associated with
roots of Shub–Smale complex analogue random polynomials via the
stereographic projection, are surprisingly well-suited with respect to
the minimal logarithmic energy on the sphere. That is, they provide
a fairly good approximation to a classical minimization problem over
the sphere, namely, the Elliptic Fekete points problem.

Next paragraphs follows closely Armentano–Beltrán–Shub[1], where
one can find proofs and more detailed references.

Given x1, . . . , xN ∈ S2 = {x ∈ R3 : ‖x‖ = 1}, let

(10) V (x1, . . . , xN) = ln
∏

1≤i<j≤N

1

‖xi − xj‖
= −

∑

1≤i<j≤N
ln ‖xi − xj‖

be the logarithmic energy of the N -tuple x1, . . . , xN . Let

VN = min
x1,...,xN∈S2

V (x1, . . . , xN)

denote the minimum of this function. N -tuples minimizing the quan-
tity (10) are usually called Elliptic Fekete Points. The problem of
finding (or even approximate) such optimal configurations is a clas-
sical problem (see White[23] for its origins).

During the last decades this problem has attracted much attention,
and the number of papers concerning it has grown amazingly. The
reader may see Kuijlaars-Saff[19] for a nice survey.

In the list of Smale’s problems for the XXI Century [22], problem
number 7 reads:

Can one find x1, . . . , xN ∈ S2 such that

(11) V (x1, . . . , xN)− VN ≤ c lnN,

c a universal constant?
More precisely, Smale demands a real number algorithm in the

sense of Blum–Cucker–Shub–Smale[8] that with input N returns a N -
tuple x1, . . . , xN satisfying equation (11), and such that the running
time is polynomial on N .
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One of the main difficulties when dealing with this problem is that
the value of VN is not even known up to logarithmic precision. In
Rakhmanov–Saff–Zhou[18] the authors proved that if one defines CN
by

(12) VN = −N
2

4
ln

(
4

e

)
− N lnN

4
+ CNN,

then,

−0.112768770... ≤ lim inf
N→∞

CN ≤ lim sup
N→∞

CN ≤ −0.0234973...

Let X1, . . . , XN be independent random variables with common
uniform distribution over the sphere. One can easily show that the
expected value of the function V (X1, . . . , XN) in this case is,

(13) E(V (X1, . . . , XN)) = −N
2

4
ln

(
4

e

)
+
N

4
ln

(
4

e

)
.

Thus, this random choice of points in the sphere with independent
uniform distribution already provides a reasonable approach to the
minimal value VN , accurate to the order of O(N lnN).

On one side, this probability distribution has an important prop-
erty, namely, invariance under the action of the orthogonal group on
the sphere. However, on the other hand this probability distribution
lacks on correlation between points. More precisely, in order to obtain
well-suited configurations one needs some kind of repelling property
between points, and in this direction independence is not favorable.
Hence, it is a natural question whether other handy orthogonally in-
variant probability distributions may yield better expected values.
Here is where complex random polynomials comes into account.

Given z ∈ C, let

ẑ :=
(z, 1)

1 + |z|2 ∈ C× R
∼= R3

be the associated points in the Riemann Sphere, i.e. the sphere of
radius 1/2 centered at (0, 0, 1/2). Finally, let

X = 2ẑ − (0, 0, 1) ∈ S2
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be the associated points in the unit sphere.
Given a polynomial f in one complex variable of degree N , we

consider the mapping

f 7→ V (X1, . . . , XN),

where Xi (i = 1, . . . , N) are the associated roots of f in the unit
sphere. Notice that this map is well defined in the sense that it does
not depend on the way we choose to order the roots.

Theorem 3. Let f(z) =
∑N

k=0 akz
k be a complex random polyno-

mial, such that the coefficients ak are independent complex random
variables, such that the real and imaginary parts of ak are indepen-
dent (real) Gaussian random variables centered at 0 with variance(
N
k

)
. Then, with the notations above,

E (V (X1, . . . , XN)) = −N
2

4
ln

(
4

e

)
− N lnN

4
+
N

4
ln

4

e
.

Comparing Theorem 3 with equations (12) and (13), we see that
the value of V is surpringsingly small at points coming from the
solution set of this random polynomials. More precisely, necessarily
many random realizations of the coefficients will produce values of
V below the average and very close to VN , possibly close enough to
satisfy equation (11).

Notice that, taking the homogeneous counterpart of f , Theorem 3
can be restated for random homogeneous polynomials and consider-
ing its complex projective solutions, under the identification of IP(C2)
with the Riemann sphere. In this fashion, the induced probability dis-
tribution over the space of homogeneous polynomials in two complex
variables corresponds to the classical unitarily invariant Hermitian
structure of the respective space (see Blum–Cucker–Shub–Smale[8]).
Therefore, the probability distribution of the roots in IP(C2) is in-
variant under the action of the unitary group.

It is not difficult to prove that the unitary group action over IP(C2)
correspond to the special orthogonal group of the unit sphere. Hence,
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the distribution of the associated random roots on the sphere is or-
thogonally invariant. Thus, Theorem 3 is another geometric confir-
mation of the repelling property of the roots of this Gaussian random
polynomials.

For a proof of Theorem 3 and a more detailed discussion on this
account see Armentano–Beltrán–Shub[1]. See also Shub–Smale[21].
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RICE FORMULAS AND GAUSSIAN WAVES II.

JEAN-MARC AZAÏS, JOSÉ R. LEÓN, AND MARIO WSCHEBOR

Abstract. We prove a certain number of results on specular
points and dislocations of random waves which we have an-
nounced without proof in [1] or for which only an outline of
proof has been given in this reference. Along the paper, waves
are Gaussian and the basic tools are Rice formulas.
The main results are on the first two moments and in some spe-
cial case, also weak convergence is obtained.

1. Introduction

This paper is a continuation of [1] in which we study the zeroes of
certain random waves that appear in oceanography and optics. Our
aim here is to give full proofs of certain results that were stated with-
out proof in that paper, or for which proofs have been only sketched.

Our interest lies in the geometry of the set of zeros of random
fields with low-dimensional parameter set (smaller or equal than 3).
In general, only a restricted number of geometrical characteristics of
these sets can be described with the methods we use, namely the
so-called Rice formulas.

When the set of zeros is 0-dimensional, Rice formulas permit to
express the moments of the number of zeros by means of certain in-
tegrals depending upon a description of the probability law of the
random fields. If it is 1-dimensional one can do something similar

2000 Mathematics Subject Classification. Primary 60G15; Secondary 60G60
78A10 78A97 86A05.

Key words and phrases. Rice formula, Gaussian waves, specular points, dislo-
cations of wavefronts.
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with length instead of number of zeros, if it is 2-dimensional with
area-measure, and so on. One can also extend the same methods
to weighted zeros, that is, compute the moments of total weight in
the 0-dimensional case and the integral of a weight function on the
0-level set of the random field in the other cases.

We compute moments that are useful to make statistics on certain
parameters appearing in the law of the random field. In some situ-
ations we can go further and obtain weak limit theorems for certain
re-normalizations of natural functionals of the paths which are of in-
terest.

These are special cases of the general problem of computing mo-
ments of the geometric measure of the level sets of random fields. For
this purpose, Rice formulas have been developed since the pioneering
work of Rice [10]. We refer to the book by Azäıs and Wschebor [2] for
an extended presentation of the subject and for proofs of the general
formulas we use.

In this paper we will consider two classes of 0-sets of random fields:
specular points (Section 2) and dislocations of wave fronts (Section
3). For details not mentioned here and other geometrical properties
of waves which can be studied with analogous methods, we refer to
[1], [4], [9].

All random fields are assumed to have continuously differentiable
paths and to be Gaussian, a hypothesis that is useful to be able to
perform the computations associated with Rice formulas, but can fail
to approximate physical reality in certain cases.

We use the following notations: σd(B) the d-dimensional Hausdorff
measure of a Borel set B. If f is a function of d variables we denote fi
the partial derivative with respect to the i-th variable. MT denotes
the transpose of a matrix M . (const) is a positive constant whose
value may change from one occurrence to another. pξ(x) is the density
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of the random variable or vector ξ, whenever it exists. λk (k =
0, 1, 2, ...) denotes the k-th spectral moment of a stationary random
process defined on the real line.

2. Specular points

2.1. Specular points for one-parameter processes. Specular points
of a curve are defined as follows: We take cartesian coordinates Oxz
in the plane and assume the curve is the graph of a C1-function
z = W (x). A light source placed at (0, h1) emits a ray that is re-
flected at the point (x,W (x)) of the curve and the reflected ray is
registered by an observer placed at (0, h2).

Using the equality between the angles of incidence and reflec-
tion with respect to the normal vector to the curve - i.e. N(x) =
(−W ′(x), 1) - an elementary computation gives:

(1) W ′(x) =
α2r1 − α1r2
x(r2 − r1)

,

where αi := hi −W (x) and ri :=
√
x2 + α2

i , i=1,2.

The points (x,W (x)) of the curve such that x is a solution of (1)
are called “specular points”. When the curve is random, one of our
aims is to study the probability distribution of the number of specu-
lar points such the abscise x ∈ A, where A is a Borel subset of the line.

The following approximation is due to M.S. Longuet-Higgins (see
[7], [8]): Suppose that h1 and h2 are big with respect to W (x) and x,
then ri = αi +x2/(2αi) +O(h−3i ). Then, (1) can be approximated by

(2) W ′(x) ' x

2

α1 + α2

α1α2

' x

2

h1 + h2
h1h2

= kx,

where

k :=
1

2

( 1

h1
+

1

h2

)
.

Set Y (x) := W ′(x) − kx and SP (A) the number of roots of Y (x)
belonging to the set A. We will call SP (A) the “Longuet-Higgins ap-
proximation” of the number of specular points, when the parameter
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k tends to 0.

Assume now that {W (x) : x ∈ R} is a centered Gaussian station-
ary process with C2-paths. In [1] an exact formula has been obtained
for the expectation of the number of specular points belonging to the
interval [a, b]. This is an integral formula, well-adapted to numerical
computation and it turns out that E(SP ([a, b])) is a very accurate
approximation, for example, for ocean waves.

Also, the Longuet-Higgins approximation is tractable from a math-
ematical point of view, and one can go much farther than expectation
in the description of the law of the number of specular points. More
precisely in [1] it is proved that:

(1) Adding some hypotheses on the law of the process {W (x) :
x ∈ R} (paths of class C4 and some mixing condition, such as
δ-dependence or a controlled decay of correlation), it follows
that

Var
[
SP (R)

]
= θ

1

k
+O(1) as k → 0,

where θ is a constant that can be computed by means of an
explicit formula from the covariance of the given Gaussian
process, which is well-adapted to numerical computation.

This implies that the coefficient of variation of the random
variable SP (R) tends to zero in a controlled manner, namely:

(3)

√
Var(SP (R))

E(SP (R))
∼
√
θπk

2λ4
as k → 0,

since

E(SP (R)) ∼
√

2λ4
π

1

k
,

((3) corrects a small error in [1]).
(2) With some additional requirement on the smoothness of the

paths of the process, under the same asymptotic, the natu-
ral renormalization of SP (R) tends to the standard normal
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distribution Φ(x), that is, for every x ∈ R:

P
(SP (R)− (2λ4/π)1/2/k

(θ/k)1/2
≤ x

)
→ Φ(x) as k → 0.

2.2. Specular points for two-parameter processes. Let us con-
sider in R3 a coordinate system Oxyz, and a C1-function z = W (x, y).
The following definition of specular points of the graph extends nat-
urally the one we gave above for functions of one real variable.

The source of light is placed at the point (0, 0, h1) and the observer
at (0, 0, h2). The point (x, y) is said to be a specular point if the nor-
mal vector n(x, y) = (−Wx,−Wy, 1) to the graph at (x, y,W (x, y))
satisfies the following two conditions:

• the angles with the incident ray I = (−x,−y, h1 −W ) and
the reflected ray R = (−x,−y, h2 −W ) are equal (for short
the argument (x, y) has been removed),
• it belongs to the plane generated by I and R.

Setting αi = hi − W and ri =
√
x2 + y2 + αi, i = 1, 2, as in the

one-parameter case we have:

Wx =
x

x2 + y2
α2r1 − α1r2
r2 − r1

,

Wy =
y

x2 + y2
α2r1 − α1r2
r2 − r1

.(4)

When h1 and h2 are large, the system above can be approximated by

Wx = kx

Wy = ky,(5)

under the same conditions as in dimension 1. This is the Longuet-
Higgins approximation for two-parameter functions.

For each subset Q of R2, we denote by SP (Q), the number of ap-
proximate specular points in the sense of (5) such that (x, y) ∈ Q.
In the remaining of this paragraph we limit our attention to this ap-
proximation and to the case in which {W (x, y) : (x, y) ∈ R2} is a
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centered Gaussian stationary random field with C3-paths.

We need some additional notation: µ denotes the spectral measure
of the random field, which is a Borel measure on R2 and λij, i, j =
0, 1, 2, ... the spectral moments

λij =

∫

R2

uivjµ(du, dv),

whenever they are well-defined.

In [1] one can find the statement of certain results on the behavior
of expectation and variance of SP (Q) under the asymptotic k → 0.
We give full proofs of these results below. For the time being, what
is known for variance and coefficient of variation is weaker than in
the one-dimensional parameter case.

Let us define:

(6) Y(x, y) :=

(
Wx(x, y)− kx
Wy(x, y)− ky

)
.

Under the non-degeneracy condition λ20λ02− λ211 6= 0, the random
field {Y (x, y) : x, y ∈ R} satisfies the hypotheses of Theorem 6.2. in
[2], and we can write the Rice formula:

(7)

E
(
SP (Q)

)
=

∫

Q

E
(
| detY′(x, y)|

∣∣Y(x, y) = 0
)
pY(x,y)(0) dxdy

=

∫

Q

E
(
| detY′(x, y)|

)
pY(x,y)(0) dxdy,

since for fixed (x, y) the random matrix Y′(x, y) and the random vec-
tor Y(x, y) are independent, so that the condition in the conditional
expectation can be removed.
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The density in the right hand side of (7) has the expression
(8)
pY(x,y)(0) = p(Wx,Wy)(kx, ky)

= 1
2π

1√
λ20λ02−λ211

exp
[
− k2

2(λ20λ02−λ211)
(
λ02x

2 − 2λ11xy + λ20y
2
)]
.

To compute the expectation of the absolute value of the determi-
nant in the right hand side of (7), which does not depend on x, y,
we use the method of [3] (see also [6]). Set ∆ := detY′(x, y) =
(Wxx − k)(Wyy − k)−W 2

xy.

We have

(9) E(|∆|) = E
[

2

π

∫ +∞

0

1− cos(∆t)

t2
dt

]
.

Define

h(t) := E
[
exp

(
it[(Wxx − k)(Wyy − k)−W 2

xy]
)]
.

Then

(10) E(|∆|) =
2

π

(∫ +∞

0

1−Re[h(t)]

t2
dt
)
.

To compute h(t) we define

A =




0 1/2 0
1/2 0 0
0 0 −1


 ,

and Σ the variance matrix of Wxx,Wyy,Wx,y

Σ :=




λ40 λ22 λ31
λ22 λ04 λ13
λ31 λ13 λ22


 .
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LetΣ1/2AΣ1/2 = P diag(∆1,∆2,∆3)P
T where P is orthogonal. Then

by a diagonalization argument

(11) h(t) = eitk
2

E
(

exp
[
it
(
(∆1Z

2
1 − k(s11 + s21)Z1) + (∆2Z

2
2 − k(s12 + s22)Z2)

+ (∆3Z
2
3 − k(s13 + s23)Z3)

)])
,

where (Z1, Z2, Z3) is standard normal and sij are the entries of Σ1/2P T .
One can check that if ξ is a standard normal variable and τ, µ are

real constants, τ > 0:

E
(
eiτ(ξ+µ)

2)
= (1− 2iτ)−1/2e

iτµ2

(1−2iτ)

=
1

(1 + 4τ 2)1/4
exp

[ −2τ

1 + 4τ 2
+ i
(
ϕ+

τµ2

1 + 4τ 2
)]
,

where

ϕ =
1

2
arctan(2τ), 0 < ϕ < π/4.

Replacing in (11), we obtain for Re[h(t)] the formula:

(12) Re[h(t)] =
[ 3∏

j=1

dj(t, k)√
1 + 4∆2

j t
2

]
cos
( 3∑

j=1

(
ϕj(t) + k2tψj(t)

))
,

where, for j = 1, 2, 3:

• dj(t, k) = exp
[
− k2t2

2

(s1j + s2j)
2

1 + 4∆2
j t

2

]
,

• ϕj(t) =
1

2
arctan(2∆jt), 0 < ϕj < π/4,

• ψj(t) =
1

3
− t2 (s1j + s2j)

2∆j

1 + 4∆2
j t

2
.

Introducing these expressions in (10) and using (8) we obtain a
new formula which has the form of a rather complicated integral.
However, it is well adapted to numerical evaluation.
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On the other hand, this formula allows us to compute the equiv-
alent as k → 0 of the expectation of the total number of specular
points under the Longuet-Higgins approximation. In fact, a first or-
der expansion of the terms in the integrand gives a somewhat more
accurate result, that we state as a theorem:

Theorem 1.

(13) E
(
SP (R2)

)
=
m2

k2
+O(1),

where

(14) m2 =

∫ +∞

0

1−
[∏3

j=1(1 + 4∆2
j t

2)
]−1/2

cos
(∑3

j=1 ϕj(t)
)

t2
dt

=

∫ +∞

0

1− 2−3/2
[∏3

j=1

(
Aj
√

1 + Aj
)](

1−B1B2 −B2B3 −B3B1

)

t2
dt,

where

Aj = Aj(t) =
(
1 + 4∆2

j t
2
)−1/2

, Bj = Bj(t) =
√

(1− Aj)/(1 + Aj).

Notice that m2 only depends on the eigenvalues ∆1,∆2,∆3 and is
easily computed numerically.

We now consider the variance of the total number of specular
points in two dimensions, looking for analogous results to the one-
dimensional case, in view of their interest for statistical applications.
It turns out that the computations become much more involved. The
statements on variance and speed of convergence to zero of the coef-
ficient of variation that we give below include only the order of the
asymptotic behavior in the Longuet-Higgins approximation, but not
the constant. However, we still consider them to be useful. If one
refines the computations one can give rough bounds on the generic
constants in Theorem 2 and Corollary 1 on the basis of additional
hypotheses on the random field.
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Now we add the following hypothesis to the set already required
to study the expectation of the specular points under the Longuet-
Higgins asymptotic. We express W ′′(0) in the reference system xOy
of R2 as the 2× 2 symmetric centered Gaussian random matrix:

W ′′(0) =

(
Wxx(0) Wxy(0)
Wxy(0) Wyy(0)

)
.

The function

z ∆(z) = det
[

Var
(
W ′′(0)z

)]
,

defined on z = (z1, z2)
T ∈ R2, is a non-negative homogeneous polyno-

mial of degree 4 in the pair z1, z2. We will assume the non-degeneracy
condition:

(15) min{∆(z) : ‖z‖ = 1} = ∆ > 0.

Theorem 2. Let us assume that {W (x) : x ∈ R2} satisfies the
above conditions and that it is also δ-dependent, δ > 0, that is,
E
(
W (x)W (y)

)
= 0 whenever ‖x− y‖ > δ.

Then, for k small enough:

Var
(
SP (R2)

)
≤ L

k2
,

where L is a positive constant depending upon the law of the random
field.

A direct consequence of Theorems 1 and 2 is the following:

Corollary 1. Under the same hypotheses of Theorem 2, for k small
enough, one has:

√
Var

(
SP (R2)

)

E
(
SP (R2)

) ≤ L1k,

where L1 is a new positive constant.

Proof of Theorem 2. Let us denote T = SP (R2). We have:

(16) Var(T ) = E(T (T − 1)) + E(T )− [E(T )]2.
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We have already computed the equivalents as k → 0 of the second
and third term in the right-hand side of (16). Our task in what
follows is to consider the first term.

The proof is performed using Rice formula for the second factorial
moment of the number of roots of the random field Y . We apply
Theorem 6.3. of [2] for dimension d = 2 and k = 2. Then,

E(T (T − 1)) =

=

∫ ∫

R2×R2

E
(
| detY′(x)|| detY′(y)|

∣∣ Y(x) = 0,Y(y) = 0
)

pY(x),Y(y)(0,0) dxdy

=

∫ ∫

‖x−y‖>δ
... dxdy +

∫ ∫

‖x−y‖≤δ
... dxdy = J1 + J2.

For J1 we proceed as in the proof of Theorem 1 of [1], using the
δ-dependence and the evaluations therein. We obtain:

(17) J1 =
m2

2

k4
+
O(1)

k2
.

Let us show that for small k,

(18) J2 =
O(1)

k2
.

In view of (16), (13) and (17) this suffices to prove the theorem.

We do not perform all detailed computations. The key point con-
sists in evaluating the behavior of the integrand that appears in J2
near the diagonal x = y, where the density pY(x),Y(y)(0,0) degener-
ates and the conditional expectation tends to zero.

For the density, using the invariance under translations of the law
of W ′(x) : x ∈ R2, we have:

pY(x),Y(y)(0,0) = pW ′(x),W ′(y)(kx, ky)

= pW ′(0),W ′(y−x)(kx, ky)

= pW ′(0),[W ′(y−x)−W ′(0)](kx, k(y − x)).
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Perform the Taylor expansion, for small z = y − x ∈ R2:

W ′(z) = W ′(0) +W ′′(0)z +O(‖z‖2).

Using the non-degeneracy assumption (15) and the fact that W ′(0)
and W ′′(0) are independent, we can show that for x, z ∈ R2, ‖z‖ ≤ δ:

pY(x),Y(y)(0,0) ≤ C1

‖z‖2 exp
[
− C2k

2(‖x‖ − C3)
2
]
,

where C1, C2, C3 are positive constants.

Let us consider the conditional expectation. For each pair x,y of
different points in R2, denote by τ the unit vector (y − x)/‖y − x‖
and n a unit vector orthogonal to τ . We denote respectively by
∂τY, ∂ττY, ∂nY the first and second partial derivatives of the ran-
dom field in the directions given by τ and n.

Under the condition

Y(x) = 0,Y(y) = 0,

we have the following simple bound on the determinant, based upon
its definition and Rolle’s Theorem applied to the segment [x,y] =
{λx + (1− λ)y}:

(19)

∣∣ detY′(x)
∣∣ ≤ ‖∂τY(x)‖‖∂nY(x)‖
≤ ‖y − x‖ sup

s∈[x,y]
‖∂ττY(s)‖‖∂nY(x)‖
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So,

E
(
| detY′(x)|| detY′(y)|

∣∣ Y(x) = 0,Y(y) = 0
)

≤ ‖y − x‖2E
[

sup
s∈[x,y]

‖∂ττY(s)‖2‖∂nY(x)‖.‖∂nY(y)‖
∣∣∣W ′(x) = kx,W ′(y) = ky

]

= ‖z‖2E
[

sup
s∈[0,z]

‖∂ττY(s)‖2‖∂nY(0)‖.‖∂nY(z)‖
∣∣∣W ′(0) = kx,

W ′(z)−W ′(0)

‖z‖ = kτ
]
,

where the last equality is again a consequence of the stationarity of
the random field {W (x) : x ∈ R2}.

At this point, we perform a Gaussian regression on the condition.
For the condition, use again Taylor expansion, the non-degeneracy
hypothesis and the independence of W ′(0) and W ′′(0). Then, use
the finiteness of the moments of the supremum of bounded Gaussian
processes (see for example [2], Ch. 2), take into account that ‖z‖ ≤ δ
to get the inequality:
(20)

E
(
| detY′(x)|| detY′(y)|

∣∣Y(x) = 0,Y(y) = 0
)
≤ C4 ‖z‖2

(
1+k‖x‖

)4
,

where C4 is a positive constant. Summing up, we have the following
bound for J2:

(21)

J2 ≤ C1C4 πδ
2

∫

R2

(
1 + k‖x‖

)4
exp

[
− C2k

2(‖x‖ − C3)
2
]
dx

= C1C4 2π2δ2
∫ +∞

0

(
1 + kρ

)4
exp

[
− C2k

2(ρ− C3)
2
]
ρdρ.

Performing the change of variables w = kρ, (18) follows.
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3. Dislocation of wave fronts

Dislocations are phase singularities of wavefronts. They correspond
to lines of darkness in light propagation, or threads of silence in sound
(see Berry and Dennis [3]). In a mathematical framework they can
be defined as the loci of points where the amplitude of waves vanishes.

We represent the wave as

W (x, t) = ξ(x, t) + iη(x, t), where x ∈ Rd.
The dislocations are the intersection of the two level sets ξ(x, t) =
0, η(x, t) = 0 of the two random surfaces ξ and η. We consider a
fixed time, for instance t = 0.

For random waves, when d = 2 we will study the expectation of
the random variable

#{x ∈ S : ξ(x, 0) = η(x, 0) = 0}.
When d = 3 one important quantity is the length of the level curve

L{x ∈ S : ξ(x, 0) = η(x, 0) = 0}.
In what follows, we will re-formulate some results in optics in the

standard form of probability theory and give complete proofs for
them. A short presentation can be found in [1].

3.1. Mean number of dislocation points. Let us consider a space
variable x in R2 and a random wave with real part ξ(x) and imaginary
part η(x). We define {Z(x) : x ∈ R2} as the random field taking
values in R2, with coordinates ξ(x), η(x). We assume that these two
coordinates are independent centered Gaussian stationary isotropic
random fields with C2-paths and the same distribution. With no loss
of generality, we also assume that Var(ξ(x)) = 1.

First, we are interested in the expectation of the number of dislo-
cation points

d2 := E[#{x ∈ S : ξ(x) = η(x) = 0}],
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where S is a subset of the parameter space having area equal to 1,
for simplicity.

Then, using the Rice formula for Gaussian fields ([2] Theorem 6.2)
we get:

(22) d2 =

∫

S

E[| det(Z′(x))|
∣∣Z(x) = 0]pZ(x)(0)dx,

where pZ(x)(.) is the density of Z(x). One can easily check that this
density is non-degenerate. Moreover, one has (use Proposition 6.5.
of [2]) P(∃x,Z(x) = 0, det[Z′(x) = 0]) = 0. These two conditions
imply the validity of (22).

Set λ2 = Var(ξi(x)) = Var(ηi(x)), i = 1, 2. The stationarity im-
plies, first, that the integrand in (22) is constant and, second, that
Z(x) and Z′(x) are independent, so that the conditional expectation
is in fact an ordinary expectation.

The entries of Z′(x) are four independent centered Gaussian vari-
ables with variance λ2, so that, up to the factor λ2, | det(Z′(x))| is
the area of the parallelogram generated by two independent standard
Gaussian variables in R2. Using invariance of the distribution, the
distribution of this volume is the product of independent square roots
of a χ2(2) and a χ2(1) distributed random variables. An elementary
calculation gives then: E[| det(Z′(x))|] = λ2. Finally, we get

d2 =
1

2π
λ2.

This quantity is equal to K2

4π
in Berry and Dennis [3] notation, giving

their formula (4.6).

3.2. Mean length of dislocation curve. Now suppose that the
space variable is of dimension 3 and the random field {Z(x) : x ∈ R3}
satisfies the same hypotheses as in the 2-dimensional parameter case.
Generically the dislocation points form a curve C:

C = {x : Z(x) = 0}.
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Our aim is to compute for each measurable subset S of R3:

d3 = E[L(C ∩ S)],

where L is the length of the curve which is always defined, at least,
as the Hausdorff measure of dimension 1. The Rice formula to be
applied is now [2] Th 6.8 that reads

d3 =

∫

S

E[(detZ′(x) Z′(x)T )1/2
∣∣Z(x) = 0]pZ(x)(0)dx,

and the verification of the validity is performed in a similar way to the
2-dimensional case above. For simplicity, we may assume again that
S has Lebesgue measure equal to 1. The expression can be simplified
using the stationarity and the normalization of the variance, to get

d3 =
1

2π
E[(detZ′(x)Z′(x)T )1/2],

with

E[(det(Z′(x)Z′(x)T )1/2] = λ2E(V ),

where V is the surface area of the parallelogram generated by two
standard Gaussian variables in R3. The projection method gives

E(V ) = E(XY ) =
4√
2π

√
π

2
= 2,

Here X and Y are independent and X (resp. Y ) is the square root
of a χ2(3)-distributed (resp. χ2(2)-distributed) random variable.

So,

d3 =
λ2
π
.

In Berry and Dennis’ notations [3] the last quantity is denoted by k2
3π

giving their formula (4.5).

3.3. Variance. In this section, we limit ourselves to dimension 2 and
the random field satisfies the hypotheses we introduced to compute
the expectation of the number of dislocation points. We further as-
sume that for s1, s2 ∈ R2, s1 6= s2 the joint distribution of ξ(s1), ξ(s2)
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does not degenerate. Let S be again a measurable subset of R2 hav-
ing Lebesgue measure equal to 1.

The variance of the number of dislocations points is an important
issue that can be obtained via the second factorial moment of the
number of zeroes. More precisely:

Var
(
NZ
S (0)

)
= E

(
NZ
S (0)

(
NZ
S (0)− 1

))
+ d2 − d22,

and using Theorem 6.3 of [2], we can write the formula:

E
(
NZ
S (0)

(
NZ
S (0)− 1

))
=

∫

S×S
A(s1, s2)ds1ds2,

where

A(s1, s2) = E
(
| detZ′(s1) detZ′(s2)|

∣∣Z(s1) = Z(s2) = 0
)
pZ(s1,s2)(0, 0).

Taking into account that the law of the random field is invariant
under translations and orthogonal transformations of R2, we have

A(s1, s2) = A
(
(0, 0), (r, 0)

)
= A(r) whith r = ‖s1 − s2‖.

The function A(r) has two intuitive interpretations. First it can be
viewed as

A(r) = lim
ε→0

1

π2ε4
E
[
N
(
B((0, 0), ε)

)
×N

(
B((r, 0), ε)

)]
.

Second it is the density of the Palm distribution (a generalization of
horizontal window conditioning of [5]) of the number of zeroes of Z
per unit of surface, locally around the point (r, 0) given that there is
a zero at (0, 0). A(r)/d22 is called the “correlation density function”
in [3].

To compute A(r), we recall that ξ1, ξ2, η1, η2 denote the partial
derivatives of ξ, η with respect to the first and second coordinate.
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So,

A(r) = E
[
| detZ′(0, 0) detZ′(r, 0)|

∣∣Z(0, 0) = Z(r, 0) = 02

]
pZ(0,0),Z(r,0)(04)

= E
[∣∣(ξ1η2 − ξ2η1

)
(0, 0)

(
ξ1η2 − ξ2η1

)
(r, 0)

)∣∣
∣∣∣Z(0, 0) = Z(r, 0) = 02

]

pZ(0,0),Z(r,0)(04),
(23)

where 0p denotes the null vector in dimension p.

The density is easy to compute

pZ(0,0),Z(r,0)(04) =
1

(2π)2(1− ρ2(r)) , where ρ(r) =

∫ ∞

0

J0(kr)Π(dk).

Here, J0 is the Bessel function of the first kind of order 0. The spec-
tral measure µ is invariant under the isometries of R2, so that the
measure Π on R+ is defined to be such that for every w ≥ 0, µ(τ :
τ ∈ R2, ‖τ‖ ≤ w) = 2πΠ([0, w]).

To compute the conditional expectation of the product of the ab-
solute value of the determinants, we use again the same device as in
[3], as well as the same notations. We have:

(24) |w| = 1

π

∫ +∞

−∞
(1− cos(wt))t−2dt.





C := ρ(r)
E = ρ′(r)
H = −E/r
F = −ρ”(r)
F0 = −ρ”(0)

The regression formulas imply that the conditional variance matrix
of the vector

W =
(
ξ1(0), ξ1(r, 0), ξ2(0), ξ2(r, 0), η1(0), η1(r, 0), η2(0), η2(r, 0)

)
,

is given by

Σ = Diag
[
A,B,A,B

]
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with

A =

(
F0 − E2

1−C2 F − E2C
1−C2

F − E2C
1−C2 F0 − E2

1−C2

)

B =

(
F0 H
H F0

)
.

Using formula (24) the expectation we have to compute is equal to

(25)

1

π2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2t

−2
1 t−22

[
1−1

2
T (t1, 0)−1

2
T (−t1, 0)−1

2
T (0, t2)−

1

2
T (0,−t2)

+
1

4
T (t1, t2) +

1

4
T (−t1, t2) +

1

4
T (t1,−t2) +

1

4
T (−t1,−t2)

]
,

where

T (t1, t2) = E
[

exp
(
i(w1t1 + w2t2)

)]
,

with

w1 = ξ1(0)η2(0)− η1(0)ξ2(0) = W1W7 −W3W5

w2 = ξ1(r, 0)η2(r, 0)− η1(r, 0)ξ2(r, 0) = W2W8 −W4W6.

T (t1, t2) = E
(

exp(iWTHW)
)

where W has the distribution N(0,Σ)
and

H =




0 0 0 D
0 0 −D 0
0 −D 0 0
D 0 0 0


 ,

D =
1

2

[
t1 0
0 t2

]
.

A standard diagonalization argument shows that

T (t1, t2) = E
(

exp(iWTHW)
)

= E
(

exp(i
8∑

j=1

λjζ
2
j )
)
,
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where the ζj’s are independent with standard normal distribution
and the λj are the eigenvalues of Σ1/2HΣ1/2. Using the characteristic
function of the χ2(1) distribution:

(26) E
(

exp(iWTHW)
)

=
8∏

j=1

(1− 2iλj)
−1/2.

Clearly

Σ1/2 = Diag
[
A1/2,B1/2,A1/2,B1/2

]
,

and

Σ1/2HΣ1/2 =




0 0 0 M
0 0 −MT 0
0 −M 0 0
MT 0 0 0


 ,

with M = A1/2DB1/2.
Let λ be an eigenvalue of Σ1/2HΣ1/2. It is easy to check that λ2 is

an eigenvalue ofMMT . Respectively if λ21 and λ22 are the eigenvalues
of MMT , those of Σ1/2HΣ1/2 are ±λ1(twice) and ±λ2 (twice).

Note that λ21 and λ22 are the eigenvalues ofMMT = A1/2DBDA1/2

or equivalently, of DBDA. Using (26)

E
(

exp(iWTHW)
)

=
(
1 + 4(λ21 + λ22) + 16λ21λ

2
2

)−1

=
(
1 + 4 tr(DBDA) + 16 det(DBDA)

)−1

where

DBDA =
1

4

[
t21F0(F0− E2

1−C2 )+t1t2H(F− E2C
1−C2 ) t21F0(F− E2C

1−C2 )+t1t2H(F0− E2

1−C2 )

t1t2H(F0− E2

1−C2 )+t
2
2F0(F− E2C

1−C2 ) t1t2H(F− E2C
1−C2 )+t

2
2F0(F0− E2

1−C2 )

]

So,

4 tr(DBDA) = (t21 + t22)F0(F0 −
E2

1− C2
) + 2t1t2H(F − E2C

1− C2
)

(27)

16 det(DBDA) = t21t
2
2

[
F 2
0 −H2

][
(F0 −

E2

1− C2
)2 − (F − E2C

1− C2
)2
]
,

(28)
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giving

(29) T (t1, t2) = E
(

exp(iWTHW)
)

=
(

1 + (t21 + t22)F0(F0 −
E2

1− C2
) + 2t1t2H(F − E2C

1− C2
)

+ t21t
2
2

[
F 2
0 −H2

][
(F0 −

E2

1− C2
)2 − (F − E2C

1− C2
)2
])−1

.

Performing the change of variable t′ =
√
A1t with A1 = F0(F0 −

E2

1−C2 ) the integral (25) becomes

(30)
A1

π2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2t

−2
1 t−22

[
1− 1

1 + t21

1

1 + t22
+−1

2

{ 1

1 + (t21 + t22)− 2A2t1t2 + t21t
2
2Z

+

1

1 + (t21 + t22) + 2A2t1t2 + t21t
2
2Z

}]

=
A1

π2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2t

−2
1 t−22

[
1− 1

1 + t21
− 1

1 + t22
+

1 + (t21 + t22) + t21t
2
2Z(

1 + (t21 + t22) + t21t
2
2Z
)2
− 4A2

2t
2
1t

2
2

]
,

where 



A2 = H
F0

F (1−C2)−E2C
F0(1−C2)−E2

Z =
F 2
0−H2

F 2
0

[
1− (F − E2C

1−C2 )2.(F0 − E2

1−C2 )−2
]
.

In this form, and up to a sign change, this result is equivalent to
Formula (4.43) of [3] (note that A2

2 = Y in [3]).
In order to compute the integral (30), first we obtain

∫ ∞

−∞

1

t22

[
1− 1

1 + t22

]
dt2 = π.

We split the other term into two integrals, thus we have for the first
one
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1

2

∫ ∞

−∞

1

t22

[ 1

1 + (t21 + t22)− 2A2t1t2 + t21t
2
2Z
− 1

1 + t21

]
dt2

= − 1

2(1 + t21)

∫ ∞

−∞

1

t22

(1 + t21Z)t22 − 2A2t1t2
1 + t21 − 2A2t1t2 + (1 + t21Z)t22

dt2

= − 1

2(1 + t21)

∫ ∞

−∞

1

t22

t22 − 2Z1t1t2
t22 − 2Z1t1t2 + Z2

dt2 = I1,

where Z2 =
1+t21
1+Zt21

and Z1 = A2

1+Zt21
.

Similarly, for the second integral we get

1

2

∫ ∞

−∞

1

t22

[ 1

1 + (t21 + t22) + 2A2t1t2 + t21t
2
2Z
− 1

1 + t21

]
dt2

= − 1

2(1 + t21)

∫ ∞

−∞

1

t22

t22 + 2Z1t1t2
t22 + 2Z1t1t2 + Z2

dt2 = I2

I1 + I2 = − 1

2(1 + t21)

∫ ∞

−∞

1

t22

[ t22 − 2Z1t1t2
t22 − 2Z1t1t2 + Z2

+
t22 + 2Z1t1t2

t22 + 2Z1t1t2 + Z2

]
dt2

= − 1

(1 + t21)

∫ ∞

−∞

t22 + (Z2 − 4Z2
1 t

2
1)

t42 + 2(Z2 − 2Z2
1 t

2
1)t

2
2 + Z2

2

dt2

= − 1

(1 + t21)

π(Z2 − 2Z2
1 t

2
1)

Z2

√
(Z2 − Z2

1 t
2
1)
.

In the third line we have used the formula provided by the method
of residues. In fact, if the polynomial X2 − SX + P with P > 0 has
not root in [0,∞), then

∫ ∞

−∞

t2 − γ
t4 − St2 + P

dt =
π√

P (−S + 2
√
P )

(
√
P − γ).

In our case γ = −(Z2 − 4Z2
1 t

2
1), S = −2(Z2 − 2Z2

1 t
2
1) and P = Z2

2 .

Therefore we get
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A(r) =
A1

4π3(1− C2)

∫ ∞

−∞

1

t21

[
1− 1

(1 + t21)

(Z2 − 2Z2
1 t

2
1)

Z2

√
(Z2 − Z2

1 t
2
1)

]
dt1.
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ON AUTOMORPHISM GROUPS OF FIBER
BUNDLES

MICHEL BRION

Abstract. We obtain analogues of classical results on auto-
morphism groups of holomorphic fiber bundles, in the setting
of group schemes. Also, we establish a lifting property of the
connected automorphism group, for torsors under abelian vari-
eties. These results will be applied to the study of homogeneous
bundles over abelian varieties.

1. Introduction

This work arose from a study of homogeneous bundles over an
abelian variety A, that is, of those principal bundles with base A
and fiber an algebraic group G, that are isomorphic to all of their
pull-backs by the translations of A (see [Br2]). In the process of that
study, it became necessary to obtain algebro-geometric analogues of
two classical results about automorphisms of fiber bundles in complex
geometry. The first one, due to Morimoto (see [Mo]), asserts that the
equivariant automorphism group of a principal bundle over a compact
complex manifold, with fiber a complex Lie group, is a complex Lie
group as well. The second one, a result of Blanchard (see [Bl]),
states that a holomorphic action of a complex connected Lie group
on the total space of a locally trivial fiber bundle of complex manifolds
descends to a holomorphic action on the base, provided that the fiber
is compact and connected.

Also, we needed to show the existence in the category of schemes of
certain fiber bundles associated to a G-torsor (or principal bundles)

2010 Mathematics Subject Classification. 14L10, 14L15, 14L30.
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π : X → Y , where G is a connected group scheme and X, Y are alge-
braic schemes; namely, those fiber bundles X ×G Z → Y associated
to G-homogeneous varieties Z. Note that the fiber bundle associated
to an arbitrary G-scheme Z exists in the category of algebraic spaces,
but may fail to be a scheme (see [Bi, KM]).

Finally, we were led to a lifting result which reduces the study of
homogeneous bundles to the case that the structure group is linear,
and does not seem to have its holomorphic counterpart. It asserts
that given a G-torsor π : X → Y where G is an abelian variety and
X, Y are smooth complete algebraic varieties, the connected auto-
morphism group of X maps onto that of Y under the homomorphism
provided by the analogue of Blanchard’s theorem.

In this paper, we present these preliminary results which may have
independent interest, with (hopefully) modest prerequisites. Section
2 is devoted to a scheme-theoretic version of Blanchard’s theorem: a
proper morphism of schemes π : X → Y such that π∗(OX) = OY
induces a homomorphism π∗ : Auto(X) → Auto(Y ) between the
neutral components of the automorphism group schemes (Corollary
2.2). Our proof is an adaptation of that given in [Ak] in the setting
of complex spaces.

In Section 3, we consider a torsor π : X → Y under a connected
group scheme G, and show the existence of the associated fiber bun-
dle X ×G G/H = X/H for any subgroup scheme H ⊂ G (Theorem
3.3). As a consequence, X ×G Z exists when Z is the total space
of a G-torsor, or a group scheme where G acts via a homomorphism
(Corollary 3.4). Another application of Theorem 3.3 concerns the
quasi-projectivity of torsors (Corollary 3.5); it builds on work of Ray-
naud, who showed e.g. the local quasi-projectivity of homogeneous
spaces over a normal scheme (see [Ra]).

The automorphism groups of torsors are studied in Section 4. In
particular, we obtain a version of Morimoto’s theorem: the equivari-
ant automorphisms of a torsor over a proper scheme form a group
scheme, locally of finite type (Theorem 4.2). Here our proof, based
on an equivariant completion of the structure group, is quite different
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from the original one. We also analyze the relative equivariant auto-
morphism group of such a torsor; this yields a version of Chevalley’s
structure theorem for algebraic groups in that setting (Proposition
4.3).

The final Section 5 contains a full description of relative equivariant
automorphisms for torsors under abelian varieties (Proposition 5.1)
and our lifting result for automorphisms of the base (Theorem 5.4).

Acknowledgements. Many thanks to Gaël Rémond for several
clarifying discussions, and special thanks to the referee for very help-
ful comments and corrections. In fact, the final step of the proof of
Theorem 3.3 is taken from the referee’s report; the end of the proof
of Corollary 2.2, and the proof of Corollary 3.4 (ii), closely follow
his/her suggestions.

Notation and conventions. Throughout this article, we consider
algebraic varieties, schemes, and morphisms over an algebraically
closed field k. Unless explicitly mentioned, we will assume that the
considered schemes are of finite type over k (such schemes are also
called algebraic schemes). By a point of a scheme X, we will mean
a closed point unless explicitly mentioned. A variety is an integral
separated scheme.

We will use [DG] as a general reference for group schemes. Given
such a group scheme G, we denote by µG : G×G→ G the multiplica-
tion and by eG ∈ G(k) the neutral element. The neutral component
of G is denoted by Go, and the Lie algebra by Lie(G).

We recall that an action of G on a scheme X is a morphism

α : G×X −→ X, (g, x) 7−→ g · x

such that the composite map

X
eG×idX−−−−→ G×X α−−−→ X
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is the identity, and the square

G×G×X idG×α−−−−→ G×X
µG×idX

y α

y
G×X α−−−→ X

commutes. We then say that X is a G-scheme. A morphism f : X →
Y between two G-schemes is called equivariant if the square

G×X α−−−→ X

idG×f
y f

y

G× Y β−−−→ Y

commutes (with the obvious notation). We then say that f is a G-
morphism.

A smooth group scheme will be called an algebraic group. By
Chevalley’s structure theorem (see [Ro, Theorem 16], or [Co] for
a modern proof), every connected algebraic group G has a largest
closed connected normal affine subgroup Gaff ; moreover, the quotient
G/Gaff =: A(G) is an abelian variety. This yields an exact sequence
of connected algebraic groups

1 −→ Gaff −→ G −→ A(G) −→ 1.

2. Descending automorphisms for fiber spaces

We begin with the following scheme-theoretic version of a result of
Blanchard (see [Bl, Section I.1] and also [Ak, Lemma 2.4.2]).

Proposition 2.1. Let G be a connected group scheme, X a G-
scheme, Y a scheme, and π : X → Y a proper morphism such that
π∗(OX) = OY . Then there is a unique G-action on Y such that π is
equivariant.

Proof. We will consider a scheme Z as the ringed space (Z(k),OZ)
where the set Z(k) is equipped with the Zariski topology; this makes
sense as Z is of finite type.
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We first claim that the abstract group G(k) permutes the fibers
of π : X(k) → Y (k) (note that these fibers are non-empty and con-
nected, since π∗(OX) = OY ). Let y ∈ Y (k) and denote by Fy the
set-theoretic fiber of π at y, viewed as a closed reduced subscheme of
X. Then the map

ϕ : Gred × Fy −→ Y, (g, x) 7−→ π(g · x)

maps {eG} × Fy to the point y. Moreover, Gred is a variety, and Fy
is connected and proper. By the rigidity lemma (see [Mu, p. 43]),
it follows that ϕ maps {g} × Fy to a point for any g ∈ G(k), i.e.,
g · Fy ⊂ Fg·y. Thus, g−1 · Fg·y ⊂ Fy and hence g · Fy = Fg·y. This
implies our claim.

That claim yields a commutative square

G(k)×X(k)
α−−−→ X(k)

idG×π
y π

y

G(k)× Y (k)
β−−−→ Y (k),

where β is an action of the (abstract) group G(k).
Next, we show that β is continuous. It suffices to show that β−1(Z)

is closed for any closed subset Z ⊂ Y (k). But (idG, π)−1β−1(Z) =
α−1π−1(Z) is closed, and (idG, π) is proper and surjective; this yields
our assertion.

Finally, we define a morphism of sheaves of k-algebras

β# : OY −→ β∗(OG×Y ).

For this, to any open subset V ⊂ Y , we associate a homomorphism
of algebras

β#(V ) : OY (V ) −→ OG×Y
(
β−1(V )

)
.

By assumption, the left-hand side is isomorphic to OX
(
π−1(V )

)
, and

the right-hand side to

OG×X
(
(idG, π)−1β−1(V )

)
= OG×X

(
α−1π−1(V )

)
.

We define β#(V ) := α#
(
π−1(V )

)
. Now it is straightforward to verify

that (β, β#) is a morphism of locally ringed spaces; this yields a
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morphism of schemes β : G × Y → Y . By construction, β is the
unique morphism such that the square

G×X α−−−→ X

idG×π
y π

y

G× Y β−−−→ Y

commutes.
It remains to show that β is an action of the group scheme G.

Note that eG acts on X(k) via the identity; moreover, the composite
morphism of sheaves

OY β#

−−−→ β∗(OG×Y )
(eG×idY )#

−−−−−−→ β∗(O{eG}×Y ) ∼= OY
is the identity, since so is the analogous morphism

OX α#

−−−→ α∗(OG×X)
(eG×idX)#

−−−−−−→ α∗(O{eG}×X) ∼= OX
and π∗(OX) = OY . Likewise, the square

G×G× Y idG×β−−−−→ G× Y
µG×idY

y β

y

G× Y β−−−→ Y

commutes on closed points, and the corresponding square of mor-
phisms of sheaves commutes as well, since the analogous square with
Y replaced by X commutes. �

This proposition will imply a result of descent for group scheme
actions, analogous to [Bl, Proposition I.1] (see also [Ak, Proposition
2.4.1]). To state that result, we need some recollections on automor-
phism functors.

Given a scheme S, we denote by AutS(X × S) the group of auto-
morphisms of X × S viewed as a scheme over S. The assignement
S 7→ AutS(X × S) yields a group functor Aut(X), i.e., a contravari-
ant functor from the category of schemes to that of groups. If X
is proper, then Aut(X) is represented by a group scheme Aut(X),
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locally of finite type (see [MO, Theorem 3.7]). In particular, the neu-
tral component Auto(X) is a group scheme of finite type. Also, recall
that

(1) Lie Aut(X) ∼= Γ(X,TX)

where the right-hand side denotes the Lie algebra of global vector
fields on X, that is, of derivations of OX .

We now are in a position to state:

Corollary 2.2. Let π : X → Y be a morphism of proper schemes
such that π∗(OX) = OY . Then π induces a homomorphism of group
schemes

π∗ : Auto(X) −→ Auto(Y ).

Proof. This is a formal consequence of Proposition 2.1. Specifically,
let G := Auto(X) and consider the G-action on Y obtained in that
proposition. This yields a automorphism of Y ×G as a scheme over
G,

(y, g) 7−→ (g · y, g),

and in turn a morphism (of schemes)

π∗ : G −→ Aut(Y ).

Moreover, π∗(eG) = eAut(Y ) since eG acts via the identity. As G is
connected, it follows that the image of π∗ is contained in Auto(Y ) =:
H. In other words, we have a morphism of schemes π∗ : G→ H such
that π∗(eG) = eH . It remains to check that π∗ is a homomorphism;
but this follows from the fact that π∗ corresponds to the G-action on
Y , and hence yields a morphism of group functors. �

Given two complete varieties X and Y , the preceding corollary
applies to the projections

p : X × Y → X, q : X × Y → Y

and yields homomorphisms

p∗ : Auto(X)×Auto(Y )→ Auto(X), q∗ : Auto(X)×Auto(Y )→ Auto(Y ).

This implies readily the following analogue of [Bl, Corollaire, p. 161]:
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Corollary 2.3. Let X and Y be complete varieties. Then the ho-
momorphism

(p∗, q∗) : Auto(X × Y ) −→ Auto(X)× Auto(Y )

is an isomorphism, with inverse the natural homomorphism

Auto(X)×Auto(Y ) −→ Auto(X×Y ), (g, h) 7−→
(
(x, y) 7→ (g(x), h(y)

)
.

More generally, the isomorphism

Auto(X × Y ) ∼= Auto(X)× Auto(Y )

holds for those proper schemes X and Y such that O(X) = O(Y ) =
k, but may fail for arbitrary proper schemes. Indeed, let X be a
complete variety having non-zero global vector fields, and let Y :=
Spec k[ε] where ε2 = 0; denote by y the closed point of Y . Then we
have an exact sequence

1 −→ Γ(X,TX) −→ AutY (X × Y ) −→ Aut(X) −→ 1,

where the map on the right is obtained by restricting to X × {y}.
This identifies the vector group Γ(X,TX) to a closed subgroup of
Auto(X×Y ), which is not in the image of the natural homomorphism.

Likewise, Aut(X × Y ) is generally strictly larger than Aut(X) ×
Aut(Y ) (e.g. take Y = X and consider the automorphism (x, y) 7→
(y, x)).

3. Torsors and asssociated fiber bundles

Consider a group scheme G, a G-scheme X, and a G-invariant
morphism

(2) π : X −→ Y,

where Y is a scheme. We say that X is a G-torsor over Y , if π is
faithfully flat and the morphism

(3) α× p2 : G×X −→ X ×Y X, (g, x) 7−→ (g · x, x)

is an isomorphism. The latter condition is equivalent to the existence
of a faithfully flat morphism f : Y ′ → Y such that the pull-back
torsor π′ : X×Y Y ′ → Y ′ is trivial. (Since our schemes are assumed to
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be of finite type, π is quasi-compact and finitely presented; thus, there
is no need to distinguish between the fppf and the fpqc topology).

For a G-torsor (2), the morphism π is surjective, and its geometric
fiber Xȳ is isomorphic to Gȳ for any (possibly non-closed) point y ∈
Y . In particular, π is smooth if and only if G is an algebraic group;
under that assumption, X is smooth (resp. normal) if and only if so
is Y .

Also, note that π is a universal geometric quotient in the sense
of [MFK, Section 0], and hence a universal categorical quotient (see
[loc. cit., Proposition 0.1]). In particular, Y (k) = X(k)/G(k) and
OY = π∗(OX)G (the subsheaf of G-invariants in π∗(OX)). Thus, we
will also denote Y by X/G.

Remark 3.1. If G is an affine algebraic group, then every G-torsor
(2) is locally isotrivial, i.e., for any point y ∈ Y there exist an open
subscheme V ⊂ Y containing y and a finite étale surjective morphism
f : V ′ → V such that the pull-back torsor X ×V V ′ is trivial (this
result is due to Grothendieck, see [Ra, Lemme XIV 1.4] for a detailed
proof). The local isotriviality of π also holds if G is an algebraic group
and Yred is normal, as a consequence of [loc. cit., Théorème XIV 1.2].
In particular, π is locally trivial for the étale topology in both cases.

Yet there exist torsors under algebraic groups that are not locally
isotrivial, see [loc. cit., XIII 3.1] (reformulated in more concrete terms
in [Br1, Example 6.2]) for an example where Y is a rational nodal
curve, and G is an abelian variety having a point of infinite order.

Given a G-torsor (2) and a G-scheme Z, we may view X × Z as
a G-scheme for the diagonal action, and ask if there exist a G-torsor
$ : X × Z → W where W is a scheme, and a morphism q : W → Y
such that the square

X × Z p1−−−→ X

$

y π

y
W

q−−−→ Y
is cartesian; here p1 denotes the first projection. Then q is called the
associated fiber bundle with fiber Z. The quotient scheme W will be
denoted by X ×G Z.
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The answer to this question is positive if Z admits an ample G-
linearized invertible sheaf (as follows from descent theory; see [SGA1,
Proposition 7.8] and also [MFK, Proposition 7.1]). In particular,
the answer is positive if Z is affine. Yet the answer is generally
negative, even if Z is a smooth variety; see [Bi]. However, associated
fiber bundles do exist in the category of algebraic spaces, see [KM,
Corollary 1.2].

Of special interest is the case that the fiber is a group scheme G′

where G acts through a homomorphism f : G → G′. Then X ′ :=
X ×G G′ is a G′-torsor over Y , obtained from X by extension of
the structure group. If f identifies G with a closed subgroup scheme
of G′, then X ′ comes with a G′-morphism to G′/G arising from the
projectionX×G′ → G′. Conversely, the existence of such a morphism
yields a reduction of structure group, in view of the following standard
result:

Lemma 3.2. Let G be a group scheme, H a subgroup scheme, and X
a G-scheme equipped with a G-morphism f : X → G/H. Denote by
Z the fiber of f at the base point of G/H, so that Z is an H-scheme.

Then f is faithfully flat, and the natural map G× Z → X factors
through a G-isomorphism G×H Z ∼= X.

If π : X → Y is a G-torsor, then the restriction π|Z : Z → Y is an
H-torsor.

Proof. Form and label the cartesian square

X ′
f ′−−−→ G

q′
y q

y

X
f−−−→ G/H

where q denotes the quotient map. Then X ′ is a G-scheme and f ′ is a
G-morphism with fiber Z at eG. It follows readily that the morphism

G× Z −→ X ′, (g, z) 7−→ g · z
is an isomorphism, with inverse

X ′ −→ G× Z, x′ 7−→
(
f ′(x′), f ′(x′)−1 · x′

)
.
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This identifies f ′ with the projection G × X → G; in particular, f ′

is faithfully flat. Since q is an H-torsor, f is faithfully flat as well;
moreover, q′ is an H-torsor. This yields the first assertion.

Next, the G-torsor π : X → Y yields a G×H-torsor

F : G× Z −→ Y, (g, z) 7−→ π(g · z).

Moreover, F is the composite of the projection G× Z → Z followed
by π|Z . Thus, π|Z is faithfully flat. It remains to show that the
natural morphism H × Z → Z ×Y Z is an isomorphism. But this
follows by considering the isomorphism (3) and taking the fiber of
the morphism f × f : X ×Y X → G/H × G/H at the base point of
G/H ×G/H. �

Returning to a G-torsor (2) and a G-scheme Z, we now show that
the associated fiber bundle X ×G Z is a scheme in the case that G
is connected and acts transitively on Z. Then Z ∼= G/H for some
subgroup scheme H ⊂ G, and hence X ×G Z ∼= X/H as algebraic
spaces.

Theorem 3.3. Let G be a connected group scheme, π : X → Y a
G-torsor, and H ⊂ G a subgroup scheme. Then:

(i) π factors uniquely as the composite

(4) X
p−−−→ Z

q−−−→ Y,

where Z is a scheme, and p is an H-torsor.

(ii) If H is a normal subgroup scheme of G, then q is a G/H-torsor.

Proof. (i) The uniqueness of the factorization (4) follows from the
fact that p is a universal geometric quotient.

Also, the factorization (4) exists after base change under π : X →
Y : it is just the composite

G×X r×idX−−−→ G/H ×X p2−−−→ X

where r : G→ G/H is the quotient map, and p2 the projection.
Thus, it suffices to show that the algebraic space X/H is repre-

sentable by a scheme.
We first prove this assertion under the assumption that G is a

(connected) algebraic group. We begin by reducing to the case that
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X and Y are normal, quasi-projective varieties. For this, we adapt
the argument of [Ra, pp. 206–207]. We may assume that X = G ·U ,
where U ⊂ X is an open affine subscheme (since X is covered by
open G-stable subschemes of that form). Then let ν : Ỹ → Y denote
the normalization map of Yred. Consider the cartesian square

X̃ −−−→ X

π̃

y π

y
Ỹ

ν−−−→ Y

and let Ũ := U ×Y Ỹ . Then π̃ is a G-torsor, and hence X̃ is normal.
Moreover, X̃ = G · Ũ contains Ũ as an open affine subset. Hence
π̃ is quasi-projective by [Ra, Théorème VI 2.3]. Therefore, to show
that X/H is a scheme, it suffices to check that X̃/H is a scheme in
view of [loc. cit., Lemme XI.3.2]. Thus, we may assume that X is
normal and π is quasi-projective. Then we may further assume that
Y is quasi-projective, and hence so is X. Now X is the disjoint union
of its irreducible components, and each of them is G-stable; thus, we
may assume that X is irreducible. This yields the desired reduction.

Thus, we may assume that there exists an ample invertible sheaf L
on X; since X is normal, we may assume that L is Gaff-linearized. In
view of [Br1, Lemma 3.2], it follows that there exists a G-morphism
X → G/G1, where G1 ⊂ G is a subgroup scheme containing Gaff

and such that G1/Gaff is finite. By Lemma 3.2, this yields a G-
isomorphism

X ∼= G×G1 X1

where X1 ⊂ X is a closed subscheme, stable under G1. Moreover,
the restriction π1 : X1 → Y is a G1-torsor. Since G1 is affine, so is
the morphism π1 and hence X1 is quasi-projective.

We now show that π1 factors as a Gaff-torsor p1 : X1 → X1/Gaff ,
where X1/Gaff is a quasi-projective scheme, followed by a G1/Gaff-
torsor q1 : X1/Gaff → Y . Indeed, the associated fiber bundle X1 ×G1

G1/Gaff is a quasi-projective scheme, since G1/Gaff is affine; we then
take for p1 the composite of the morphism idX1×eG1 : X1 → X1×G1

with the natural morphism X1 × G1 → X1 ×G1 G1/Gaff . Then p1 is
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Gaff-invariant and fits into a commutative diagram

X1 ×G1 −−−→ X1 ×G1/Gaff −−−→ X1y
y

y
X1

p1−−−→ X1 ×G1 G1/Gaff
q1−−−→ X1/G1 = Y

where the top horizontal arrows are the natural projections, and the
vertical arrows are G1-torsors; thus, p1 is a Gaff-torsor.

Next, note that the smooth, quasi-projective Gaff-variety G admits
a Gaff-linearized ample invertible sheaf. By the preceding step and
[MFK, Proposition 7.1], it follows that G×GaffX1 is a quasi-projective
scheme; it is the total space of a G1/Gaff-torsor over X = G×G1 X1.
Likewise, G/H ×Gaff X1 is a quasi-projective scheme, the total space
of a G1/Gaff-torsor over

(G/H ×Gaff X1)/(G1/Gaff) =: Z

It follows that Z = G/H ×G1 X1 fits into a cartesian square

G×X1

r×idX1−−−−→ G/H ×X1y
y

X
p−−−→ Z

where the vertical arrows are G1-torsors; therefore, p is an H-torsor.
Finally, in the general case, we may assume that k has characteris-

tic p > 0. For any positive integer n, we then have the n-th Frobenius
morphism

F n
G : G −→ G(n).

Its kernel Gn is a finite local subgroup scheme of G. Likewise, we
have the n-th Frobenius morphism

F n
X : X −→ X(n)

and G(n) acts on X(n) compatibly with the G-action on X. In par-
ticular, F n

X is invariant under Gn. Since the morphism F n
X is finite,

the sheaf of OX(n)-algebras
(
(F n

X)∗OX
)Gn

is of finite type. Thus, the
scheme

X/Gn := SpecX(n)

(
(F n

X)∗OX
)Gn
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is of finite type, and F n
X is the composite of the natural morphisms

X → X/Gn → X(n). Clearly, the formation of X/Gn commutes with
faithfully flat base change; thus, the morphism

πn : X −→ X/Gn

is a Gn-torsor, since this holds for the trivial G-torsor G × Y → Y .
As a consequence, π factors through πn, the G-action on X descends
to an action of G/Gn

∼= G(n) on X/Gn, and the map X/Gn → Y
is a G(n)-torsor. Note that G(n) is reduced, and hence a connected
algebraic group, for n� 0.

Now consider the restriction

F n
H : H −→ H(n)

with kernel Hn = H ∩ Gn. Then H acts on X/Gn via its quotient
H/Hn

∼= H(n) ⊂ Gn). By the preceding step, there exists an H(n)-
torsor X/Gn → (X/Gn)/H(n) = X/GnH, and hence a GnH-torsor

pn : X −→ X/GnH

where X/GnH is a scheme (of finite type). We now set

Z := SpecX/GnH

(
(pn)∗OX

)H

so that pn factors through a morphism p : X → Z. Then p is an H-
torsor, since the formations ofX/GnH and Z commute with faithfully
flat base change, and p is just the natural map G × Y → G/H × Y
when π is the trivial torsor over Y . Likewise, the morphism Z →
X/GnH is finite, and hence the scheme Z is of finite type.

(ii) The composite map

G×X α−−−→ X
p−−−→ X/H

is invariant under the action of H×H on G×X via (h1, h2) · (g, x) =
(gh−1

1 , h2 ·x). This yields a morphism β : G/H×X/H → X/H which
is readily seen to be an action. �
Corollary 3.4. Let again G be a connected group scheme.

(i) Given two G-torsors π1 : X1 → Y1 and π2 : X2 → Y2, the associ-
ated torsor X1 ×X2 → X1 ×G X2 exists.
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(ii) Given a homomorphism of group schemes f : G → G′ and a
G-torsor π : X → Y , the G′-torsor π′ : G′ ×G X → Y (obtained by
extension of structure groups) exists.

Proof. (i) Apply Theorem 3.3 to the G×G-torsor X1×X2 → Y1×Y2

and to the diagonal embedding of G into G×G.
(ii) Denote by Ḡ the (scheme-theoretic) image of f and by p : G′ →

G′/Ḡ the quotient morphism. Then p × π : G′ ×X → G′/Ḡ × Y is
a Ḡ × G-torsor. Moreover, Ḡ × G is a connected group scheme,
and contains G viewed as the image of the homomorphism f × id.
Applying Theorem 3.3 again yields a G-torsor G′ × X → G′ ×G X.
Moreover, the trivial G′-torsor G′ ×X → X descends to a G′-torsor
G′ ×G X → X/G = Y . �

Corollary 3.5. Let G be a connected algebraic group. Then every
G-torsor (2) factors uniquely as the composite

(5) X
p−−−→ Z

q−−−→ Y,

where Z is a scheme, p is a Gaff-torsor, and q is an A(G)-torsor.
Here p is affine and q is proper.

Moreover, the following conditions are equivalent:

(1) π is quasi-projective.
(2) q is projective.
(3) q admits a reduction of structure group to a finite subgroup

scheme F ⊂ A(G).
(4) π admits a reduction of structure group to an affine subgroup

scheme H ⊂ G.

These conditions hold if X is smooth. In characteristic 0, they
imply that q is isotrivial and π is locally isotrivial.

Proof. The existence and uniqueness of the factorization are direct
consequences of Theorem 3.3. The assertions on p and q follow by
descent theory (see [SGA1, Exposé VIII, Corollaires 4.8, 5.6]).

(1)⇒(2) is a consequence of [Ra, Lemme XIV 1.5 (ii)].
(2)⇒(1) holds since p is affine.
(2)⇒(3) follows from [Br1, Lemma 3.2].
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(3)⇒(4) Let H ⊂ G be the preimage of F . Then G/H ∼= A(G)/F .
By assumption, X/Gaff admits an A(G)-morphism to A(G)/F ; this
yields a G-morphism X → G/H.

(4)⇒(3) Since GaffH is affine (as a quotient of the affine group
scheme Gaff × H), we may replace H with GaffH. Thus, we may
assume that H is the preimage of a finite subgroup scheme F ⊂ A(G).
Then q admits a reduction of structure group to A(G)/F .

If X is smooth, then so are Y and Z; in that case, (3) follows from
[Ro, Theorem 14] or alternatively from [Ra, Proposition XIII 2.6].

Also, (3) means that Y ∼= A(G) ×F Z ′ as A(G)-torsors over Z ∼=
Z ′/F , where Z ′ is a closed F -stable subscheme of Y . This yields a
cartesian square

A(G)× Z ′ p2−−−→ Z ′y
y

Y
q−−−→ Z

where the vertical arrows are F -torsors, and hence étale in character-
istic 0. This shows the isotriviality of q. Since p is locally isotrivial,
so is π. �

Remarks 3.6. (i) The equivalent conditions in the preceding result
do not generally hold in the setting of normal varieties. Specifically,
given an elliptic curve G, there exists a G-torsor π : X → Y where
Y is a normal affine surface and X is not quasi-projective; then of
course π is not projective (see [Br1, Example 6.4], adapted from [Ra,
XIII 3.2]).

(ii) If (4) holds, one may ask whether π admits a reduction of struc-
ture group to some affine algebraic subgroup H ⊂ G. The answer
is trivially positive in characteristic 0, but negative in characteristic
p > 0, as shown by the following example.

Choose an integer n ≥ 2 not divisible by p, and let C denote the
curve of equation yp = xn− 1 in the affine plane A2, minus all points
(x, 0) where x is a n-th root of unity. The group scheme µp of p-th
roots of unity acts on A2 via t · (x, y) = (x, ty), and this action leaves
C stable. The morphism A2 → A2, (x, y) 7→ (x, yp) restricts to a
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µp-torsor

q : C −→ Y

where Y ⊂ A2 denotes the curve of equation y = xn − 1 minus all
points (x, 0) with xn = 1. Note that Y is smooth, whereas C is
singular; both curves are rational, since the equation of C may be
rewritten as xn = (y + 1)p.

Next, let G be an ordinary elliptic curve, so that G contains µp,
and denote by

π : X = G×µp C −→ Y

the G-torsor obtained by extension of structure group (which exists
since C is affine). Then X is a smooth surface.

We show that there exists no G-morphism f : X → G/H, where H
is an affine algebraic (or equivalently, finite) subgroup of G. Indeed,
f would map the rational curve C ⊂ X and all its translates by
G to points of the elliptic curve G/H, and hence f would factor
through a G-morphism G/µp → G/H. As a consequence, µp ⊂ H, a
contradiction.

(iii) Given a torsor (2) under a group scheme (of finite type) G, there
exists a unique factorization

(6) X
p−−−→ Z = X/Go

red

q−−−→ Y

where Z is a scheme, p is a torsor under the connected algebraic
group Go

red, and q is finite. (Indeed, Z = X ×G G/Go
red as in the

proof of Theorem 3.3).

4. Automorphism groups of torsors

To any G-torsor π : X → Y as in Section 3, one associates several
groups of automorphisms:

• the automorphism group of X as a scheme over Y , denoted
by AutY (X) and called the relative automorphism group,
• the automorphism group of the pair (X, Y ), denoted by Aut(X, Y ):

it consists of those pairs (ϕ, ψ) ∈ Aut(X)×Aut(Y ) such that
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the square

X
ϕ−−−→ X

π

y π

y

Y
ψ−−−→ Y

commutes,
• the automorphism group of X viewed as a G-scheme, denoted

by AutG(X) and called the equivariant automorphism group.

Clearly, the projection p2 : Aut(X)×Aut(Y )→ Aut(Y ) yields an
exact sequence of (abstract) groups

1 −−−→ AutY (X) −−−→ Aut(X, Y )
p2−−−→ Aut(Y ).

Also, note that each G-morphism ϕ : X → X descends to an mor-
phism ψ : Y → Y , since π ◦ ϕ : X → Y is G-invariant and π
is a categorical quotient. The assignement ϕ ∈ AutG(X) 7→ ψ =:
π∗(ϕ) ∈ Aut(Y ) yields an identification of AutG(X) with a subgroup
of Aut(X, Y ), and an exact sequence of groups

(7) 1 −−−→ AutGY (X) −−−→ AutG(X)
π∗−−−→ Aut(Y ).

Moreover, we may view the equivariant automorphisms as those
pairs (φ, ψ) where ψ ∈ Aut(Y ), and φ : X → Xψ is a G-morphism.
Here Xψ denotes the G-torsor over Y obtained by pull-back under ψ;
note that φ is an isomorphism, as a morphism of G-torsors over the
same base.

The relative automorphism group is described by the following
result, which is certainly well-known but for which we could not locate
any appropriate reference:

Lemma 4.1. Let π : X → Y be a G-torsor. Then the map

Hom(X,G) −→ AutY (X), (f : X → G) 7−→
(
F : X → X, x 7→ f(x)·x

)

is an isomorphism of groups, which restricts to an isomorphism

(8) HomG(X,G) ∼= AutGY (X).
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Here HomG(X,G) ⊂ Hom(X,G) denotes the subset of morphisms
that are equivariant for the given G-action on X, and the G−action
on itself by conjugation.

If G is commutative, then AutGY (X) ∼= Hom(Y,G).

Proof. Let u ∈ AutY (X). Then u × idX is an automorphism of
X ×Y X over X. In view of the isomorphism (3), u × idX yields an
automorphism of G×X over X, thus of the form (g, x) 7→ (F (g, x), x)
for a unique F ∈ Hom(G×X,G). In other words, u(g·x) = F (g, x)·x.
Thus, u(x) = f(x) · x, where f := F (eG,−) ∈ Hom(X,G). This
yields the claimed isomorphism Hom(X,G) ∼= AutY (X), equivariant
for the action of G on Hom(X,G) via (g · f)(x) = gf(g−1 · x)g−1

and on AutY (X) by conjugation. Taking invariants, we obtain the
isomorphism (8).

If G is commutative, then HomG(X,G) consists of the G-invariant
morphisms X → G; these are identified with the morphisms Y =
X/G→ G. �

The preceding considerations adapt to group functors of automor-
phisms, that associate to any scheme S the groups AutY×S(X × S),
AutS(X ×S, Y ×S) and their equivariant analogues. We will denote
these functors by AutY (X), Aut(X, Y ), AutG(X) and AutGY (X). The
exact sequence (7) readily yields an exact sequence of group functors

(9) 1 −−−→ AutGY (X) −−−→ AutG(X)
π∗−−−→ Aut(Y ).

Also, by Lemma 4.1, we have a functorial isomorphism

AutY×S(X × S) ∼= Hom(X × S,G).

In other words, AutY (X) is isomorphic to the group functor

Hom(X,G) : S 7−→ Hom(X × S,G).

As a consequence, AutGY (X) is isomorphic to HomG(X,G) : S 7→
HomG(X × S,G). This readily yields isomorphisms

Lie AutY (X) ∼= Hom
(
X,Lie(G)

) ∼= O(X)⊗ Lie(G),

Lie AutGY (X) ∼= HomG
(
X,Lie(G)

) ∼=
(
O(X)⊗ Lie(G)

)G
.
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We now obtain a finiteness result for AutG(X), analogous to a
theorem of Morimoto (see [Mo, Théorème, p. 158]):

Theorem 4.2. Consider a G-torsor π : X → Y where G is a group
scheme, X a scheme, and Y a proper scheme. Then the functor
AutG(X) is represented by a group scheme, locally of finite type, with
Lie algebra Γ(X,TX)G.

Proof. The assertion on the Lie algebra follows from theG-isomorphism
(1).

To show the representability assertion, we first reduce to the case
that G is a connected affine algebraic group. Let Gaff denote the
largest closed normal affine subgroup of G, or equivalently of Go

red.
Then AutG(X) is a closed subfunctor of AutGaff (X). Moreover, the
factorizations (5) and (6) yield a factorization of π as

X
p−−−→ X/Gaff

q−−−→ X/Go
red

r−−−→ Y

where p is a torsor under Gaff , q a torsor under Go
red/Gaff , and r is a

finite morphism. Since q and r are proper, X/Gaff is proper as well.
This yields the desired reduction.

Next, we may embed G as a closed subgroup of GL(V ) for some
finite-dimensional vector space V . Let Z denote the closure of G in
the projective completion of End(V ). Then Z is a projective variety
equipped with an action of G×G (arising from the G×G-action on
End(V ) via left and right multiplication) and with an ample G×G-
linearized invertible sheaf. By construction, G (viewed as a G × G-
variety via left and right multiplication) is the open dense G×G-orbit
in Z.

As seen in Section 3, the associated fiber bundle X ×G Z (for the
left G-action on Z) exists; it is equipped with a G-action arising from
the right G-action on Z. Moreover, X×GZ contains X×GG ∼= X as
a dense open G-stable subscheme. Also, recall the cartesian square

X × Z p−−−→ X

$

y π

y
X ×G Z q−−−→ Y.
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Since Z is complete and π is faithfully flat, it follows that q is proper,
and hence so is X ×G Z.

Now let S be a scheme, and ϕ ∈ AutGS (X × S). Then ϕ yields an
S-automorphism

φ : X × Z × S −→ X × Z × S, (x, z, s) 7−→
(
ϕ(x, s), z, s).

Consider the action of G×G on X × Z × S given by

(g1, g2) · (x, z, s) =
(
g1 · x, (g1, g2) · z, s

)
.

Then φ is G × G-equivariant, and hence yields an automorphism
Φ ∈ AutGS (X×GZ×S) which stabilizes X×G (Z \G)×S. Moreover,
the assignement ϕ 7→ Φ identifies AutGS (X ×S) with the stabilizer of
X×G(Z\G)×S in AutGS (X×GZ×S). Thereby, AutG(X) is identified
with a closed subfunctor of Aut(X ×G Z); the latter is represented
by a group scheme of finite type, since X ×G Z is proper. �

For simplicity, we denote by AutG(X) the group scheme defined
in the preceding theorem. Since AutGY (X) is a closed subfunctor of
AutG(X), it is also represented by a group scheme (locally of finite
type) that we denote likewise by AutGY (X). Further properties of this
relative automorphism group scheme are gathered in the following:

Proposition 4.3. Let π : X → Y be a torsor under a connected al-
gebraic group G, where Y is a proper scheme. Then the factorization

X
p−−−→ Z = X/Gaff

q−−−→ Y (obtained in Corollary 3.5) yields an
exact sequence of group schemes

(10) 1 −−−→ AutGaff
Z (X) −−−→ AutGY (X)

p∗−−−→ Aut
A(G)
Y (Z).

Moreover, AutGaff
Z (X) is affine of finite type,

If Y is a (complete) variety, then the neutral component of Aut
A(G)
Y (Z)

is just A(G); it is contained in the image of p∗.

Proof. We first show that AutGaff
Z (X) is affine of finite type. By

Lemma 4.1, we have

AutGaff
Z (X) ∼= HomGaff (X,Gaff).

Moreover, there exists a closed Gaff-equivariant immersion of Gaff

into an affine space V where Gaff acts via a representation. Thus,
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AutGaff
Z (X) is a closed subfunctor of HomGaff (X, V ). But the latter

is represented by an affine space (of finite dimension), namely, the
space of global sections of the associated vector bundle X ×Gaff V
over the proper scheme X/Gaff = Z. This completes the proof.

Next, we obtain (10). We start with the exact sequence (9) for
the Gaff-torsor p, which translates into an exact sequence of group
schemes

1 −−−→ AutGaff
Z (X) −−−→ AutGaff (X)

p∗−−−→ Aut(Z).

Taking G-invariants yields the exact sequence of group schemes

1 −−−→ AutGZ(X) −−−→ AutGY (X)
p∗−−−→ Aut(Z).

But G acts on the affine scheme AutGaff
Z (X) through its quotient

G/Gaff = A(G), an abelian variety. So this G-action must be trivial,
that is, AutGZ(X) = AutGaff

Z (X).

We now show that A(G) = Aut
A(G),o
Y (Z) if Y (or equivalently Z)

is a variety. Since A(G) is commutative, we have a homorphism

f : A(G)→ Aut
A(G)
Y (Z). The induced homomorphism of Lie algebras

is the natural map

LieA(G) −→ Lie Aut
A(G)
Y (Z) =

(
O(Z)⊗ LieA(G)

)A(G)

which is an isomorphism since O(Z) = k. This yields our assertion.
Finally, we show that A(G) is contained in the image of p∗. In-

deed, the neutral component of the center of G is identified with a
subgroup of AutGY (X), and is mapped onto A(G) under the quotient
homomorphism G → G/Gaff (as follows from [Ro, Corollary 5, p.
440]). �

Observe that the exact sequence (10) yields an analogue for torsors
of Chevalley’s structure theorem; it gives back that theorem when
applied to the trivial torsor G.

5. Lifting automorphisms for abelian torsors

We begin by determining the relative equivariant automorphism
groups of torsors under abelian varieties:
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Proposition 5.1. Let G be an abelian variety and π : X → Y a
G-torsor, where X and Y are complete varieties. Then the group
scheme AutGY (X) is isomorphic to Homgp

(
A(Y ), G

)
×G. Here A(Y )

denotes the Albanese variety of Y , and Homgp

(
A(Y ), G

)
denotes the

space of homomorphisms of algebraic groups A(Y )→ G; this is a free
abelian group of finite rank, viewed as a constant group scheme.

Proof. By Lemma 4.1, we have a functorial isomorphism

AutGY×S(X × S) ∼= Hom(Y × S,G).

Choose a point y0 ∈ Y . For any f ∈ Hom(Y × S,G), consider the
morphism

ϕ : Y × S −→ G, (y, s) 7−→ f(y, s)− f(y0, s)

where the group law of the abelian variety G is denoted additively.
We claim that ϕ factors through the projection Y × S → Y . For
this, we may replace k with a larger field, and assume that S has a
k-rational point s0; we may also assume that S is connected. Then
the morphism

ψ : Y × S −→ G, (y, s) 7−→ f(y, s)− f(y, s0)

maps Y×{s0} to a point. By a scheme-theoretic version of the rigidity
lemma (see [SS, Theorem 1.7]), it follows that ψ factors through the
projection Y × S → S. Thus, f(y, s)− f(y, s0) = f(y0, s)− f(y0, s0)
which shows the claim.

By that claim, we may write

f(y, s) = ϕ(y) + ψ(s)

where ϕ : Y → G and ψ : S → G are morphisms such that ϕ(y0) = 0.
Now let a : Y → A(Y ) be the Albanese morphism, normalized so that
a(y0) = 0. Then ϕ factors through a unique homorphism Φ : A(Y )→
A, and f = (Φ ◦ a) + ψ where Φ is an S-point of Homgp

(
A(Y ), G

)
,

and ψ an S-point of G. �

Next, we obtain a preliminary result which again is certainly well-
known, but for which we could not locate any reference:
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Lemma 5.2. Assume that k has characteristic 0. Let π : Z → Y be
a finite étale morphism, where Y and Z are complete varieties.

Then the natural homomorphism π∗ : Aut(Z, Y ) → Aut(Y ) re-
stricts to an isogeny Auto(Z, Y )→ Auto(Y ) on neutral components.

If π is a Galois cover with group F (that is, an F -torsor), then
Auto(Z, Y ) is the neutral component of AutF (Y ).

Proof. We set for simplicity H := Auto(Y ); this is a connected
algebraic group in view of the characteristic-0 assumption. For any
h ∈ H(k), denote by Zh the étale cover of Y obtained from Z by
pull-back under h. Then the covers Zh, h ∈ H(k), are all isomorphic
by [SGA1, Exposé X, Corollaire 1.9]. Thus, every h ∈ H(k) lifts to

some h̃ ∈ Aut(Z)(k). In other words, the image of the projection
π∗ : Aut(Z, Y ) → Aut(Y ) contains H. It follows that π∗ restricts
to a surjective homomorphism Auto(Z, Y ) → Auto(Y ); its kernel is
finite by Galois theory.

If π is an F -torsor, then π∗ has kernel F , by Galois theory again.
In particular, Aut(Z, Y ) normalizes F . The action of the neutral
component Auto(Z, Y ) by conjugation on the finite group F must be
trivial; this yields the second assertion. �

Remark 5.3. In particular, with the notation and assumptions of
the preceding lemma, all elements of Auto(Y ) lift to automorphisms
of Z. But this does not generally hold for elements of Aut(Y ). For a
very simple example, take k = C, Z the elliptic curve C/2Z+ iZ, Y
the elliptic curve C/Z + iZ, and π the natural morphism. Then the
multiplication by i defines an automorphism of Y which admits no
lift under the double cover π.

We now come to the main result of this section:

Theorem 5.4. Let G be an abelian variety and π : X → Y a G-
torsor, where X and Y are complete varieties. Then G centralizes
Auto(X); equivalently, Auto(X) = AutG,o(X). Moreover, there exists
a closed subgroup H ⊂ Auto(X) such that Auto(X) = GH and G∩H
is finite.
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If k has characteristic 0 and X (or equivalently Y ) is smooth, then
the homomorphism π∗ : AutG(X) −→ Aut(Y ) restricts to an isogeny
π∗|H : H → Auto(Y ) for any quasi-complement H as above.

Proof. The assertion that G is central in Auto(X) and admits a
quasi-complement follows from [Ro, Corollary, p. 434].

By Proposition 4.3 or alternatively Proposition 5.1, G is the neutral
component of the kernel of π∗. Thus, the kernel of π∗|H is finite.

It remains to show that π∗|H is surjective when k has characteristic
0 and X is smooth. By Lemma 3.2 and Corollary 3.5, we have a
G-isomorphism

(11) X ∼= G×F Z
for some finite subgroup F ⊂ G and some closed F -stable subscheme
Z ⊂ X such that π : Z → Y is an F -torsor. Thus, Z is smooth and
complete. Replacing Z with a component, and F with the stabiliser
of that component, we may assume that F is a variety. Then by
Lemma 5.2, the natural homomorphism AutF,o(Z) → Auto(Y ) is
surjective.

We now claim that AutF (Z) may be identified with a closed sub-
group of AutG(X). Indeed, as in the proof of Theorem 4.2, any
ϕ ∈ AutF (X) yields a morphism

φ : G× Z −→ G× Z, (g, z) 7−→
(
g, ϕ(z)

)
.

This is a G × F -automorphism of X × Z, and hence descends to a
G-automorphism Φ of X. The assignement ϕ 7→ Φ yields the desired
identification. This proves the claim and, in turn, the surjectivity of
π∗|H . �
Remarks 5.5. (i) With the notation and assumptions of the preced-
ing theorem, the surjectivity of π∗|H also holds when X (or equiva-
lently Y ) is normal. Choose indeed an Auto(Y )-equivariant desingu-
larization

f : Y ′ −→ Y,

that is, f is proper and birational, and the action of Auto(Y ) on Y
lifts to an action on Y ′ such that f is equivariant (see [EV] for the
existence of such desingularizations). Since Y is normal, we have
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f∗(OY ′) = OY . In view of Proposition 2.1, this yields a homomor-
phism

f∗ : Auto(Y ′) −→ Auto(Y )

which is injective (on closed points) as f is birational, and surjective
by construction. Thus, f∗ is an isomorphism. Likewise, the natural
map Auto(X ′)→ Auto(X) is an isomorphism, where X ′ := X ×Y Y ′
is the total space of the pull-back torsor π′ : X ′ → Y ′. Now the
desired surjectivity follows from Theorem 5.4.

We do not know whether π∗|H is surjective for arbitrary (complete)
varieties X, Y . Also, we do not know whether the characteristic-0
assumption can be omitted.

(ii) The preceding theorem may be reformulated in terms of vec-
tor fields only: let X, Y be smooth complete varieties over an alge-
braically closed field of characteristic 0, and π : X → Y a smooth
morphism such that the relative tangent bundle Tπ is trivial. Then
every global vector on Y lifts to a global vector field on X.

Consider indeed the Stein factorization of π,

X
π′−−−→ X ′

p−−−→ Y.

Then one easily checks that p is étale; thus, X ′ is smooth and π′

is smooth with trivial relative tangent bundle. Also, every global
vector field on Y lifts to a global vector field on X ′, as follows e.g.
from Lemma 5.2. Thus, we may replace π with π′, and hence assume
that the fibers of π are connected. Then these fibers are just the
orbits of G := AutoY (X), an abelian variety. Moreover, for F and Z
as in (11), the restriction π|Z is smooth, since so is π. Thus, π|Z is
an F -torsor. So the claim follows again from Theorem 5.4.

Finally, using the factorization (6) and combining Lemma 5.2 and
Theorem 5.4, we obtain the following:

Corollary 5.6. Let G be a proper algebraic group and π : X → Y a
G-torsor, where Y is a complete variety over an algebraically closed
field of characteristic 0. Then there exists a closed connected subgroup
H ⊂ AutG(X) which is isogenous to Auto(Y ) via π∗ : AutG(X) →
Aut(Y ).
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Here the assumption that G is proper cannot be omitted. For
example, let Y be an abelian variety, so that Auto(Y ) is the group of
translations. Let also G be the multiplicative group Gm, so that G-
torsors π : X → Y correspond bijectively to invertible sheaves L on
Y . Then Auto(Y ) lifts to an isomorphic (resp. isogenous) subgroup
of AutG(X) if and only if L is trivial (resp. of finite order). Also, the
image of π∗ contains Auto(Y ) if and only if L is algebraically trivial
(see [Mu] for these results).

This is the starting point of the theory of homogeneous bundles
over abelian varieties, to be developed in [Br2].
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ON THE FOCUSING OF CRAMÉR - VON MISES
TEST.

ALEJANDRA CABAÑA AND ENRIQUE M. CABAÑA

Abstract. The statistical bibliography frequently refers to om-
nibus tests intended to be sensitive to all or at least a wide variety
of alternatives, and focused or directional tests directed to detect
efficiently some specific alternatives.

In fact, the apparent opposition between omnibus and focused
is artificial, and, for instance, K-S test is focused on changes in
position of Double Exponential distribution, as well as Cramér
- von Mises is focused on changes in position of the distribution
with density f(t) = 1/(2 cosh(πt/2)).

We provide in this article a simple proof of this latter fact.

1. Introduction

In the statistical literature refering to a test as being omnibus or
directional often implies opposite categories.

Omnibus tests are able to detect a wide bunch of alternatives, and
no special ability to detect any particular one is intended.

When statistical practitioners wish to detect specific alternatives
they can use directional tests. These ones focus their power in the
direction of the interesting alternatives.

The former tests are not expected to be efficient in the detection
of particular alternatives. On the other hand, it is generally claimed
that the second ones have the drawback that they have a poor power
against alternatives other that the ones on which they were focused.

Research partially supported by TIN2008-06582-C03-02/TIN, Ministerio de
Ciencia y Tecnoloǵıa.

Partially supported by CSIC-Udelar,Uruguay, Centre de Recerca
Matemàatica, Barcelona, Spain and Carolina Foundation, Spain.
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Notwhithstanding, it is well established that a test can be both
omnibus and focused: this is the case of the well known omnibus
Kolmogorov - Smirnov goodness-of-fit test, that is also focused to
detect changes in position of samples of the Double - Exponential
Distribution as shown by J. Capon ([3]) by computing lower bounds
for the asymptotic efficiency of the test for several alternatives.

In this short note, we show that the well known Cramér - von
Mises goodness-of-fit test, also reputed to be an omnibus test, is also
focused to detect changes in position of random samples of another
family of distributions obtained by changes in location and scale from
the distribution with probability density

(1) g(t) =
1

2 cosh(πt/2)
.

It is known (see [8]) that there is one direction with the highest
asymptotic power that is possible for Cramér - von Mises test. We
present here a straightforward computation of such direction.

The principal result is that the asymptotic power of the Cramér -
von Mises test for those alternatives is almost optimal. This state-
ment is made precise in §4, where the power of the test is compared
with the power of the two-sided test based on the likelihood ratio.

This kind of quasi-optimal behaviour characterises several tests of
goodness-of-fit developed by the authors in which a quadratic statistic
of Watson type is employed in such a way that the resulting tests are
consistent against any alternative, and also have a near optimum
efficiency for some alternative of focusing arbitrarily selected by the
user (see [1], [2] and references therein).

The tuning on the interesting alternatives is a part of the design of
our tests, but the quasi-optimum efficiency is inherent to the statistic
in use.

The efficiency of our tests is described in the already cited articles.
But the fact that the efficiency of the classical Cramér - von Mises
test share such kind of properties does not appear to us to be widely
discussed in the statistical literature, and motivates this article.

The power of Cramér - von Mises test has been analysed by sev-
eral authors, and is fully described by Durbin and Knott ([5]), for
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instance. We describe it from scratch in order to facilitate the read-
ing, before identifying in §3 the alternatives for optimum power.

2. The Cramér - von Mises goodness-of-fit test.

The Cramér - von Mises statistic ω2
n = n

∫∞
−∞(Fn(t)−F0(t))

2dF0(t)
quantifies a quadratic distance between the probability distribution
function F0 and the empirical distribution function Fn(t) =

∑n
i=1 1{Xi≤t}

of the sample of i.i.d. random variables X1, X2, . . . , Xn with proba-
bility distribution F .

By introducing the empirical process bn(t) =
√
n(Fn(t)−F0(t)), ω

2
n

is written as

ω2
n =

∫ ∞

−∞
b2n(t)dF0(t).

We shall assume that F0 is continuous, with density f0, finite
first- and second-order moments, and, with no loss of generality that∫
tdF0(t) = 0,

∫
t2dF0(t) = 1.

Let the probability distribution of ω2
n be denoted by P (t, F, n) =

P{ω2
n ≤ t}.

The Cramér - von Mises test of the null hypothesis H0: “F = F0”,
with confidence level α, rejects H0 when ω2

n > cn(α), where cn(α)
solves the equation P (cn(α), F0, n) = 1 − α, and its power for the
alternative F is 1− P (cn(α), F, n).

2.1. The asymptotic law of ω2
n under H0. Since bn converges

in law to a brownian bridge associated to F0, that is, to a Gauss-
ian centred process bF0 with covariances EbF0(s)bF0(t) = F0(s ∧ t)−
F0(s)F0(t), then ω2

n has the asymptotic law of
∫

(bF0(t))2dF0(t) ∼∫ 1

0
b2(u)du, where b denotes a standard Brownian bridge, because bF0

has the same law as b ◦ F0.
In order to obtain the distribution of Q0 =

∫ 1

0
b2(u)du = ‖b‖2,

the L2 squared norm of the standard Brownian bridge b in L2(([0, 1])
with the Lebesgue measure, let us follow Durbin ([4]) and compute
the Fourier expansion

(2) b(u) =
∞∑

j=1

(∫ 1

0

b(v)ψj(v)dv

)
ψj(u)



70 ALEJANDRA CABAÑA AND ENRIQUE M. CABAÑA

of b in terms of the complete orthonormal system {ψj(u) =
√

2 sin jπu :
j = 1, 2, . . . } of eigenfunctions of the covariance kernel which admits
the expansion

Eb(u)b(v) = u ∧ v − uv =
∞∑

j=1

1

j2π2
ψj(u)ψj(v).

The random coefficients in (2) are independent centred Gaussian
variables vith variances

E

(∫ 1

0

b(u)ψ(u)du

)2

=

∫ 1

0

∫ 1

0

(u ∧ v − uv)ψ(u)ψ(v) du dv =
1

j2π2

and hence we may rewrite (2) as b(u) =
∑∞

j=1
Bj

jπ
ψj(u), by introduc-

ing the i.i.d. standard Gaussian variables Bj = jπ
∫ 1

0
b(u)ψj(u)du,

leading us to conclude

(3) Q0 = ‖b‖2 =
∞∑

j=1

B2
j

j2π2
.

2.2. The limiting law of ωn under sequences of contiguous
alternatives. Let us assume now that for each n, the sample has a
probability law F (n) with density fn(t) satisfying

√
fn(t)

f0(t)
= 1 +

δkn(t)

2
√
n

for a sequence of functions kn such that
∫ ∞

−∞
(kn(t)− k(t))2dF0(t)→ 0,

∫ ∞

−∞
k2(t)dF0(t) = 1.

When this happens, we shall say that the alternative H(k, δ) holds.
These alternatives are contiguous to the null hypothesis (see [9]) and
therefore the asymptotic law of bn under H(k, δ) is the same one
corresponding to H0 = H(k, 0) plus a deterministic term, according
to Le Cam Third Lemma ([6], [7]).
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The limiting distribution of the empirical process under H(k, δ), is
obtained by noticing that the first term in the decomposition

bn(t) =
√
n(Fn(t)− F (n)(t)) +

√
n(F (n)(t)− F0(t)).

tends to b(F0)(t), and the second one is written as

√
n

∫ t

−∞
(fn(s)−f0(s))ds =

√
n

∫ t

−∞

δkn(s)√
n

dF0(s)→ δ

∫ t

−∞
k(s)dF0(s)

so that, with the change of variables u = F0(t) and the new function
K defined by

K(u) =

∫ u

0

κ(v)dv, κ(F0(t)) = k(t),

we get
(4)

bn(t)
L→ b(F0)(t)+δ

∫ t

−∞
k(s)dF0(s) = b(u)+δ

∫ u

0

κ(v)dv = b(u)+δK(u).

The assumptions on k imply that κ satisfies
∫ 1

0
κ(u)du = 0,

∫ 1

0
κ2(u)du =

1, and, in particular, K(0) = K(1) = 0. The function κ shall be called
standardized shape of the alternative H(k, δ).

From (4), we obtain

ω2
n
L→
∫ 1

0

(b(u) + δK(u))2du.

Let us notice that this expression of the limit law of ωn leads to
conclude that when the null hypothesis is replaced by H(k, δ), then
the asymptotic expectation of ωn increases in the amount

(5) ∆(δ) = δ2
∫ 1

0

K2(u)du.

It is reasonable to expect that larger values of ∆(δ) be associated
with larger powers of the tests comparingH0 withH(δ, k). Therefore,
we search in the next section the function K that maximises ∆(δ) for
given δ.
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3. The focused alternatives.

3.1. The standardized shape κ of the alternative that pro-
duces the largest increment in the asymptotic expectation
of ωn. We shall obtain the function K(u) =

∫ u
0
κ(s)ds that max-

imises
∫ 1

0
K2(u)du with the restrictions

∫ 1

0

κ2(u)du = 1,

∫ 1

0

κ(u)du = 0.

The associated Euler equations express that for each continuously
differentiable g such that

g(0) = g(1) = 0,

∫ 1

0

K ′(u)g′(u) = 0

the condition ∫ 1

0

K(u)g(u)du = 0

must hold.
The condition

∫ 1

0
K ′(u)g′(u) = 0 holds for every g such that g(0) =

g(1) = 0 provided
∫ 1

0

K ′(u)g′(u)du = [g(u)K ′(u)]
1
0 −

∫ 1

0

K ′′(u)g(u)du = 0.

Since the integrated term in the right-hand side vanishes, we find
that when g is orthogonal to K ′′ in L2([0, 1]), it is also orthogonal to
K, and this means that K and K ′′ are proportional, that is, for some
constant ±λ2, K solves the differential equation K ′′ = ±λ2K.

The solutions of K ′′ = ±λ2K in [0, 1] with border conditions

K(0) = K(1) = 0, satisfying
∫ 1

0
(K ′(u))2du = 1 are

K(u) =

√
2

jπ
sin jπu, j = 1, 2, . . . .

The solution with maximum norm is the one with j = 1, hence

(6) κ(u) =
√

2 cosπu.
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This is the standardized shape of the alternative that maximises (5)
for given δ. The corresponding function K(u) =

∫ u
0
κ(s)ds is propor-

tional to the first function in the orthonormal system introduced in
2.1, that is, K(u) = ψ1(u)/π.

3.2. Alternatives of change in location. When the alternative
distributions specify a change in location

fn(t) = f0(t+ δc/
√
n)

we have √
fn(t)

f0(t)
= 1 +

δc

2
√
n

f ′0(t)

f0(t)
+ o( 1√

n
)

so that k(t) = c
f ′0(t)
f0(t)

. The constant c is introduced in order to be able

to impose ‖k‖2 = 1.

It follows that κ(u) = c
f ′0(F

−1
0 (u))

f0(F
−1
0 (u))

and Equation (6) shows that the

alternative shall be detected by the Cramér - von Mises statistic with
maximum asymptotic increment of the expectation when

c
f ′0(F

−1
0 (u))

f0(F
−1
0 (u))

=
√

2 cosπu.

In order to solve this differential equation in F0, we return to the
variable t = F−10 (u), and get

cf ′0(t) =
√

2f0(t) cosπF0(t),

which, integrated in (−∞, t] gives

cf0(t) =

√
2

π
sin πF0(t).

A further integration leads to
√

2t

cπ
=

∫ t

0

dF0(s)

sin πF0(s)
=

∫ F0(t)

F0(0)

du

sin πu

=
1

2π
log

(cos πF0(t)− 1)(cosπF0(0) + 1)

(cos πF0(t) + 1)(cos πF0(0)− 1)
.
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By imposing with no loss of generality that F0 is centred in 0,
follows the simpler expression

γt = log
1− cos πF0(t)

1 + cos πF0(t)
,

in which the parameter γ = 2
√
2
c

determines the dispersion.
By solving in F0 and choosing γ = π to get a distribution with

variance equal one, we conclude

(7) F0(t) =
1

π
arccos

1− eπt

1 + eπt
, f0(t) =

1

2 cosh(γt/2)
.

3.3. Asymptotic law of ωn under changes in location for sam-
ples with the law of Equation (7), and power of the test. The
statistic ωn has the asymptotic law of

Q(δ) =

∫ 1

0

(b(u) + δK(u))2du =

∫ 1

0

(
b(u) +

δ

π
ψ1(u)

)2

du.

Since b(u) +
δ

π
ψ1(u) =

∞∑

j=1

1

jπ
Bj +

δ

π
ψ1(u), then

Q(δ) =

∥∥∥∥b+
δ

π
ψ1

∥∥∥∥
2

=
1

π2

[
(B1 + δ)2 +

∞∑

j=2

1

j2
B2
j

]

Cramér - von Mises test of F (n)(t) = F0(t) against F (n)(t) = F0(t+
2
√
2δ

π
√
n

) with significance level α is asymptotically equivalent to the test

of H0:“δ = 0” with critical region Q(δ) > c(α) where c(α) solves
P{Q(0) > c(α)} = α. The power, that we have computed by a
numerical convolution for the purposes discussed in next section, is

Π(δ, α) = P{Q(δ) > c(α)}.

4. Comparison with the two-sided test based on
Neymann and Pearson statistic.

The Neyman and Pearson test of H0 against the alternatives Hn

that the true density of the sample distribution is gn(t) = f0(t+
δ

c
√
n
)
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has critical region
n∑

i=1

log
(
f0

(
Xi + δ

c
√
n

)
/f0(Xi)

)
≥ constant,

asymptotically equivalent to

δ√
n

n∑

i=1

f ′0(Xi)

cf0(Xi)
≥ constant.

When H0 holds, the variables f ′0(Xi)/(cf0(Xi)) are centred, with
variance 1, and therefore the asymptotic law of the statistic Tn =
1√
n

∑n
i=1

f ′0(Xi)

cf0(Xi)
is standard normal.

If the sequence of alternatives Hn hold, then

ETn =
√
nEf ′0(X1)/(cf0(X1)) =

√
n

∫
f ′0(x)

cf0(x)
f0(x+ δ

c
√
n
)dx

has limit δ, E(f ′0(Xi))/(cf0(Xi)))
2 tends to 1, hence Tn converges in

law to Z + δ, Z standard Gaussian.
As a consequence, the test of δ = 0 against δ > 0 with optimal

asymptotic power is the one with critical region Tn > constant.
While there is no optimal test for δ = 0 against δ 6= 0, the usual

practice if there are not significant differences between the cases δ > 0
or δ < 0 is to reject δ = 0 when |Tn| > constant. In that case,
if Φ denotes as usual the standard normal cumulative distribution
function, the asymptotic power of the two - sided test with asymptotic
level α, is

Π∗(δ, α) = P{Z + δ > Φ−1(1− α
2
)}+ P{Z + δ < Φ−1(α

2
)}

= Φ(Φ−1(α
2
) + δ) + Φ(Φ−1(α

2
)− δ).

The practically coincident plots of the functions Π(δ,.05) and Π∗(δ,.05)
in Figure 1 show that Cramér - von Mises test against the alternative
of displacement of samples with distribution (7) is almost optimal, in
the sense that its performance is almost asymptotically equivalent to
the performance of the test with critical region Tn >constant.

The relationship between the asymptotic powers (and the intended
meaning of “almost optimal”) is better shown in the second diagram
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Figure 1. Almost coincident asymptotic powers
Π∗(δ,.05) and Π(δ,.05) of the two-sided test based on
the Neymann and Pearson statistic (solid line) and
of the Cramér - von Mises test (dotted line), respec-
tively, for alternatives of change in position of a sam-
ple with distribution (7) (upper diagram) and ratio
Π(δ,.05)/Π∗(δ,.05) (lower diagram).
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of Figure 1, where the ratio Π(δ,.05)/Π∗(δ,.05) obtained by numerical
computation is plotted.
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FEUILLETAGE DE HIRSCH, MESURES
HARMONIQUES ET g-MESURES

BERTRAND DEROIN ET CONSTANTIN VERNICOS

1. Introduction

Un feuilletage lisse F est la donnée d’une variété M et d’une dis-
tribution intégrable TF ⊂ TM de dimension p, c’est à dire telle que
par tout point de M passe une sous-variété de dimension p tangente
à TF. De telles sous-variétés sont appelées feuilles, p la dimension du
feuilletage, q = dim(M)− p sa codimension, et TF le fibré tangent à
F.

Étant donnée une métrique lisse ds2 sur le fibré tangent de F, on
note ∆ le laplacien associé à cette métrique. Lucy Garnett a étudié
dans [Ga] l’équation de la chaleur feuilletée ∂u

∂t
= ∆u. Elle y développe

la théorie ergodique du mouvement brownien le long des feuilles, et
montre que les mesures stationnaires de ce processus de Markov sont
les mesures de probabilité µ dites harmoniques, c’est à dire telles que
∆µ = 0 au sens faible. L’ensemble des mesures harmoniques forme un
compact convexe de l’espace des mesures de probabilité sur la variété
ambiante.

Lorsque le feuilletage est lisse et transversalement conforme, et
qu’il ne possède pas de mesure transverse invariante, il est démontré
dans [DK] qu’il n’existe qu’un nombre fini d’ensembles minimaux 1

supportant chacun une unique mesure harmonique, et que de surcrôıt,
toute mesure harmonique est une combinaison convexe de celles-ci.

Le premier auteur a été financé par les projets ANR-08-JCJC-0130-01 et
ANR-09-BLAN-0116, le second par la ”Science Foundation Ireland” avec le pro-
gramme ”SFI Stokes lectureship”.

1. On entend par minimal un ensemble fermé F-saturé dans lequel toute les
feuilles sont denses.
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Ainsi, l’ensemble des mesures harmoniques sur un tel feuilletage est
un simplexe de dimension n− 1, où n est le nombre de minimaux de
F.

Les hypothèses de régularité de ce théorème sont les suivantes : le
feuilletage est de classe C1 transversalement, les feuilles sont des sous-
variétés immergées de classe C∞, et la métrique sur ces feuilles varie
de façon höldérienne en fonction du paramètre transverse. Dans cette
note, nous démontrons que si l’on affaiblit l’hypothèse de régularité
sur la métrique, le résultat n’est plus valable :

Théorème. Il existe un feuilletage lisse par surfaces d’une variété
de dimension 3, dont toutes les feuilles sont denses, et une métrique
ds2 sur son fibré tangent qui est lisse le long des feuilles, qui dépend
continûment du paramètre transverse – mais pas de façon Hölder – et
pour laquelle il existe au moins deux mesures harmoniques différentes.

Le feuilletage que nous considérons a été construit par Hirsch ; c’est
en quelque sorte une suspension d’un revêtement du cercle dans lui-
même de degré strictement plus grand que 1, voir la partie 2. L’idée
principale de notre travail consiste à montrer qu’à partir d’une g-
fonction associée au revêtement du cercle dans lui-même, voir [Ke],
on peut construire une certaine métrique riemannienne ds2 sur le
fibré tangent du feuilletage de Hirsch, de façon à ce que toute g-
mesure sur le cercle donne naissance à une mesure harmonique pour
le laplacien feuilleté associé à ds2, voir la partie 3 pour plus de détails.
Notre théorème est alors une conséquence de cette construction et
d’un théorème d’Anthony Quas, qui montre l’existence de g-fonctions
ayant plusieurs g-mesures, voir [Qu].

Nous avons donc un exemple de feuilletage où la géométrie du
convexe des mesures harmoniques varie en fonction de la métrique
choisie sur les feuilles. Des exemples de ce type ont été trouvé par
Victor Kleptsyn et Samuel Petite en toute régularité, mais en codi-
mension supérieure [KP].

Signalons aussi que le feuilletage que nous construisons est minimal
mais pas uniquement ergodique. De tels exemples ont été construit
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dans [De] en toute régularité en utilisant là encore un feuilletage de
type suspension et l’existence d’un difféomorphisme minimal du tore
non uniquement ergodique, dûe à Hillel Furstenberg.

Remerciements. Nous remercions le rapporteur pour ses remarques
qui ont amélioré l’exposition.

2. Feuilletage de Hirsch

Hirsch a construit un feuilletage lisse de dimension 2 et de codimen-
sion 1 d’une variété compacte fermée, associé à un difféomorphisme
local T du cercle dans lui-même, de degré topologique d > 1. Nous
rappelons cette construction dans le cas de la transformation T (z) =
z2 du cercle unité dans lui-même.

Considérons un pantalon orienté P et notons ses trois composantes
de bord ∂iP , i = 1, 2, 3. Soit σ : P → P une involution lisse qui
stabilise la composante ∂3P de ∂P et échange les composantes ∂1P
et ∂2P . Par exemple, on pourra prendre pour P le disque unité de
C privé des disques de rayon 1/4 centrés en 1/2 et −1/2, et poser
σ(x) = −x. Les composantes ∂1P , ∂2P sont alors respectivement les
cercles de rayon 1/4 de centre 1/2 et −1/2, et ∂3P est le cercle unité.

Notons i(z) = −z l’involution du cercle dans lui-même qui consiste
à échanger les points des fibres de T . Le quotient N = (P×S1)/(σ×i)
possède une structure naturelle de fibration en pantalons P → N →
S1/i, et est difféomorphe à un tore solide duquel on a enlevé un
tore solide intérieur qui fait deux fois le tour du premier - voir le
survol [Gh] dans lequel le lecteur trouvera une jolie figure représentant
ce quotient. Le bord de N est formé de deux composantes toriques : la
composante intérieure ∂iN qui s’identifie naturellement avec ∂1P×S1,
et la composante extérieure ∂extN qui est le quotient de ∂3P ×S1 par
le difféomorphisme σ × i. On recolle ces deux composantes par le
difféomorphisme

(x, z) ∈ ∂3P × S1/σ × i 7→ (
xz

4
+

1

2
, z2) ∈ ∂1P × S1.
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On obtient une variété compacte fermée M . La fibration horizontale
par pantalons sur N induit un feuilletage lisse F par surfaces ; c’est
le feuilletage de Hirsch associé à T .

Pour construire une métrique sur le fibré tangent du feuilletage de
Hirsch, il suffit de construire une famille de métriques {ds2z}z∈S1 sur
un voisinage ouvert U de P dans C, telles que

– Pour tout z ∈ S1, on a σ?ds2z = ds2i(z).

– Au voisinage de ∂3P , on a (xz
4

+ 1
2
)?ds2z2 = ds2z et (xz

4
− 1

2
)?ds2z2 =

ds2i(z).
Une façon simple de construire de telles familles est de considérer
des métriques sur P que nous appellerons admissibles. Une métrique
admissible est une métrique ds2 sur un voisinage de P dans C qui,
au voisinage de ∂3P , admet l’expression

|ds| = |dz|
|z|(2π + log 1

|z|)
,

et vérifie de plus (x
4

+ 1
2
)?ds2 = ds2 et (x

4
− 1

2
)?ds2 = ds2. Alors, pour

construire une métrique sur le fibré tangent de F, il suffit de construire
une famille {ds2z}z∈S1 de métriques admissibles qui vérifient de sur-
crôıt la condition σ?ds2z = ds2i(z). En effet, une métrique admissible
est invariante par rotation au voisinage de ∂3P , ce qui montre que
pour toute paire de métriques admissibles ds2j , j = 0, 1, et tout z du

cercle, on a (xz
4
± 1

2
)?ds20 = ds21.

3. g-mesures et mesures harmoniques

On reprend les notations du paragraphe précédent. Une g-fonction 2

est une fonction continue g : S1 → (1,+∞) telle que pour tout point
z ∈ S1,

1

g(z)
+

1

g(i(z))
= 1.

Une g-mesure est une mesure de probabilité µ sur le cercle telle que
la dérivée de Radon-Nikodym de T relativement à µ est la fonction
g. Rappelons que cela signifie que, si B est un Borélien du cercle

2. La terminologie est malheureuse mais c’est celle qui est classiquement uti-
lisée.
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sur lequel T est injective, alors µ(TB) =
∫
B
gdµ. L’existence d’une

g-mesure découle du théorème du point fixe de Kakutani, voir [Ke].
Lucy Garnett démontre dans [Ga] qu’il existe toujours une me-

sure harmonique sur un feuilletage équippé d’une métrique sur son
fibré tangent, qui est lisse sur les feuilles, et continue transversale-
ment. Dans ce qui suit, nous construisons explicitement des mesures
harmoniques dans le cas particulier du feuilletage de Hirsch. Plus
précisément, étant donnée une g-fonction associée à T , nous produi-
sons une métrique riemannienne sur TF, qui est lisse le long des
feuilles et admet la même régularité transverse que g, en sorte que
toute g-mesure donne lieu à une mesure harmonique sur F.

Proposition 3.1. Pour tout ε > 0, il existe un voisinage U de P
dans C, tel que pour tout couple (L1, L2) de réels supérieurs à ε et
vérifiant

e−L1 + e−L2 = 1,

il existe une métrique riemannienne admissible ds2L1,L2
sur U , et une

fonction ∆ds2L1,L2
-harmonique ϕL1,L2 : U → R>0 qui vérifie les condi-

tions suivantes :
– Pour tout x dans un voisinage de ∂3P , on a ϕL1,L2(x) = 1 +

1
2π

log 1
|x| .

– Pour tout x dans un voisinage de ∂3P , on a

ϕL1,L2(
x

4
+1/2) = e−L1ϕL1,L2(x), et ϕL1,L2(

x

4
−1/2) = e−L2ϕL1,L2(x).

De plus, on peut supposer que les métriques ds2L1,L2
et les fonctions

ϕL1,L2 dépendent de façon analytique de L1 et L2, et que pour tout
(L1, L2), on a σ?ds2L1,L2

= ds2L2,L1
.

Démonstration. Sur les cylindres Ci = S1×[0, Li], i = 1, 2, considérons
la métrique de courbure −1 définie par :

e2(v−Li)du2 + dv2.

En effet, c’est la métrique qu’on obtient en partant de du2+dy2

y2
et en

effectuant le changement de variables y = eLi−v. Les bords ∂−Ci =
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S1 × 0 et ∂+Ci = S1 × Li sont alors des horocycles respectivement
négatif de longueur e−Li et positif de longueur 1 3.

On coupe C1 et C2 le long des géodésiques 1 × [0, ε] et 1 × [0, ε],
et on colle le segment 1+ × [0, ε] de C1 (resp. 1− × [0, ε] de C2) au
segment 1−× [0, ε] de C2 (resp. 1+× [0, ε] de C1) de façon isométrique
et en renversant l’orientation. On construit de cette façon un panta-
lon PL1,L2 avec une métrique ds2 de courbure −1 et une singularité
conique d’angle 4π. Ce pantalon PL1,L2 a trois composantes de bord :
les composantes ∂1PL1,L2 = ∂+C1, ∂2PL1,L2 = ∂+C2, qui sont des ho-
rocycles positifs de longueur 1, et la composante ∂3PL1,L2 qui est un
horocycle négatif de longueur la somme des longueurs des bords ∂−C1

et ∂−C2, c’est à dire e−L1 + e−L2 = 1.
La métrique avec singularité conique munit PL1,L2 d’une structure

de surface de Riemann lisse - l’atlas des cartes préservant l’orientation
dans lesquelles la métrique est conforme à la métrique plate |dz| sur
C. La fonction ϕL1,L2 : PL1,L2 → R définie sur chaque Ci par e−v est
alors une fonction harmonique sur PL1,L2 , qui vaut e−Li sur ∂iPL1,L2

pour i = 1, 2, et 1 sur ∂3PL1,L2 .
Les bords de PL1,L2 étant horocycliques de longueur 1, il existe

un difféomorphisme Φ : P → PL1,L2 tel que Φ?ds2 est une métrique
admissible, à ceci près qu’elle admet une singularité conique. On peut
choisir Φ en sorte que cette dernière se situe à l’origine, et que l’on ait
en son voisinage Φ?ds2 = |x|2|dx|2. On considère alors une métrique
de la forme ds2L1,L2

= ρΦ?ds2, où ρ : P \ {0} → R>0 est une fonction
lisse, qui vaut identiquement 1 à l’extérieur d’un petit voisinage de
l’origine, et qui, dans un voisinage encore plus petit, est de la forme
ρ(x) = 1

|x|2 .

La fonction ϕL1,L2 ◦ Φ est alors ∆ds2L1,L2
-harmonique, et vérifie les

conditions du lemme. �
Nous choisissons ε de sorte que 0 < ε < infz∈S1 log g(z). Pour

chaque point z du cercle, on pose

L1(z) = log g(z), et L2(z) = log g(i(z)).

3. Nous entendons par horocycle positif ou négatif une courbe lisse de courbure
signée 1 ou −1.
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La famille de métriques admissibles {ds2z}z∈S1 définies par ds2z =
ds2L1(z),L2(z)

définit alors une métrique sur le feuilletage de Hirsch.
D’autre part, si µ est une g-mesure sur le cercle, alors la mesure

m = ϕL1(z),L2(z)vol(ds2z)⊗ µ
définit une mesure harmonique sur le feuilletage de Hirsch. Pour mon-
trer notre théorème, il nous suffit de prendre une g-fonction continue
pour laquelle il existe plusieurs g-mesures différentes, dont l’existence
nous est assurée par un théorème de Anthony N. Quas [Qu].
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ON EXISTENCE OF SMOOTH CRITICAL
SUBSOLUTIONS OF THE HAMILTON-JACOBI

EQUATION

ALBERT FATHI

Abstract. We give a (necessary and sufficient) condition to
obtain Ck critical subsolutions for a Tonelli Hamiltonian on a
compact manifold.

1. Introduction

To make the paper short, we will assume that the reader is familiar
with weak KAM theory as it can be found in [10, 6] or in papers like
[5, 6, 7, 8, 9, 13, 14, 16]. We will however recall some of the objects
or theorems of the theory in this introduction, and, mainly, in section
§3 below. Let us recall that weak KAM theory makes the connection
between Mather’s theory of Lagrangian systems, see [18], and global
viscosity solutions of the Hamilton-Jacobi Equation whose existence
was established by Lions, Papanicolaou, and Varadhan, see [17]

We consider M a compact connected manifold without boundary.
We denote by π : T ∗M →M he canonical projection from the cotan-
gent bundle T ∗M of M . As usual we will denote a point in T ∗M by
(x, p), with x ∈ M , and p ∈ T ∗xM = π−1(x). With this notation the
canonical projection π : T ∗M →M is nothing but (x, p) 7→ x.

In the rest of the paper we will consider a Tonelli Hamiltonian
H : T ∗M → R, i.e. the function H satisfies:

1) H is C2, where k at least 2;
2) ∂2H/∂p2(x, p) is positive definite, for every (x, p) ∈M .
3) H(x, p)/‖p‖x → +∞ as ‖p‖x → +∞,

87
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where in the last condition 3) we have used a norm on T ∗xM coming
from a Riemannian metric on M . Since M is compact, all Riemann-
ian metrics are equivalent, and this last condition 3) is satisfied by
all Riemannian metrics as soon as it is satisfied by one of them.

As is usual now, see [7, 13, 14], we define the Mañé critical value
c[0] of H by

c[0] = inf{sup
x∈M

H(x, dxu) | u ∈ C1(M,R)}.

Of course by density of C∞(M,R) in C1(M,R) for the C1 topology,
we could have taken the inf on C∞(M,R).

Recall, see for example [13, 14], that we say that u : M → R
is a critical subsolution (of the Hamilton-Jacobi Equation) if it is
Lipschitz, and H(x, dxu) ≤ c[0], for (Lebesgue) almost every x ∈M .
Due to the coercivity and convexity of H in p, a critical subsolution
is nothing but a (global) viscosity subsolution of the Hamilton-Jacobi
Equation

H(x, dxu) = c[0],

see [1, Chapter II] or [2, Chapitre 2].
It is not difficult to obtain from the stability of viscosity subsolu-

tions, again see [1, Proposition 2.2 page 35]or [2, Théorème 2.3 page
21], that there exists a critical subsolution. A much stronger result
has been obtained by Patrick Bernard: there always exists C1,1 crit-
ical subsolutions (as usual a C1,1 function is a C1 function, whose
derivative is locally Lipschitz).

To a critical subsolution u, we can associate a specific compact non-
empty subset I(u) called the projected Aubry set of u, such that dxu
exists at every x ∈ I(u), and moreover x 7→ dxu is Lipschitz on I(u).
In fact, one has H(x, dxu) = c[0] for every x ∈ I(u); therefore it is
very difficult to perturb a critical subsolution near I(u), while keeping
it a critical subsolution. There are several possible descriptions for
I(u), see for example [10, 13]. We will give some of these descriptions
in §3.

Here is the main result of this paper. It shows that the problem of
existence of smoother critical subsolutions is localized to a neighbor-
hood of Aubry sets.
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Theorem 1.1. Let u : M → R be a critical subsolution for the
Tonelli Hamiltonian H on M . Suppose we can find an open subset
U of M , with I(u) ⊂ U , and a Ck map ū : U → R such that:

1) ū = u on I(u),
2) H(x, dxū) ≤ c[0], for every x ∈ U ,

then there exists a Ck critical subsolution ũ : M → R with ũ = u on
I(u). Moreover, we can find such a critical subsolution ũ : M → R
which is C∞ outside I(u), and strict outside I(u) (i.e. H(x, dxũ) <
c[0], for every x /∈ I(u)).

We obtain as a corollary the following result, see [3]

Corollary 1.2 (Patrick Bernard). If the Aubry set Ã∗ consists of
a finite number of hyperbolic orbits then we can find a Ck critical
subsolution u : M → R which is strict outside the projected Aubry
set A = π(Ã∗) ⊂M .

For the definitions of the Aubry set Ã∗ ⊂ T ∗M , see section §3
below.

2. An obvious way to combine subsolutions

This section contains the simple main idea of this work. It shows
how to combine viscosity subsolutions to obtain a new one. Here
we only need to assume that H : T ∗M → R is convex in p. Recall
that, under this convexity assumption, a locally Lipschitz function
u : U →M , defined on the open subset U ⊂, is a viscosity subsolution
of

H(x, dxu) = c,

where c ∈ R is fixed, if and only if H(x, dxu) ≤ c (Lebesgue) almost
everywhere on U , again see [1, Chapter II] or [2, Chapitre 2].

Proposition 2.1. Suppose c ∈ R is fixed. Let U ⊂M be an open sub-
set of M , and u1, u2 : U → R be two locally Lipschitz maps satisfying
H(x, dxui) ≤ c, i = 1, 2 (Lebesgue) almost everywhere on U . For any
Lipschitz function ρ : R→ R, with ρ non-decreasing, and Lip(ρ) ≤ 1,
the function uρ = u1 + ρ ◦ (u2 − u1) also satisfies H(x, dxuρ) ≤ c
(Lebesgue) almost everywhere on U .
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Proof. We first consider the case where ρ is differentiable everywhere
(for example C1). The set

U ′ = {x ∈ U | dxu1, dxu2 both exist, and H(x, dxui) ≤ c, i = 1, 2}

is of full Lebesgue measure in U . For every x ∈ U ′, we have

dxuρ = dxu1 + ρ′[(u2 − u1)(x)](dxu2 − dxu1)

=
(
1− ρ′[(u2 − u1)(x)]

)
dxu1 + ρ′[(u2 − u1)(x)]dxu2.

Since ρ is non-decreasing we have ρ′(t) ≥ 0. Moreover, since Lip(ρ) ≤
1, we also have ρ′(t) ≤ 1. Therefore dxuρ is a convex combina-
tion of dxu1 and dxu2. The convexity of H(x, p) in p implies that
H(x, dxuρ) ≤ c, for every x ∈ U ′, hence for (Lebesgue) almost every
x ∈ U , since U ′ is of full Lebesgue measure in U .

Suppose now that we do not assume that ρ is differentiable ev-
erywhere. Choose θn : R → [0,+∞[, n ∈ N, a C∞ approximation
of the identity for the convolution, then ρn = ρ ∗ θn is also non-
decreasing and has Lipschitz constant ≤ 1. The function ρn is C∞,
and ρn → ρ uniformly on any compact subset of R. By the first
part of the proof uρn = u1 + ρn ◦ (u2 − u1) is locally Lipschitz and
satisfies H(x, dxuρn) = c almost everywhere on U . Therefore uρn is
a viscosity subsolution of H(x, dxu) = c on U . Since uρn → uρ uni-
formly on compact subsets of U, we obtain that the limit uρ is also
a viscosity subsolution of H(x, dxu) = c, see [1, Proposition 2.2 page
35]or [2, Théorème 2.3 page 21]. Therefore at each point x where
the derivative of the locally Lipschitz function uρ exists, we have
H(x, dxuρ) ≤ c, see [1, Proposition 1.9 page 31] or [2, Corollaire 2.1
page 17]. �

3. Background

As said in the introduction details for this section can be found in
[10, 6] or in papers like [5, 6, 7, 8, 9, 13, 14, 16].

We will assume in this section that H : T ∗M → R is a Tonelli
Hamiltonian. We will call ϕHt the Hamiltonian flow of H. This flow
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is the flow defined by the ODE

ẋ =
∂H

∂p
(x, p),

ṗ = −∂H
∂x

(x, p).

If u : M → R is a Lipschitz function, the derivative dxu exists for
(Lebesgue) almost every x ∈M , and we set

Graph(du) = {(x, dxu) | x where dxu exists}.
If u : M → R is a critical subsolution, we can define the Aubry set
Ĩ∗(u) by

Ĩ∗(u) =
⋂

t∈R
ϕHt [Graph(du) ∩H−1(c[0])].

Although this is not obvious this set is compact and non-empty. By
its definition it is invariant under the Hamiltonian flow of H. The
projected Aubry set of u is I(u) = π(Ĩ∗(u)), where π : T ∗M →M is
the canonical projection.

The Aubry set Ã∗ of H is

Ã∗ =
⋂
{Ĩ∗(u) | u : M → R is a critical subsolution},

and the projected Aubry set A is π(Ã∗). It can be shown that A
is the intersection, over all u critical subsolution, of the projected
Aubry sets I(u). It can also be shown that there exists a critical
subsolution u such that Ã∗ = Ĩ∗(u), and A = I(u).

We gave the definition above of Aubry sets, because it is the quick-
est to give. We will develop the connection with the more usual def-
inition of Aubry sets as given in [10] (or in [9] where they are rather
called Peierls sets).

We recall that the Lagrangian L : TM → R is given by

L(x, v) = sup
p∈T ∗xM

p(v)−H(x, p).

The map L is as smooth as the Tonelli Hamiltonian H. Moreover,
it satisfies the analogous of the properties 2) and 3) of a Tonelli
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Hamiltonian. The Legendre transform L : TM → T ∗M defined by

L(x, v) =
(
x,
∂L

∂v
(x, v)

)
,

is a global diffeomorphism whose inverse is given by

L−1(x, p) =
(
x,
∂H

∂p
(x, p)

)
.

One has the Fenchel inequality

∀x ∈M,∀v ∈ TxM, ∀p ∈ T ∗xM, p(v) ≤ L(x, v).

The Fenchel inequality is an equality if and only if (x, p) = L(x, v)
(⇔ p = ∂L/∂v(x, v)⇔ v = ∂H/∂p(x, p)).

Suppose now that u is a strict subsolution, and fix (x, p) ∈ Ĩ∗(u). If
we write ϕHt (x, p) = (γ(t), p(t)) then p(t) = dγ(t)u, andH(γ(t), dγ(t)u) =
c[0]. Since the Legendre transform exchanges speed curves of ex-
tremals of the Lagrangian l and orbits of ϕHt , we have dγ(t)u = p(t) =
∂L/∂v(γ(t), γ̇(t)). Therefore using the equality case in the Fenchel
inequality, we get

dγ(t)u(γ̇(t)) = L(γ(t), γ̇(t)) + c[0].

By integration this implies that γ :] − ∞,+∞[→ M is (u, L, c[0])-
calibrated. Recall that a curve γ : I → M , where I in an interval in
R, is said to be (u, L, c[0])-calibrated if for all t, t′ ∈ I, with t ≤ t′,
we have

u(γ(t′))− u(γ(t)) =

∫ t′

t

L(γ(s), γ̇(s)) ds+ c[0](t′ − t).

Conversely, if γ :]−∞,+∞[→M is (u, L, c[0])-calibrated, using the
properties of calibrated curves, we have that dγ(t)u exists, and

dγ(t)u =
∂L

∂v
(γ(t), γ̇(t)) and H(γ(t), dγ(t)u) = c[0].

Since a calibrated curve is an extremal, it follows that t 7→ (γ(t), dγ(t)u)

is an orbit of ϕHt , contained in Ĩ∗(u). Hence Ĩ∗(u) = L(Ĩ(u)), where

Ĩ(u) = {(γ(0), γ̇(0)) | γ :]−∞,+∞[→M is (u, L, c[0])-calibrated} ⊂ TM.
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This makes the connection with a more usual definition of I(u) as
the projection of Ĩ(u) on M , or

I(u) = {x ∈M | ∃γ :]−∞,+∞[→M (u, L, c[0])-calibrated, and γ(0) = x}.
We now recall the definition of the Lax-Oleinik semi-groups

T−t , T
+
t : C0(M,R)→ C0(M,R).

If t ≥ 0 and u ∈ C0(M,R), we have

T−t (u)(x) = inf
γ
u(γ(−t)) +

∫ 0

−t
L(γ(s), γ̇(s)) ds,

where the infimum is taken over all curves γ : [−t, 0] → M , with
γ(0) = x. In the same way

T+
t (u)(x) = sup

γ
u(γ(t))−

∫ t

0

L(γ(s), γ̇(s)) ds,

where the supremum is taken over all curves γ : [0, t] → M , with
γ(0) = x. The function u : M → R is a critical subsolution if and
only if u ≤ T−t (u) + c[0]t, for every t ≥ 0 (⇔ u ≥ T+

t (u) − c[0]t, for
every t ≥ 0).

A negative (resp. positive) weak KAM solution is a function u− :
M → R (resp. u+ : M → R) such that u− = T−t u− + c[0]t (resp.
u+ = T+

t u+ − c[0]t, for every t ≥ 0. By what we said above weak
KAM solutions are automatically critical subsolutions.

Given a critical subsolution u, then T−t u+c[0]t (resp. T+
t (u)+c[0]t)

is non-increasing (resp. non-decreasing) in t, and converges uniformly
to a negative (resp. positive) weak KAM solution u− ≥ u (resp.
u+ ≤ u). For proof of the convergence see [10], or arguments in [9].
In particular, we have u+ ≤ u ≤ u−. For a given x ∈ M , we have
u(x) = u−(x) if and only if u(x) = T−t u(x) + c[0]t, for every t ≥ 0.
It follows that u−(x) = u(x) if and only if there exists a (u, L, c[0])-
calibrated curve γ :] −∞, 0] → M with γ(0) = x. In the same way
u+(x) = u(x) if and only if there exists a (u, L, c[0])-calibrated curve
γ : [0,∞[→ M with γ(0) = x. Since u+ ≤ u ≤ u−, we obtain
that u+(x) = u−(x), if and only if we can find γ :] − ∞,∞[→ M
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(u, L, c[0])-calibrated with γ(0) = x. This implies

I(u) = {x ∈M | u+(x) = u−(x)}.
In particular u−− u+ > 0 on M \ I(u). It can be shown that I(u) =
I(u−) = I(u+).

It is useful to introduce the concept for a critical subsolution of
being strict on an open subset, see [13, 14]. Since we will use this
concept when the function is at least C1 on the open set, we can
give the following definition: we will say that the critical subsolution
u : M → R is strict on the open subset U ⊂M if it is C1 on U and

∀x ∈ U,H(x, dxu) < c[0].

We will need the following density theorem. For a proof see for
example [13, §7]and [14, §6].

Theorem 3.1. If u : M → R is a critical subsolution, and ε > 0 is
given, we can find a critical subsolution ũ : M → R such that:

1) the function ũ is C∞ and strict on M \ A;
2) ‖ũ− u‖∞< ε.

4. Proof of Theorem 1.1

In this section we will assume that u : M → R is a critical subso-
lution. By what was recalled in the previous section §3, we can find
a pair (u−, u+) of negative and positive weak KAM solutions, with
u− ≥ u ≥ u+ and I(u) = {x | u+(x) = u−(x)}.

We will further assume that ū : U → R is a Ck function such that:

1) U is an open subset of M containing I(u),
2) ū = u(= u− = u+) on I(u),
3) H(x, dxū) ≤ c[0] on U .

Lemma 4.1. Let K be a compact subset of M \ I(u). We can find
a Ck function u1 : U → R, such that H(x, dxu1) ≤ c[0], for every
x ∈ U , u1 = ū on a neighborhood of I(u) ,and u1 < u− on U ∩K.

Proof. Since u− > u+ on the compact set K, we can choose α > 0
such that u+ + 4α < u−, on K. Since u+ is a critical subsolution, by
Theorem 3.1, we can find a global critical subsolution ũ+ : M → R
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which is C∞ outside of A ⊂ I(u) = I(u+), and ‖u+ − ũ+‖∞ ≤ α.
Since u+ = ū = u on I(u), we can find an open neighborhood V ⊂ U
of I(u) such that ū − u+ ≤ α on V . Therefore ū − ũ+ ≤ 2α on V .
Let θ : R → [0, 1] be a C∞ function such that θ = 1 on ] −∞, 2α]
and θ = 0 on [3α,+∞[. We now define ρ : R→ R by

ρ(t) =

∫ t

0

θ(s) ds.

The function ρ is clearly C∞, non-decreasing, and its Lipschitz con-
stant is 1. Since θ is non-negative, bounded by 1, and is identically
0 on [3α,+∞[, we get

max ρ =

∫ 3α

0

θ(s) ds ≤
∫ 3α

0

ds = 3α.

By Proposition 2.1, the function u1 = ũ++ρ(ū−ũ+) satisfiesH(x, dxuρ) ≤
c[0] on U . We also have u1 ≤ ũ+ + max ρ ≤ ũ+ + 3α ≤ u+ + 4α.
Therefore, by the choice of α, we obtain u1 < u− on K ∩ U . Note
that u1 is Ck outside of I(u). On the open set V ⊃ I(u), we have
ū − ũ+ ≤ 2α. Since on ] −∞, 2α] the derivative ρ′ is identically 1,
we have ρ(t) = t, for every t ∈] − ∞, 2α]. On V , we therefore get
ρ(ū− ũ+) = ū− ũ+, and u1 = ū. In particular, the function u1 is also
Ck on V , hence on U = V ∪ (U \ I(u)). �

Lemma 4.2. For any neighborhood W of I(u), we can find a Ck

function u2 : M → R such that

1) u2 = ū in a neighborhood of I(u),
2) u2 is a critical subsolution,
3) u2 is a strict critical subsolution outside of W , i.e. H(x, dxu2) <

c[0], for every x ∈M \W .

Proof. We can assume W̄ ⊂ U . Moreover, by Lemma 4.1, applied
with K = M \W , replacing ū by u1 if necessary, we can also assume
ū < u− on U \W . Choose U ′ a neighborhood of W̄ with W̄ ⊂ U ′ ⊂
Ū ′ ⊂ U . Define β by

3β = inf
Ū ′\W

u− − ū.
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Note that β > 0, since Ū ′ \ W is a compact subset of U \ W , on
which the continuous function u− − ū is > 0. Since u− is a critical
subsolution, by Theorem 3.1, we can choose a critical subsolution
ũ− : M → R which is C∞, strict outside A ⊂ I(u) = I(u−), and
satisfies ‖ũ− − u−‖∞ ≤ β. Call V a neighborhood of I(u) such that
u− − ū ≤ β on V . This is possible because u− = ū = u on I(u). We
obtain ũ− − ū ≤ 2β on V . Let θ : R → [0, 1] be a C∞ function such
that θ = 0 on ]−∞, 2β] and θ = 1 on [3β,+∞[. We define ρ : R→ R
by

ρ(t) =

∫ t

0

θ(t) dt.

The function ρ is C∞, non-decreasing, and has Lipschitz constant 1.
By the choice of θ, the function ρ is identically 0 on ]−∞, 2β], and
ρ(t) = t+ ρ(3β)− 3β on [3β,+∞[. The function uρ = ū+ ρ(ũ− − ū)
is defined on U and Ck on U \I(u). By Proposition 2.1, the function
uρ satisfies H(x, dxuρ) ≤ c[0]. By the properties of ρ, it also satisfies
uρ = ū on V and uρ = ũ− + ρ(3β)− 3β on Ū ′ \W . In particular uρ
is Ck on the whole of U . Since W̄ ⊂ U ′, we can define a Ck function
u2 : M → R such that u2 = uρ on U ′ and u2 = ũ− + ρ(3β) − 3β on
M \W . Note that u2 is a critical subsolution which is strict outside
W like ũ−. �

Proof of Theorem 1.1. Choose a sequence Vn, n ≥ 0, of neighbor-
hoods of I(u) such that Vn+1 ⊂ Vn and ∩n∈NVn = I(u). By Lemma
4.2, we can find a sequence un : M → R of Ck critical subsolutions,
such that un = u on I(u), and un is strict outside Vn. We can pick
a converging series εn > 0, n ≥ 0, such that

∑
n∈N εnun converges in

the Ck topology (this is easy to show see for example [12, Lemma
3.3, page 722]. Changing a finite number of terms, we can assume∑

n∈N εn = 1. By the convexity of H in p, the sum
∑

n∈N εnun is also
a critical subsolution. It is strict outside Vn, n ≥ 0, since εn > 0.
Hence it is strict outside ∩n∈NVn = I(u). Of course

∑
n∈N εnun = u

on I(u).
To make ũ =

∑
n∈N εnun of class C∞ outside I(u), we can now

take an appropriate Ck approximation of ũ on M \I(u) in the strong
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(or Whitney) topology which is C∞ on that subset, see [15] for the
strong topology and the approximation theorems. �

Proof of Corollary 1.2. As observed in [3, §6], under the hypothesis
of the corollary, we can find a weak KAM solution u− such that
I(u−) = A, and u− is Ck is a neighborhood of A. It therefore suffices
to apply Theorem 1.1 with u = ū = u− to obtain the corollary. �
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Mathématiques et Applications 17, Springer-Verlag, Paris, 1994.

[3] P. Bernard. Smooth critical sub-solutions of the Hamilton-Jacobi equation.
Math. Res. Lett. 14(3):503–511, 2007.

[4] P. Bernard. Existence of C1,1 critical sub-solutions of the Hamilton-Jacobi

equation on compact manifolds. Ann. Sci. École Norm. Sup. (4) 40(3):445–
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PATHS TOWARDS ADAPTIVE ESTIMATION FOR
INSTRUMENTAL VARIABLE REGRESSION

JEAN-MICHEL LOUBES AND CLÉMENT MARTEAU

Abstract. We tackle the problem of estimating a regression
function observed in an instrumental regression framework. This
model is an inverse problem with unknown operator. We provide
a spectral cut-off estimation procedure which enables to derive
oracle inequalities which warrants that our estimate, built with-
out any prior knowledge, behaves as well as, up to log term, if
the best model were known.

Introduction

An economic relationship between a response variable Y and a
vector of explanatory variables X is often represented by an equation

Y = ϕ(X) + U,

where ϕ is the parameter of interest which models the relationship
while U is an error term. Contrary to usual statistical regression
models, the error term is correlated with the explanatory variables
X, hence E(U |X) 6= 0, preventing direct estimation of ϕ. To over-
come the endogeneity of X, we assume that there exists an observed
random variable W , called the instrument, which decorrelates the
effects of the two variables X and Y in the sense that E(U |W ) = 0.
It is often the case in economics, where the practical construction of
instrumental variables play an important part, for instance for prac-
tical situations where prices of goods and quantity in goods can be
explained using an instrument. This situation is also encountered

2000 Mathematics Subject Classification. 62G05, 62G20.
Key words and phrases. Inverse Problems, Instrumental Variables, Model

Selection, Econometrics.
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when dealing with simultaneous equations, error-in-variable models,
treatment model with endogenous effects. It defines the so-called in-
strumental variable regression model which has received a growing
interest among the last decade and turned to be a challenging issue
in statistics. In particular, we refer to [NP03] for general references
on the use of instrumental variables in economics while [CFR06] deal
with the statistical estimation problem.

More precisely, we aim at estimating a function ϕ from the obser-
vations of (Y,X,W ) satisfying the following condition

(1) Y = ϕ(X) + U,

{
E(U |X) 6= 0

E(U |W ) = 0

Hence, the model (1) can be rewritten as an inverse problem using
the expectation conditional operator with respect to W , which will
be denoted T , as follows :

(2) r := E(Y |W ) = E(ϕ(X)|W ) = Tϕ.

The function r is not known and only an observation r̂ is available,
leading to the usual inverse problem settings

(3) r̂ = Tϕ+ δ,

where ϕ is defined as the solution of a noisy Fredholm equation of
the first order which may generate an ill-posed inverse problem. The
literature on inverse problems in statistics is large, but contrary to
most of the problems tackled in the literature on inverse problems
(see [EHN96], [MR96], [CGPT02], [CHR03], [LL08] and [O’S86] for
general references), the operator T is unknown either, which trans-
forms the model into an inverse problem with unknown operator.
Few results exist in this settings and only very recently new methods
have arisen. In particular [CH05], [Mar06, Mar09], or [EK01] and
[HR08] in a more general case, construct estimators which enable
to estimate inverse problem with unknown operators in an adaptive
way, i.e getting optimal rates of convergence without prior knowledge
of the regularity of the functional parameter of interest.
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In this work, we are facing an even more difficult situation since
both r and the operator T have to be estimated from the same sam-
ple. Some attention has been paid to this estimation issue, by esti-
mating the joint density with different kinds of technics such as ker-
nel based Tikhonov regularization [CFR06], regularization in Hilbert
scales, finite dimensional sieve minimum distance estimator [NP03],
with different rates and different smoothness assumptions, providing
sometimes minimax rates of convergence. But, to our knowledge, all
the proposed estimators rely on prior knowledge on the regularity
of the function ϕ expressed through an embedding condition into a
smoothness space or an Hilbert scale, or a condition linking the reg-
ularity of ϕ to the regularity of the operator, namely a link condition
or source condition (see [CR08] for general comments and insightful
comments on such assumptions). In a first part, we explain how to
use a general penalized approach to turn any regularization scheme
into an adaptive procedure when the operator is known. But the
extension of this method to the case of IV regression fails, hence we
provide under some conditions for the SVD decomposition, an adap-
tive estimation procedure of the function ϕ which converges, without
prior regularity assumption, at the optimal rate of convergence, up to
a logarithmic term. Moreover, we derive an oracle inequality which
ensures optimality among the different choices of estimators.

Hence, the objective of this work is twofold; first extending the
estimation procedure for inverse problem with unknown operator to
the case of correlated data, and yet obtaining an oracle inequality;
then providing a tractable adaptive estimator to some cases of in-
strumental variable regression.

1. A statistical framework for instrumental variable
(IV) regression

1.1. Mathematical model. We observe an i.i.d sample (Yi, Xi,Wi)
for i = 1, . . . , n with unknown distribution f . Define the following
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Hilbert spaces

L2
X = {h : R→ R, ‖h‖2X := E(h2(X)) < +∞}

L2
W = {g : R→ R, ‖g‖2W := E(g2(W )) < +∞},

with the corresponding scalar product 〈., .〉X and 〈., .〉W . For sake
of convenience, we only consider in this paper the case where ϕ is
univariate. The approach presented in this paper may be certainly
extended to the multivariate case (i.e. with a variable X of dimension
d > 1).

Then the conditional expectation operator of X with respect to W
is defined as an operator T

T : L2
X → L2

W

g → E[g(X)|W = .] .

The model (1) can be written, as discussed in [CR08], as

Yi = ϕ(Xi) + E[ϕ(Xi)|Wi]− E[ϕ(Xi)|Wi] + Ui

= E[ϕ(Xi)|Wi] + Vi

= Tϕ(Wi) + Vi,(4)

where Vi = ϕ(Xi)−E[ϕ(Xi)|Wi]+Ui, is such that E(V |W ) = 0. The
parameter of interest is the unknown function ϕ. Hence, the obser-
vation model turns to be an inverse problem with unknown operator
T with a correlated noise V . Solving this issue amounts to deal with
the estimation of the operator and then controlling the correlation
with respect to the noise.

The operator T is unknown since it depends on the unknown dis-
tribution of the observed variables Y,X,W denoted f(Y,X,W ). The
estimation of this operator can be performed either by directly using
an estimate of f(Y,X,W ), or if exists, by estimating the spectral value
decomposition of the operator.

Assume that T is compact and admits a singular value decomposi-
tion (SVD) (λj, φj, ψj)j>1, which provides a natural basis adapted to
the operator for representing the function ϕ, see for instance [EHN96].
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More precisely, let T ∗ be the adjoint operator of T , then T ∗T is a
compact operator on L2

X with eigenvalues λ2j , j > 1 associated to the

corresponding eigenfunctions φj, while ψj are defined by ψj =
Tφj
‖Tφj‖ .

So we obtain
Tφj = λjψj, T ∗ψj = λjφj.

The decay of the eigenvalues defines the difficulty of the inverse prob-
lem. Hereafter, we only consider the case of mildly ill-posed inverse
problems, i.e when the eigenvalues decay at a polynomial rate.

IP: Degree of ill-posedness: We assume that there exists t,
called the degree of ill-posedness of the operator which con-
trols the decay of the eigenvalues of the operator T . More
precisely, there are constants λL, λU such that

(5) λLk
−t 6 λk 6 λUk

−t, ∀k > 1

We assume some conditions on the observations errors in order
to obtain Hoeffding-type concentration bounds. Other equivalent
conditions can be used.

Exponential Moment conditions:: The observation Y sat-
isfy to the following moment condition. There exists some
positive numbers v > E(Y 2

j ) and c such that

(6) ∀j > 1, ∀k > 2, E(Y k
j ) <

k!

2
vck−2.

1.2. An econometric example. Instrumental variable regression
in econometrics are used when modeling a relationship between cor-
related variables. It occurs usually when considering the econometric
problem of the estimation of price and demand of goods. If Q is a
quantity of a good with price P observed over the years, the usual
linear regression model

logQi = β0 + β1 logPi + Ui

= f(Pi) + ui

where the coefficients β0 and β1 are the elasticity, faces the difficulty
that E(f(P |U)) 6= 0. Hence it turns necessary to to de-correlate the
effects using an auxiliary variable which should be highly correlated
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with P but uncorrelated with the error term U . This variable is
called an instrument.

Examples are numerous when studying the variation of price and
demand. For example consider Q the annual sales of wheat and P
the prices. An instrument could be in that case PL the rain level
in the production region. It is obvious that the level of rain does
not change the demand, hence Corr(PL,U) = 0 while the lack of
rain decreases the production which in turn increases the prices, so
Corr(PL, logP ) 6= 0.
However, to solve this practical example, the specific link between
the covariates and the instrumental variable is required.

Assume that the link between X and the instrument W is of the
form X = L(W,Z) with Z an independent random variable with
distribution PZ . Then the operator has the following form

Tϕ(w) =

∫
ϕ ◦ L(w,Z)dPZ(Z) =

∫
ϕ(x)KL(x,w)dx

with a change of variable under some differentiability conditions on
L. Under technical assumptions, the operator defines a Fredholm in-
tegral operator with kernel KL depending on the the link function L
and the distribution of Z. Such operators are well studied in and, in
many cases, the SVD decomposition will be available, which enables
to use the estimation procedure developed in this paper.

As a practical example, one may be interested in the particular
case, where X is uniform on [0, 1] and W = X + Z where Z is a
random variable independent of X with unknown density gZ . We
point out that the model Yi = ϕ(Wi − Zi) + Ui is also at the core
of curve registration issues when curves are warped through random
shifts Wi’s.

In this example, both ϕ and gZ are supposed to be 1-periodic. The
conditional operator T : L2(X)→ L2(W ) can be written as

Tf(w) = E(f(X)|W = w) = E(f(w − Z)) =

∫ 1

0

f(w − z)g(z)dz,
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with adjoint

T ?h(x) = E(h(W )|X = x) =

∫ 1

0

h(z + x)g(z)dz,

for all periodic functions f, g belonging respectively in L2(X) and
L2(W ). Hence, T is a deconvolution type operator, up to some change
of variable. Let (φk)k∈N be the usual real trigonometric basis on [0, 1]:

φ1(t) ≡ 1, φ2p(t) =
√

2 cos(2πpt), φ2p+1(t) =
√

2 sin(2πpt), p ∈ N.
Since X is uniform on [0, 1], (φk)k∈N is an orthonormal basis of L2(X).
With simple algebra, it is possible to prove that this sequence cor-
responds to the eigenvectors of T ?T , see for instance [Cav08]. The
corresponding eigenvalues are related to the Fourier coefficients of
the density gZ . The eigenvalues are obviously unknown but may be
easily estimated using the procedure presented above.

Another example is obtained when considering the case where

(X,W ) ∼ N
((

0
0

)
,

(
1 ρ
ρ 1

))
,

Then, the corresponding operator T is a self adjoint operator with
eigenvalues ρj and eigenfunctions the Hermite polynomials. This
example is not covered by the procedure developed in this paper
since the eigenvectors are exponentially decreasing (see assumption
(27) bellow). Nevertheless, this proves that some assumptions on
(X,W ) may provide some hint on the corresponding SVD.

2. Adaptivity with complexity regularization

Model (4) is very similar to the well known model

y = Tϕ+ v.

When the operator T is known, adaptive estimation can be achieved
using penalized regularization technics as described in [LL10, LL08].
Assume that we are equipped with a sequence of nested linear sub-
spaces whose union is dense in Y , Y1 ⊂ Y2 . . . ⊂ Ym . . . ⊂ Y , with
dim(Ym) = dm. We are interested in a subcollection of these spaces
generated by a set of indices Mn. In this paper, we will use these
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approximation spaces as projection spaces in order to study the data.
So, denote the projection of any space W over any subspace Z by
ΠZW . Let Πn

Ym
stands for the projection in the empirical norm. Set

also the corresponding projected operator Tm = Πn
Ym
T .

In this part, we impose some smoothness condition on the function
to be estimated, namely

SC source condition:
There exists ν > 0 such that ϕ ∈ Range((T ∗T )ν) := R((T ∗T )ν)

This condition, well used in the field of inverse problems, links the
smoothness of the function to the regularity of the operator. The
relationships with other kind of regularity assumptions are described
in [LR09].

Using a sieve of the space Y , we consider the corresponding ap-
proximation spaces in the space X , defined as Xm = T ∗mY . By con-
struction

ΠXm = (Πn
YmT )+Πn

YmT.

Hereafter, we consider a class of regularized estimators built using a
projection and a regularization procedure. Hence the first step is to
project the data onto a well chosen space. Namely let Ym0 be a big
enough space in the sense that m0 is such that

‖(I − ΠXm0
)ϕ‖ ≤ inf

m∈Mn

[‖(I − ΠXm)ϕ‖+

√
dm
n

1

γm
],

with

γm := inf
v∈Ym,‖g‖=1

‖T ∗mg‖,

which expresses the effect of operator T ∗m over the approximating
subspace Ym. This quantity can be chosen so as not to depend on the
unknown regularity of the solution ϕ, but only on the ill-posedness of
the inverse problem, namely γm = O(d−tm ) as shown in [LL08, LL10].
This bound leads to the usual optimal rate of convergence for inverse
problems. Under assumption SC the above inequality is satisfied if
the dimension of the set is such that

d2νtm0
≥ n

2νt
4νt+2t+1 .



ADAPTATIVE ESTIMATION FOR INSTRUMENTAL REGRESSION 107

Thus it is enough to choose m0 such that dm0 ≥ n ≥ n1/(2t+1).

The second step is obtained by, for Kn a set of indices, considering
{R̃k, k ∈ Kn} a collection of regularization operators which depend
on different values of the smoothing parameters. For instance con-
sider Tikhonov regularization operators which rely on the choice of
a smoothing sequence, Landweber iteration operators which rely on
the choice of a stopping index, or other general smoothing operators
described in [EHN96]. Consider the corresponding estimators

(7) ϕ̂k := R̃kΠ
n
Ym0

y = Rky,

where we have written Rk := R̃kΠ
n
Ym0

. The behavior of such gen-

eral estimators depends on the choice of the regularization sequence.
From the theory of inverse problems, we know that it is possible to
choose a regularization operator for which the corresponding estima-
tor achieves the optimal rate of convergence, but this choice depends
on ν defined in SC, which characterizes the regularity of the solution.

Our aim is building a method that picks, according to the data,
an optimal Rk, among all the Rk, k ∈ Kn in such a way that op-
timal rates are maintained. This choice must also not depend on a
priori regularity assumptions. We point out that selecting the op-
timal smoothing parameter in a collection of sequences, belongs to
model selection theory since it is equivalent as selecting a good model
among a collection of sets.

For this consider the following penalized procedure. For a given
constant r > 2 and weights Lk, k ∈ Kn to be chosen, define the
penalty as

pen(k) := rσ2(1 + Lk)[Tr(R
t
kRk) + ρ2(Rk)],

where Tr(Rt
kRk) is the trace and ρ(Rt

kRk) = ρ2(Rk) is the spectral

radius. Finally k̂ is selected as the solution of

(8) k̂ := arg min
k∈Kn

{
‖Rk(y − T (ϕ̂k))‖2 + pen(k)

}
,

which defines the estimator ϕ̂k̂ = Rk̂y. Let RkTϕ be the regular-
ized true function, which measures the accuracy of the estimation
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procedure without observation noise. The following result states the
asymptotic behaviour of the estimator ϕ̂k̂.

Theorem 2.1. Under some technical conditions, there exists a con-
stant C which depends on r and on T , such that the following in-
equality holds true
(9)

E‖ϕ̂k̂−ϕ‖2 ≤ 2‖(I−ΠXm0
)ϕ‖2+C inf

k∈Kn

[
‖RkTϕ− ϕ‖2 + 2pen(k)

]
+

Σ(d)

n
,

where we have set

Σ(d) =
∑

k∈Kn
2

[√
dTr(Rt

kRk)

ρ2(Rk)
+ 1

]
[

d

ρ2(nRk)
]−1e−

√
dLk[Tr(R

t
kRk)+ρ

2(Rk)]/ρ2(Rk),

for d properly chosen.

Hence, the estimator is optimal in the sense that the adaptive esti-
mator achieves the best rate of convergence among all the regularized
estimators, up to an error of order pen(k) and Σ(d)/n. This bound
is non asymptotic and the rate of convergence depends on both pre-
vious terms.

We also point out that ρ2(nRk) and Tr(Rt
kRk)/ρ

2(Rk) do not de-
pend on n.

The main ingredients of the proof can be found in [LL08, LL10].

When the operator T is unknown, one could be tempted by using
the same ideas, just replacing T by an estimator T̂ . However, the
whole procedure turns more difficult since the term in RkT̂ can not be
bounded as easily as previously. Recent results on concentration for
random matrices provide some hopes to extend this general adaptive
procedure to these cases but work is still under progress. However, in
the following section, we provide a general methodology built using
the SVD decomposition of the operator.

3. An oracle inequality with partially known SVD

In this part, we assume that the SVD is partially known in the sense
that the basis of eigenvectors (φj) is known but that the eigenvalues,
λj’s, are not observed. This assumption, yet restrictive, still enables
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to handle some useful cases. It will be discussed in details at the end
of section 4.

3.1. General estimation approach. This case is inspired by the
pioneering work by [CH05]. It is fully described in [LM09]

We can write the following decompositions

(10) r(w) = E(Y |W = w) = Tϕ(w) =
∑

j>1
λj〈ϕ, φj〉Xψj(w),

(11) and r(w) =
∑

j>1
rjψj(w),

with rj = 〈Y, ψj〉W that can thus be estimated by

r̂j =
1

n

n∑

i=1

Yiψj(Wi).

Hence the noisy observations are the r̂j’s which will be used to esti-
mate the regression function ϕ in an inverse problem framework.

Note first that, if the operator were known we could provide an es-
timator using the spectral decomposition of the function ϕ as follows.
For a given decomposition level m, define the projection estimator
(also called spectral cut-off [EHN96])

(12) ϕ̂0
m =

m∑

j=1

r̂j
λj
φj

Since the λj’s are unknown, our first task is to build an estimator of
the eigenvalues. For this, using the decomposition (10), we obtain

λj =< Tφj, ψj >W= E[Tφj(W )ψj(W )]

= E[E[φj(X)|W ]ψj(W )]

= E[φj(X)ψj(W )].(13)
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So, following (13), a natural estimator for the eigenvalue λj is given
by

(14) λ̂j =
1

n

n∑

i=1

ψj(Wi)φj(Xi).

As studied in [CH05], replacing directly the eigenvalues by their esti-
mates in (12) does not yield a consistent estimator, hence using their
same strategy we define an upper bound for the resolution level

(15) M = inf

{
k 6 N : |λ̂k| 6

1√
n

log n

}
− 1,

for N any integer chosen greater than n. The parameter N provides
an upper bound for M in order to ensure that M is not too large.
The main idea behind this definition is that when the estimates of the
eigenvalues are too small with respect to the observation noise, trying
to still provide an estimation of the inverse λ−1k only amplificates the
estimation error. To avoid this trouble, we truncate the sequence
of the estimated eigenvalues when their estimate is too small, i.e
smaller than the noise level. We point out that this parameter M
is a random variable which we will have to control. More precisely,
define two deterministic lower and upper bounds M0,M1 as

(16) M0 = inf

{
k : |λk| 6

1√
n

log2 n

}
− 1,

and

(17) M1 = inf

{
k : |λk| 6

1√
n

log3/4 n

}
,

we can show that with high probability M0 6 M < M1 as proved in
Lemma 5.1. Note that if in the definition (15) the set is empty, we
set M = 0. However, from the remark above, this case happens with
very small probability.
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Now, thresholding the spectral decomposition in (12) leads to the
following estimator

(18) ϕ̂m =
m∑

j=1

r̂j

λ̂j
1j6Mφj.

The asymptotic behaviour of this estimate depends on the choice of
m. In the next section, we provide an optimal procedure to select
the parameter m that gives rise to an adaptive estimator ϕ? and an
oracle inequality.

3.2. Oracle inequality. All the estimation errors will be given with
respect to the L2

X norm which is a natural choice for this kind of
problems. Another possibility would have been to place the issue in
L2([0, 1]).

First, let R0(m,ϕ) be the quadratic estimation risk for the naive
estimator ϕ̂0

m (12), defined for all m ∈ N, by

R0(m,ϕ) = E‖ϕ̂0
m − ϕ‖2X

=
∑

k>m

ϕ2
k +

1

n

m∑

k=1

λ−2k σ2
k, ∀m ∈ N,

with σ2
k = Var(Y ψk(W )). The best model would be obtained by

choosing a minimizer of this quantity, namely

(19) m0 = arg min
m

R0(m,ϕ).

This risk depends on the unknown function ϕ hence m0 is referred
to as the oracle. We aim at constructing an estimator of R0(m,ϕ)
which, by minimization, could give rise to a convenient choice for m,
i.e as close as possible to m0. The first step would be to replace ϕk
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by their estimates λ̂−1k r̂k and take for estimator of σ2
k, σ̂

2
k, defined by

σ̂2
k =

1

n

n∑

i=1

(
Yiψk(Wi)−

1

n

n∑

i=1

Yiψk(Wi)

)2

=
1

n

n∑

i=1

(Yiψk(Wi)− r̂k)2 .

This would lead us to consider the empirical risk for any m 6M , the
cut-off which warrants a good behaviour for the λ̂j’s

U0(m, r, λ) = −
m∑

k=1

λ̂−2k r̂2k +
c

n

m∑

k=1

λ̂−2k σ̂2
k, ∀m ∈ N,

for a well chosen constant c. The corresponding random oracle within
the range of models which are considered would be

(20) m1 = arg min
m6M

R0(m,ϕ).

Unfortunately, the correlation between the errors Vi and the observa-
tions Yi prevents an estimator defined as a minimizer of U0(m, r, λ)
to achieve the quadratic risk R0(m,ϕ). Indeed, we have to use a
stronger penalty, leading to an extra error in the estimation that
shall be discussed later in the paper. More precisely, c in the penalty
is not a constant anymore but is allowed to depend on the number
of observations n.

Hence, now define R(m,ϕ) the penalized estimation risk as

(21) R(m,ϕ) =
∑

k>m

ϕ2
k +

log2 n

n

m∑

k=1

λ−2k σ2
k, ∀m ∈ N.

The best choice for m would be a minimizer of this quantity, which
yet depends on the unknown regression function ϕ. Hence, to mimic
this risk, define the following empirical criterion

(22) U(m, r, λ) = −
m∑

k=1

λ̂−2k r̂2k +
log2 n

n

m∑

k=1

λ̂−2k σ̂2
k, ∀m ∈ N.
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Then, the best estimator is selected by minimizing this quantity as
follows

(23) m? := arg min
m6M

U(m, r, λ),

Finally, the corresponding adaptive estimator ϕ? is defined as:

(24) ϕ? =
m?∑

k=1

λ̂−1k r̂kφk.

The performances of ϕ? are presented in the following theorem.

Theorem 3.1. Let ϕ? the projection estimator defined in (24). Then,
there exist B0, B1, B2 and τ positive constants independent of n such
that:

E‖ϕ? − ϕ‖2X 6 B0 log2(n).
[
inf
m
R(m,ϕ)

]
+
B1

n

(
log(n).‖ϕ‖2X

)2t

+Ω + log2(n).Γ(ϕ),

where Ω 6 B2(1 + ‖ϕ‖2X) exp
{
− log1+τ n

}
, m0 denotes the oracle

bandwidth and

(25) Γ(ϕ) =

m0∑

k=min(M0,m0)

[
ϕ2
k +

1

n
λ−2k σ2

k

]
,

with the convention
∑b

a = 0 if a = b.

We obtain a non asymptotic inequality which guarantees that the
estimator achieves the optimal bound, up to a logarithmic factor,
among all the estimators that could be constructed. We point out
that we lose a log2(n) factor when compared with the bound obtained
in [CH05]. This loss comes partly from the fact that the error on the
operator is not deterministic nor even due to a independent noisy
observation of the eigenvalues. Here, the λk’s have to be estimated
using the available data by λ̂k. In the econometric model, both the
operator and the regression function are estimated on the same sam-
ple, which leads to high correlation effects that are made explicit in
Model (4), hampering the rate of convergence of the corresponding
estimator.
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An oracle inequality only provides some information on the as-
ymptotic behaviour of the estimator if the remainder term Γ(ϕ) is
of smaller order than the risk of the oracle. This remainder term
models the error made when truncating the eigenvalues, i.e the error
when selecting a model close to the random oracle m1 6M and not
the true oracle m0. In the next section, we prove that, under some
assumptions, this extra term is smaller than the risk of the estimator.

Proof. The full proof of this result can be found in [LM09]. We
provide here the general ideas. First, the decay of the eigenvalues and
of the estimated eigenvalues is controlled in probability as follows. Set
M = {M0 6M < M1}, where M,M0,M1 are respectively defined in
(15), (16) and (17). Then, for all n > 1,

P (Mc) 6 CM0e
− log1+τ n,

where C and τ denote positive constants independent of n, as proved
in Lemma 5.1.
Then, the proof of our main result can be decomposed into four steps.
In a first time, we prove that the quadratic risk of ϕ? is close, up to
some residual terms, to ER̄(m?, ϕ) where

(26) R̄(m,ϕ) =
∑

k>m

ϕ2
k +

log2 n

n

m∑

k=1

λ̂−2k σ2
k, ∀m ∈ N.

This result is uniform in m and justifies our choice of R̄(m,ϕ) as a
criterion for the bandwidth selection.

In a second time, we show that ER̄(m?, ϕ) and EU(m?, r, ϕ) are
in some sense comparable. Then, according to the definition of m?

in (23),

U(m?, r, ϕ) 6 U(m, r, ϕ),∀m 6M.

We will conclude the proof by proving that for allm 6M , EU(m, r, ϕ) =
E‖ϕ̂m − ϕ‖2, up to a log term and some residual terms.

Some additional assumptions are required on both the data Yi, i =
1, . . . , n and the eigenfunctions φk and ψk for k > 1.
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Bounded SVD functions:: There exists a finite constant C1

such that

(27) ∀j > 1, ‖φj‖∞ < C1, ‖ψj‖∞ < C1

Requiring bounded SVD functions may be seen as a restrictive condi-
tion. Yet it is met when the eigenvectors are trigonometric functions.
However, this condition can be also be turned into a moment con-
dition if we replace the concentration bound by a Bernstein type
inequality. Note also that the moment conditions on Y amounts to
require a bounded regression function ϕ and equivalent moment con-
ditions on the errors Uj.

Enough ill-posedness : : Let σ2
j = Var(Y ψj(W )). We as-

sume that there exist two positive constants σ2
L and σ2

U such
that

(28) ∀j > 1, σ2
L 6 σ2

j 6 σ2
U .

Note that Condition (6) implies the upper bound of Condition (28);
which is also a direct consequence of Assumption A.2 in [HH05]. Both
the upper and lower bound is similar to the assumption 4.1 and the
variance condition in Assumption 3.1 in [CR08]. We also point out
that this condition is not needed when building an estimator for the
regression function. However it turns necessary when obtaining the
lower bound to get a minimax result, or when obtaining an oracle
inequality. �

3.3. Rate of convergence. To get a rate of convergence for the
estimator, we need to specify the regularity of the unknown function
ϕ and compare it with the degree of ill-posedness of the operator T ,
following the usual conditions in the statistical literature on inverse
problems, see for example [MR96] or [CT02], [BHMR07] for some
examples.

Regularity Condition: Assume that the function ϕ is such
that there exists s and a constant C such that

(29)
∑

k>1
k2sϕ2

k < C
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This Assumption corresponds to functions whose regularity is gov-
erned by the smoothness index s. This parameter is unknown and
yet governs the rate of convergence. In the special cases where the
eigenfunctions are the Fourier basis, this set corresponds to Sobolev
classes. We prove that our estimator achieves the optimal rate of
convergence without prior assumption on s.

Corollary 3.2. Let ϕ? be the model selection estimator defined in (24).
Then, under the Sobolev embedding assumption (29), we get the fol-
lowing rate of convergence

E‖ϕ? − ϕ‖2X = O

((
n

log2γ n

) −2s
2s+2t+1

)
,

with γ = 2 + 2s+ 2t.

We point out that ϕ? is constructed without prior knowledge of
the unknown regularity s of ϕ, yet achieving the optimal rate of con-
vergence, up to some logarithmic terms. In this sense, our estimator
is said to be asymptotically adaptive. The rate we obtain is similar
to the minimax rate obtained in [CR08]. Following these previous
authors, we point out that Hall and Horowitz in [HH05] also obtain
another minimax optimal rate of convergence in a similar settings
but under different regularity assumptions.

Remark 3.3. In an equivalent way, we could have imposed a super
smooth assumption, on the function ϕ, i.e assuming that for given γ,
t and constant C,

∞∑

k=1

exp(2γkt)ϕ2
k < C.

Following the guidelines of the proof of Corollary 3.2 and Theorem
2.1, we obtain that M0 > m0 ∼ (a2γ log n)1/t with 2aγ > 1, leading
to the optimal recovery rate for super smooth functions in inverse
problems.

4. Conclusion and comments

In conclusion, this work shows that provided the eigenvectors are
known, for smooth functions ϕ, estimating the eigenvalues and using
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a threshold suffices to get a good estimator of the regression function
in the instrumental variable framework. The price to pay for not
knowing the operator is only an extra log2 n with respect to usual in-
verse problems and is only due to the correlation induced by the Vi’s.
Remark that this log term could be avoided by splitting the data.
One may use a training set for the construction of the bandwidth
m? and the remaining data for the recovery of ϕ. In this case, the
quadratic risks of both our estimator and the oracle are comparable,
up to some computable constant. Nevertheless, this approach is not
satisfying from a mathematical point of view since the underlying
problem of adaptation is hidden.

One could object that the knowledge of the eigenvectors is a huge
hint and thus, the operator is not totally unknown. Still, in the
following examples, we present a class of cases where this situation
happens, mainly when the relationship between the variable X and
the instrument W has a particular form. However, some papers have
considered the case of completely unknown operators, using func-
tional approach, see for instance [CFR06], but their estimate clearly
rely on smoothness assumptions for the regression. Hence the two
approaches are complementary since we provide more refined adap-
tive result under stronger assumptions. Nevertheless, using similar
techniques to develop a fully adaptive estimation procedure would be
a next step toward a full understanding of the IV regression model.

To our knowledge, we provide the first adaptive estimation pro-
cedure for IV regression in some particular cases which yet present
some interest from an econometric point of view. We are aware that
we do not handle the estimation problem in the general case but this
work only claims to be a first step towards an adaptive estimation
procedure for this difficult problem.
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5. Appendix

Lemma 5.1. Set M = {M0 6 M < M1}, where M,M0,M1 are
respectively defined in (15), (16) and (17). Then, for all n > 1,

P (Mc) 6 CM0e
− log1+τ n,

where C and τ denote positive constants independent of n.

PROOF. It is easy to see that:

P (Mc) = P ({M < M0} ∪ {M >M1}) 6 P (M < M0)+P (M >M1).

Using (15) and (17),

P (M >M1) = P

(
M1⋂

k=1

{
|λ̂k| >

1√
n

log n

})
6 P

(
|λ̂M1| >

1√
n

log n

)
.

The definition of λ̂M1 yields

P (M >M1) 6 P

(∣∣∣λ̂M1 − λM1 + λM1

∣∣∣ > 1√
n

log n

)
,

6 P

(∣∣∣λ̂M1 − λM1

∣∣∣ > 1√
n

log n− |λM1|
)
,

6 P

(∣∣∣∣∣
1

n

n∑

i=1

φM1(Xi)ψM1(Wi)− E[φM1(X)ψM1(W )]

∣∣∣∣∣ > bn

)
,

where bn = n−1/2 log n− |λM1 | for all n ∈ N. Let k ∈ N and x ∈ [0, 1]
be fixed. Assumption (27) and Hoeffding inequality yield

P (|λ̂k − λk| > x) 6 2 exp

{
− (nx)2

2
∑n

i=1 Var(φM1(Xi)ψM1(Wi)) + 2nCx/3

}
,

= 2 exp

{
− nx2

2Var(φM1(X)ψM1(W )) + 2Cx/3

}
.

Using again the assumption (27) on the bases (φk)k∈N and (ψk)k∈N,

Var(φM1(X)ψM1(W )) 6 E[φ2
M1

(X)ψ2
M1

(W )] 6 C4
1 .

Hence,

(30) P (|λ̂k − λk| > x) 6 2 exp
(
−Cnx2

)
, ∀x ∈ [0, 1],
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for some constant C depending on C1 but independent of n. Using
(17), we obtain 1 > bn > 0 for all n ∈ N. Therefore, using (30) with
x = bn, we obtain:

P (M >M1) 6 2 exp
{
−Cnb2n

}
6 2 exp

{
−C(log n− log3/4 n)2

}
,

6 C exp
{
− log1+τ n

}
,

where C and τ denote positive constants independent of n.

The bound of P (M < M0) follows the same lines:

P (M < M0) = P

(
M0⋃

j=1

{
|λ̂j| 6

log n√
n

})
6

M0∑

j=1

P

(
|λ̂j| 6

log n√
n

)
,

6
M0∑

j=1

P

(
λ̂j 6

log n√
n

)
.

Let j ∈ {1, . . . ,M0} be fixed.

P

(
λ̂j 6

log n√
n

)
= P

(
λ̂j − λj 6 b̃n,j

)
,

where b̃n,j = n−1/2 log n − λj for all n ∈ N. Thanks to (16), b̃n,j < 0

for all n ∈ N. Using (30) with x = −b̃n,j, we get

P

(
λ̂j 6

log n√
n

)
6 exp

{
−Cnb̃2n,j

}
6 C exp

{
− log1+τ n

}
,

for some C, τ > 0. This concludes the proof of Lemma 5.1.

2

Proof of Corollary 3.2 We start by recalling the oracle inequal-
ity obtained for the estimator ϕ?.

E‖ϕ? − ϕ‖2 6 C0 log2(n).
[
inf
m
R(m,ϕ)

]
+
C1

n

(
log(n).‖ϕ‖2

)2β

+Ω + log2(n).Γ(ϕ),
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We have to bound the risk under the regularity condition and the
extra term log2(n)Γ(ϕ). Recall that the risk is given by

R(m,ϕ) =
∑

k>m

ϕ2
k +

log2 n

n

m∑

k=1

λ−2k σ2
k.

Hence under (29), we obtain both upper bounds for two constants
C1 and C2 ∑

k>m

ϕ2
k 6 m−2sC1,

log2 n

n

m∑

k=1

λ−2k σ2
k 6 C2

log2 n

n
σ2
Um

2t+1.

An optimal choice is given by m = [(n/ log n)
1

1+2s+2t ], leading to the
desired rate of convergence.

Now consider the remainder term Γ(ϕ). Under Assumption [IP],

M0 > [n1/2s/ log2 n], but since m0 = [n
1

1+2s+2t ] we get clearly that
m0 6M0, which entails that Γ(ϕ) = 0.
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Abstract. We review some recent results and constructions
concerning fusion categories, focusing on the classification prob-
lem of semisimple Hopf algebras. We discuss several invariants
of these structures, as well as some open questions.
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1. Introduction

The most basic examples of Hopf algebras are the algebras of (reg-
ular, etc.) functions on a (algebraic, finite, etc.) group, and the
enveloping algebras of Lie algebras. An important class of noncom-
mutative examples is provided by the quantum groups of Drinfeld
and Jimbo [Dr] and their generalizations, which since their discovery
were a source of new developments in the theory of Hopf algebras.

Semisimple Hopf algebras can be thought of as noncommutative
generalizations of finite groups. A finite dimensional commutative
Hopf algebra is necessarily semisimple and isomorphic to the algebra
of functions on a finite group, that is, to the dual of a group algebra.

The structure of Hopf algebras is naturally related to the study of
symmetries of distinct mathematical objects: quasitriangular Hopf
algebras constitute a tool for the systematic construction of solu-
tions of the Yang-Baxter equation; in topology, they are related to
the construction of knots and 3-manifolds; in the theory of opera-
tor algebras, certain semisimple Hopf algebras appear as invariants
or ”Galois groups” in the study of inclusions of subfactors. One of
the main features of Hopf algebras is that they give rise to tensor
categories through their categories of representations.

Let k be an algebraically closed field of characteristic zero.
Recall that a finite tensor category over k is a k-linear abelian

rigid monoidal category C such that Hom spaces are finite dimen-
sional and objects have finite length, and such that the tensor prod-
uct ⊗ : C × C → C is k-bilinear and the unit object 1 is simple. A
fusion category over k is a semisimple tensor category with finitely
many isomorphism classes of simple objects. This kind of categories
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possess remarkable properties of symmetry that generalizes that of
finite groups. For results on monoidal, tensor and fusion categories
and related structures, the reader can see [Ks, Mj, ENO, Mg3] and
references therein.

The representation category C = RepH of a finite dimensional
semisimple (quasi)-Hopf algebra H is a fusion category. Such fusion
categories are characterized by the fact that they are endowed with a
(quasi)fiber functor C → Veck, that is, a k-linear exact (quasi)tensor
functor, to the category Veck of finite dimensional vector spaces over
k.

Several known classes of non-trivial semisimple Hopf algebras are
obtained by a process of extension from smaller (often trivial) ones.
Underlying the study of extensions of Hopf algebras, there is an inter-
esting cohomological description, very important in the classification
problem [Ka, M3].

Several classification results for semisimple Hopf algebras are known.
We refer the reader to the papers [Mo3, Mo4, M5, Bu2] for more in-
formation on this subject.

In view of a result of A. Masuoka [M2], if dimH = pn, with p
a prime number, then H contains a non-trivial central group-like
element: this reduces the classification in these dimensions to the
problem of classifying extensions. In a sequel of papers, Masuoka
gave also the classification in dimension p2, p3, 6, 8 and 18. The full
classification is also known in dimension pq (p 6= q, prime numbers;
indeed, there are no non-trivial examples in this case), after results
of Etingof, Gelaki and Westreich. The classification in dimension pq2

and pqr, where p, q, r are distinct prime numbers, has been recently
completed by Etingof, Nikshych and Ostrik in [ENO2]. For Kac
algebras (C∗-semisimple Hopf algebras, after G. I. Kac), related to
the theory of subfactors, several classification results in low dimension
where obtained by Izumi and Kosaki [IK].

In this note we present an overview of some recent results and con-
structions concerning fusion categories, focusing on the classification
problem of semisimple Hopf algebras. We separate our exposition
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distinguishing three main streams: Hopf algebra extensions, exten-
sions of fusion categories by finite groups as studied in [GNi, ENO2,
DGNO], and a recent notion of exact sequence of fusion categories
developed in [BrN]. We put emphasis in showing the connections
between these different notions, as well as their rôle in classification
questions.

We also discuss in Section 6 several invariants of these structures:
Grothendieck rings, module categories, Frobenius-Schur indicators
and exponents. Without being exhaustive in our references, we men-
tion some known results about these invariants, specially in relation
with the main examples discussed in the paper.

In the final section, we present a series of open questions regarding
the concepts discussed previously.

Throughout, k will denote an algebraically closed field of charac-
teristic zero. The symbols Hom, ⊗, etc., will mean Homk, ⊗k, etc.
Our references for the theory of Hopf algebras are [Mo, Sc3].

For an algebra A, we shall use the notation RepA to indicate
the category of finite dimensional (left) A-modules. Similarly, for
a coalgebra C, the notation CorepC (respectively, C − Corep) will
indicate the category of finite dimensional left (respectively, left) C-
comodules. So that, if A is a finite dimensional algebra, we have
RepA = CorepC∗.

2. Semisimple Hopf algebras and fusion categories

A Hopf algebra is called semisimple (respectively, cosemisimple)
if it is semisimple as an algebra (respectively, if it is cosemisimple
as a coalgebra). A semisimple Hopf algebra is automatically finite
dimensional. Let H be a finite-dimensional Hopf algebra over k. By
a result of Larson and Radford, it is known that H is semisimple if
and only if H is cosemisimple, if and only if S2 = id [LR, LR2].

2.1. RepH as a tensor category. Let H be a finite dimensional
Hopf algebra. The category RepH of its finite dimensional represen-
tations is a finite tensor category with tensor product given by the



SEMISIMPLE HOPF ALGEBRAS AND THEIR REPRESENTATIONS 127

diagonal action of H and unit object k. The antipode implements
the H-action on the dual vector space.

Finite tensor categories of the form RepH are characterized, using
tannakian reconstruction arguments, as those possessing a fiber func-
tor with values in the category of vector spaces over k. The forgetful
functor RepH → Veck is a fiber functor and other fiber functors cor-
respond to twisting the comultiplication of H in the following sense.

Definition 2.1. A twist in H is an invertible element J ∈ H ⊗ H
satisfying:

(∆⊗ id)(J)(J ⊗ 1) = (id⊗∆)(J)(1⊗ J),(2.1)

(ε⊗ id)(J) = 1 = (id⊗ε)(J).(2.2)

Dually, an invertible normalized 2-cocycle on H is a convolution in-
vertible linear map σ : H ⊗H → k, such that, for all g, h, t ∈ H,

σ(h(1), g(1))σ(t, h(2)g(2)) = σ(t(1), h(1))σ(t(2)h(2), g),(2.3)

σ(h, 1) = ε(h) = σ(1, h).(2.4)

If J ∈ H⊗H is a twist, then (HJ ,m,∆J , SJ) is a Hopf algebra with
HJ = H as algebras, ∆J(h) = J−1∆(h)J , and SJ(h) = v−1S(h)v,
for all h ∈ H, where v = m(S ⊗ id)(J).

The Hopf algebras H and H ′ are called twist equivalent if H ′ ' HJ .
This type of deformation was originally introduced by Drinfeld [Dr2]
in the context of quasi-Hopf algebras.

The following theorem is a consequence of a more general result
of Schauenburg [S]. An analogous statement for finite dimensional
quasi-Hopf algebras has been proved by Etingof and Gelaki.

Theorem 2.2. The finite dimensional Hopf algebras H and H ′ are
twist equivalent if and only if RepH ' RepH ′ as tensor categories.

In particular, properties like (quasi)triangularity, semisimplicity or
the structure of the Grothendieck ring are preserved under twisting
deformations.

Dually, if σ : H ⊗ H → k is an invertible normalized 2-cocycle
on H, then (Hσ,mσ,∆,Sσ) is a Hopf algebra, where Hσ = H as
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coalgebras with multiplication and antipode

h.σg = σ(h1, g1)h2g2σ
−1(h3, g3), Sσ(h) = u−1(h(1))S(h(2))u(h(3)),

for all h, g ∈ H, where u(h) = σ(S(h(1)), h(2)), h ∈ H.
The Hopf algebra Hσ thus defined is called a cocycle twist of H [D].

Equivalently, the dual Hopf algebra (Hσ)∗ is a twisting deformation
of H∗ via the twist σ ∈ H∗ ⊗H∗.

Let H, H ′, be finite dimensional Hopf algebras over k. Then, by
the dual version of Theorem 2.2, the tensor categories H − Corep
and H ′−Corep of finite dimensional corepresentations of H and H ′,
respectively, are equivalent as tensor categories if and only if H ′ = Hσ

is a cocycle deformation of H.

The 2-cocycle σ : H ⊗ H → k gives rise to a fiber functor Uσ :
H −Corep→ Veck whose underlying functor is the forgetful functor
H−Corep→ Veck with monoidal structure f : Uσ◦⊗ → ⊗◦(Uσ×Uσ)
induced by σ. That is,

(2.5) f(u⊗ v) = σ(u(−1) ⊗ v(−1))u(0) ⊗ v(0),

for all u ∈ U , v ∈ V , U, V ∈ H − Corep, where u 7→ u(−1) ⊗ u(0),
denotes the H-coaction on u ∈ U .

Using tannakian reconstruction, one recovers the Hopf algebra Hσ

as the endomorphisms of the fiber functor Uσ: Hσ ' End(Uσ).
This defines a bijective correspondence between equivalence classes

of invertible 2-cocycles on H and isomorphism classes of fiber functors
on H − Corep.

By results of Ulbrich, generalizing ideas of Grothendieck, isomor-
phism classes of fiber functors on H−Corep correspond bijectively to
isomorphism classes of H-Galois extensions of k, also called H-Galois
objects.

Recall that the extension of k-algebras B ⊆ A is called a right
H-Galois extension if A is a right H-comodule algebra such that
B = AcoH and the canonical map

can : A⊗B A→ A⊗H, x⊗ y 7→ xy(0) ⊗ y(1),
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is bijective. Here, ρ : A → A ⊗ H, ρ(a) = a(0) ⊗ a(1), denotes the
H-coaction on A. Left H-Galois extensions and left H-Galois objects
are defined similarly.

The right H-Galois object A corresponds to the fiber functor UA :=
A�H− : H−Corep→ Veck, where �H denotes the cotensor product
of H-comodules.

Let H,H ′ be Hopf algebras. An (H ′, H)-bigalois object is an
(H ′, H)-bicomodule algebra A which is simultaneously a left H ′-
Galois object and right H-Galois object.

For instance, the Hopf algebra H is itself an (H,H)-bigalois object
with respect to the left and right H-coactions given by the comulti-
plication ∆ : H → H ⊗H.

More generally, let σ : H⊗H → k be an invertible 2-cocycle. Then
the crossed product σH = k#σH is a right H-Galois object. When
H is finite dimensional, every right H-Galois object is of this form.

For any right H-Galois object A there is an associated Hopf algebra
H ′ = L(A,H), called the left Galois Hopf algebra, such that A is in
a natural way an (H ′, H)-bigalois object. By results of Schauenburg,
A�L− : L − Corep → H − Corep defines an equivalence of tensor
categories, and every equivalence of tensor categories arises in this
way, up to isomorphisms, for a unique (H ′, H)-bigalois object A [S2].

The Hopf algebra L(A,H) is isomorphic to the cocycle deformation
Hσ of H, described before. See [S2, Proposition 3.1.6].

Example 2.3. The classification of Hopf Galois objects for finite
groups was given by Movshev and Davydov [Da, Mv]. If G is a finite
group, then isomorphism classes of kG-Galois objects are in one-to-
one correspondence with conjugacy classes of pairs (S, α), where S is a
subgroup of G and α ∈ H2(S, k×) is a non-degenerate 2-cocycle. The
kG-Galois object corresponding to the pair (S, α) can be constructed
as the algebra of S-invariant functions

A(G,S, α) = {f : G→ kαS : f(sg) = sB f(g)},
where kαS is the twisted group algebra, with action sBxt = xsxtx

−1
s ,

s, t ∈ S, and the G-action on A is (g.f)(h) = f(hg).
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Note that if J ∈ K⊗K is a twist for the Hopf subalgebra K ⊂ H,
then J ∈ H ⊗ H is also a twist for H. We shall say that such J is
lifted from the Hopf subalgebra K [EV, V].

For instance, let G be a finite group, H = kG the group algebra of
G and K = kΓ, where Γ is an abelian subgroup of G. Equivalence
classes of twists for K are in one-to-one correspondence with the
group H2(Γ, k×) [Mv, Proposition 3]. Hence, every 2-cocycle c ∈
H2(Γ, k×) defines a twist Jc ∈ kG⊗ kG. This twist has the form

(2.6) J =
∑

α,β∈Γ̂

c(α, β)eα ⊗ eβ,

where eχ = 1
|G|
∑

h∈G χ(h−1)h, χ ∈ Γ̂, is a basis of orthogonal central

idempotents of kΓ.

3. Hopf algebra extensions

In the context of finite dimensional Hopf algebras there is a notion
of extension, generalizing the corresponding notion for finite groups.
This is a basic tool in the construction of nontrivial (that is, not
commutative and not cocommutative) examples, and also to deal
with classification problems.

Definition 3.1. An exact sequence of finite dimensional Hopf alge-
bras is a sequence of Hopf algebra maps

(3.1) k → K
i→ H

π→ H → k,

where K, H and H are finite dimensional, such that

(a) i is injective and π is surjective,
(b) π ◦ i = εK1, where εK denotes the counit of K.
(c) ker π = HK+, or equivalently,

(c’ ) K = Hcoπ = {h ∈ H : (id⊗π)∆(h) = h⊗ 1}.
A Hopf subalgebra K of H is called normal if it is stable under

the left adjoint action of H on itself, defined by

adl(h)(x) = h1xS(h2),
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for all h, x ∈ H. (In general, one should also require K to be stable
under the right adjoint action: adr(h)(x) = S(h1)xh2, which holds
automatically in the finite dimensional context.)

If K ⊆ H is a normal Hopf subalgebra, then HK+ = K+H is
a Hopf ideal of H and the canonical map H → H := H/HK+ is
a Hopf algebra map. Hence there is an exact sequence (3.1) where
all maps are canonical. Moreover, in this case H is isomorphic to a
bicrossed product H ' Kτ#σH as a Hopf algebra, with respect to
appropriate compatible data: this follows from cleftness of such an
exact sequence, which does hold in the finite dimensional case.

A Hopf algebra is called simple if it contains no proper normal
Hopf subalgebra. For instance, the group algebra of a finite simple
group is an example of a (trivial) simple Hopf algebra. The notion
of simplicity is self-dual, that is, H is simple if and only if H∗ is.

Example 3.2. (Kobayashi-Masuoka.) Let H be a semisimple Hopf
algebra and K a Hopf subalgebra. Suppose that the index of K in
H, that is, the quotient dimH/ dimK, is the smallest prime number
dividing dimH. Then K is normal in H. This generalizes a well-
known fact for finite groups.

The concept of solvability of groups translates into the notion of
semisolvability of Hopf algebras, due to Montgomery and Wither-
spoon, in such a way that if H is semisolvable, then it can be obtained
from group algebras and their duals via a finite number of extensions.

A related, although not comparable, notion of solvability of a fusion
category is introduced and studied by Etingof, Nikshych and Ostrik
in [ENO2]. This notion will be discussed later on in Section 4.

Definition 3.3. [MW]. A lower normal series for H is a series
of Hopf subalgebras Hn = k ⊆ Hn−1 ⊆ · · · ⊆ H1 ⊆ H0 = H,
where Hi+1 is normal in Hi, for all i. The factors are the quotients
H i = Hi/HiH

+
i+1.

An upper normal series is inductively defined as follows. Let
H(0) = H. Let Hi be a normal Hopf subalgebra of H(i−1) and de-
fine H(i) = H(i−1)/H(i−1)H

+
i . Assume that Hn = H(n−1), for some
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positive integer n, so that H(n) = k. The factors are the Hopf subal-
gebras Hi of the quotients H(i−1).

The Hopf algebra H is called lower (respectively, upper) semisolv-
able if it possesses a lower (respectively, upper) normal series such
that all factors are commutative or cocommutative. If H is both
lower and upper semisolvable, then it is called semisolvable.

We have that H is upper semisolvable if and only if H∗ is lower
semisolvable [MW].

Remark 3.4. Note that, equivalently, an upper normal series can be
defined as a sequence of quotient Hopf algebra maps H(0) = H →
H(1) → · · · → H(n) = k such that each of the maps H(i−1) → H(i)

is normal. In this case, the factors are Hi := Hcoπi
(i−1) = coπiH(i−1),

where Hcoπi
(i−1),

coπiH(i−1) are the spaces of (right, respectively left)

coinvariants of the map πi. They coincide and form a Hopf subalgebra
of H(i−1), by normality of the map πi.

A result due to Masuoka [M2] says that a semisimple Hopf algebra
of dimension pn, p prime, contains a nontrivial central group-like
element g. This implies that group algebra k〈g〉 is a central Hopf
subalgebra of H. Inductively, this implies that H is semisolvable
[MW].

It was shown in [N4] that in dimension < 60 every semisimple Hopf
algebra is obtained, up to a twisting deformation, from group alge-
bras and their duals through iterated extensions. That is, they are
(either upper or lower) semisolvable, except possibly after a twist-
ing deformation. This result answered a question formulated by S.
Montgomery in [Mo3].

Some nontrivial examples of semisimple Hopf algebras which are
simple as Hopf algebras arise as twisting deformations of simple
groups.

For instance, the twisting H = (kA5)J of the alternating group
A5, where J is the twist lifted from the unique nontrivial 2-cocycle
in a Klein subgoup Γ ⊆ A5 is a nontrivial simple Hopf algebra of
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dimension 60. This example is due to Nikshych [Nk]. The Hopf
algebra H is not (upper or lower) semisolvable.

In the papers [GN, GN2] certain twisting deformations of a family
of supersolvable groups which are simple Hopf algebras were con-
structed. These groups are direct products of two generalized dihe-
dral subgroups.

Let p, q and r be prime numbers such that q divides p − 1 and
r − 1. Let G1 = Zp o Zq and G2 = Zr o Zq be the only nonabelian
groups of orders pq and rq, respectively. Let G = G1 × G2 and let
Zq × Zq ' Γ ⊆ G a subgroup of order q2.

Let also 1 6= α ∈ H2(Γ̂, k×), J ∈ kG ⊗ kG the twist lifted from Γ
corresponding to α.

Theorem 3.5. [GN]. The Hopf algebra H = (kG)J is a nontrivial
Hopf algebra of dimension prq2 which is simple as a Hopf algebra.

Examples of this construction appear in dimension 60 and p2q2,
for prime numbers p and q such that q divides p − 1. In particular,
the nontrivial simple Hopf algebra of dimension 36 obtained in this
way is the smallest example of a semisimple Hopf algebra which is
not semisolvable.

Semisimple Hopf algebras of dimension 60 which are simple as Hopf
algebras were classified in [BN, N8]: such a Hopf algebra is necessarily
isomorphic to the twisting of A5 constructed in [Nk] or to its dual,
or to the (self-dual) example arising from Theorem 3.5.

Other simple twisting deformations of finite groups were constructed
in [GN, GN2], for instance, from symmetric groups.

The theorem implies that there exists a semisimple Hopf algebra
of dimension p2q2 which is simple as a Hopf algebra. This proves
the following result, answering an open question of S. Montgomery
(2000); see [A, Question 4.17].

Corollary 3.6. The analogue of Burnside’s paqb-Theorem for finite
groups does not hold for semisimple Hopf algebras.
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We point out that, as shown in [ENO2], an analogue of Burnside’s
Theorem is valid for fusion categories in the sense of the definition of
solvability given in loc. cit.

Remark 3.7. Note that if G is a finite group, then the character
table of G allows to determine all normal subgroups and their or-
ders, the center Z(G), and in particular, it determines whether or
not the group is simple, nilpotent, or solvable. On the other hand,
the character table provides the same information about G as does
the Grothendieck ring of the tensor category RepG. Hence these
properties are determined by the tensor category RepG.

As a consequence of [GN], we get that the notion of simplicity or
(semi) solvability of a semisimple Hopf algebra is not determined by
its tensor category of representations.

In contrast with this result, every twisting deformation of a nilpo-
tent group is semisolvable. See a discussion on nilpotent fusion cate-
gories in Section 4.

3.1. Abelian extensions. An important class of extensions is that
of abelian extensions: these are those for which the ’kernel’ is a com-
mutative Hopf algebra while the ’cokernel’ is a cocommutative Hopf
algebra. Reduction to abelian extensions has allowed to obtain clas-
sification results in dimensions pq2, p2, p3, etc.

We refer the reader to [M3, M4] for the study of the cohomology
theory underlying an abelian exact sequence.

Suppose that L = FΓ is an exact factorization of the finite group
L, where Γ and F are subgroups of L. Equivalently, F and Γ form
a matched pair of finite groups with the actions C: Γ × F → Γ,
B: Γ× F → F , defined by sx = (x C s)(x B s), x ∈ F , s ∈ Γ.

Let σ : F × F → (kΓ)×, σ(x, y) =
∑

s σs(x, y)es, and τ : Γ ×
Γ → (kF )×, τ(s, t) =

∑
x τx(s, t)ex, be normalized 2-cocycles with

the respect to the actions afforded, respectively, by C and B, subject
to appropriate compatibility conditions [M3]. Here, ey ∈ kF , y ∈ F ,
are the canonical idempotents defined by ey(x) = δx,y, and similarly
for es ∈ kΓ.
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The bicrossed product H = kΓ τ#σkF associated to this data is a
Hopf algebra, with multiplication and comultiplication determined,
for all s, t ∈ Γ, x, y ∈ F , by

(es#x)(et#y) = δsCx,t σs(x, y) es#xy,(3.2)

∆(es#x) =
∑

gh=s

τx(g, h) eg#(h B x)⊗ eh#x,(3.3)

The Hopf algebra H fits into an abelian exact sequence k → kΓ →
H → kF → k. Moreover, every Hopf algebra fitting into such exact
sequence can be described in this way. This gives a bijective cor-
respondence between the equivalence classes of these Hopf algebra
extensions and a certain abelian group Opext(kΓ, kF ) associated to
the matched pair (F,Γ).

The class of an element of Opext(kΓ, kF ) can be represented by
a pair of compatible cocycles (τ, σ). The group Opext(kΓ, kF ) can
also be described as the first cohomology group of a certain double
complex [M3, Proposition 5.2].

The following result is proved in [ENO2]. This leads to the full
classification of semisimple Hopf algebras of the prescribed dimen-
sions.

Theorem 3.8. Let p, q, r be distinct prime numbers. Then every
semisimple Hopf algebra of dimension pqr or pq2 is an abelian exten-
sion.

Indeed, it is shown in [ENO2, Corollary 9.7] that a semisimple Hopf
algebra of dimension pq2 is either an abelian extension or a twist of
a group algebra or the dual of such a twist. But in the last cases, H
and H∗ are of Frobenius type, hence H is an abelian extension, by
the results in [N9, N10].

More generally, the conclusion in Theorem 3.8 is true for any group-
theoretical semisimple Hopf algebra (see Subsection 4.4 below) of
square-free dimension, as shown in [ENO2, Lemma 9.5].
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A result of G. I. Kac [Ka, M4] says that there is a long exact
sequence, called the Kac exact sequence,

0→ H1(G, k×)
res−→ H1(F, k×)⊕H1(Γ, k×)→ Aut(kΓ#kF )

→ H2(G, k×)
res−→ H2(F, k×)⊕H2(Γ, k×)→ Opext(kΓ, kF )

κ−→ H3(G, k×)
res−→ H3(F, k×)⊕H3(Γ, k×)→ . . .

This is an important tool in calculations related to the Opext group.
See [S3] for a generalization, as well as a conceptual explanation of
the Kac exact sequence in terms of related monoidal categories.

A consequence of the results of [S3] is the following description,
given in [N2], of the representation category of an abelian extension,
in terms of the map κ : Opext(kΓ, kF )→ H3(G, k×) in the Kac exact
sequence.

Let k → kΓ → H → kF → k be an abelian exact sequence
associated to an exact factorization G = FΓ. Let ω ∈ H3(G, k×) be
the 3-cocycle corresponding to H via the map κ.

Let us denote by C(G,ω, F ) the category of kF -bimodules in the
tensor category C(G,ω) of G-graded vector spaces with associativity
given by ω (this is a special case of a group-theoretical fusion category,
discussed in Subsection 4.4).

Theorem 3.9. There is an equivalence of fusion categories RepH '
C(G,ω, F ).

Also, there is an equivalence of fusion categories RepD(H) '
RepDω(G). In other words, the Drinfeld double D(H) is twist equiv-
alent to the twisted quantum double Dω(G).

Here, the twisted quantum double Dω(G), ω ∈ H3(G, k×), is the
quasi-Hopf algebra introduced by Dijkgraaf, Pasquier and Roche [DPR].
For the case of split extensions, that is when (τ, σ) = 1 and hence
ω = 1, this result was obtained previously in [BGM].

4. Extensions of fusion categories by finite groups

In this section we review some important recent results from [GNi,
DGNO, ENO2]. These concern certain classes of extensions of a
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fusion category by finite groups. We also discuss some connections
with the results of Section 3.

4.1. G-extensions. Let G be a finite group. A G-grading of a fusion
category C is a decomposition of C as a direct sum of full abelian sub-
categories C = ⊕g∈GCg, such that C∗g = Cg−1 and the tensor product
⊗ : C × C → C maps Cg × Ch to Cgh. The neutral component Ce is
thus a full fusion subcategory of C.

The grading is called faithful if Cg 6= 0, for all g ∈ G. In this case,
C is called a G-extension of Ce [ENO2].

Proposition 4.1. Let C = RepH be the representation category of a
semisimple Hopf algebra. Then a faithful G-grading on C corresponds
to a central exact sequence of Hopf algebras k → kG → H → H → k,
such that RepH = Ce.

Dually, a faithful G-grading on C = CorepH corresponds to a
cocentral exact sequence of Hopf algebras k → K → H → kG → k,
such that CorepK = Ce.

Here, the sequence k → K → H → kG → k is called cocentral if
the dual sequence is central (see Subsection 4.3 below).

Proof. See [GNi, Proof of Theorem 3.8] for the statement on RepH.
The dual statement follows from this, since H fits into a cocentral
extension k → K → H → kG → k if and only if the dual Hopf
algebra H∗ fits into a central extension k → kG → H∗ → K∗ → k,
if and only if the category RepH∗ = CorepH is a G-extension of
RepK∗ = CorepK. �

Let C be a fusion category and let Cad be the adjoint subcategory
of C. That is, Cad is the full fusion subcategory of C generated by the
subobjects of X ⊗ X∗, where X runs through the simple objects of
C.

It is shown in [GNi] that there is a canonical faithful grading on C:
C = ⊕g∈U(C)Cg, called the universal grading, such that Ce = Cad. The
group U(C) is called the universal grading group of C.
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In the case where C = RepH, for a semisimple Hopf algebra H,
K = kU(C) is the maximal central Hopf subalgebra of H and Cad =
RepH/HK+.

4.2. G-equivariantization. Related to the notion of G-extension,
is that of an equivariantization of a fusion category under a group
action. This appears in different places, like [AG, FW, Nk2, T2,
ENO2]. A characterization of this type of extensions, as well as a
generalization using Hopf monads, was given in [BrN].

Let G be a finite group and let C be a tensor category. The group
G is regarded as a monoidal category, denoted by G, whose objects
are the elements of G, arrows are identities and tensor product is
the multiplication in G. Similarly, let Aut⊗C denote the monoidal
category whose objects are tensor autoequivalences of C, morphisms
are isomorphisms of tensor functors and tensor product is given by
composition of functors.

An action of G on C is a monoidal functor

(4.1) T : G→ Aut⊗C, with fVg,h : Tg(V )⊗ Th(V )
'→ Tgh(V ).

Given an action of G on C, the G-equivariantization of C, denoted
CG, is the category of G-equivariant objects and G-equivariant mor-
phisms, defined as follows. A G-equivariant object in C is a pair
(V, (uVg )g∈G), where V is an object of C and uVg : Tg(V )→ V , g ∈ G,
are isomorphisms such that, for all g, h ∈ G,

(4.2) uVg Tg(u
V
h ) = uVghf

V
g,h.

A G-equivariant morphism φ : (U, uUg ) → (V, uVg ) is a morphism

φ : U → V in C such that φuUg = uVg φ, for all g ∈ G.

This is a tensor category with tensor product defined as (U, uUg )⊗
(V, uVg ) = (U ⊗ V, (uUg ⊗ uVg )jg|U,V ), where jg|U,V : Tg(U ⊗ V ) →
Tg(U) ⊗ Tg(V ) are the isomorphisms giving the monoidal structure
on Tg.

The category CG is Morita equivalent, in the sense of Müger, to a
certain G-extension C o G of C with respect to the indecomposable
module category C [Nk2].
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In the case of the representation category of a semisimple Hopf
algebra K, there is a duality between G-graded fusion categories with
trivial component RepK and G-equivariantizations of RepK.

Suppose H fits into a cocentral extension k → K → H → kG→ k.
Then RepH ' (RepK)G; see Subsection 4.3 below. On the other
hand, CorepH is a G-extension of CorepK, by Proposition 4.1.

4.3. G-actions on RepH and cocentral extensions. An exact
sequence of finite dimensional Hopf algebras

k → H → H̃
π→ kG→ k

is called cocentral if π(h1)⊗ h2 = π(h2)⊗ h1, for all h ∈ H̃ (equiva-
lently, the dual inclusion π∗ : (kG)∗ → H̃∗ is central).

In [N7, Proposition 3.5] we showed that every such cocentral ex-
act sequence gave rise to a G-action on RepH such that Rep H̃ '
(RepH)G as tensor categories. In this subsection we shall show that
the converse is also true, up to twisting deformations. This gives a
characterization of cocentral extensions in terms of equivariantiza-
tions.

Let G be a finite group and let H be a semisimple Hopf algebra
(although the semisimplicity of H is not crucial in our arguments).
Consider an action of G on RepH by tensor autoequivalences T :
G→ Aut⊗RepH.

For each g ∈ G, consider the tensor functor (Tg, jg) : RepH →
RepH. By [S] there exist a twist J(g) ∈ H ⊗H and a Hopf algebra
isomorphism φg : H → HJ(g) such that (Tg, jg) is isomorphic as a
tensor functor to (φ∗g, J(g)−1), where φ∗g is the direct image functor

and, by abuse of notation, J(g)−1 : φ∗g(U ⊗ V ) → φ∗g(U) ⊗ φ∗g(V )

is the isomorphism given by the action of J(g)−1. In particular,
φg are algebra automorphisms of H, for all g ∈ G, and the map
J : G → H ⊗ H is invertible. Let us denote g.a = φg(a), g ∈ G,
a ∈ H.
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In particular, the following hold, for all g ∈ G, a, b ∈ H:

g.(ab) = (g.a)(g.b), g.1 = 1,(4.3)

∆(g.a) = J(g)(g.a1 ⊗ g.a2)J(g)−1.(4.4)

For each g ∈ G, let λ(g) : (Tg, jg) → (φ∗g, J(g)−1) be an isomor-
phism of tensor functors. Then we have natural isomorphisms of
tensor functors f ′g,h : φ∗g ◦ φ∗h → φ∗gh, for all g, h ∈ G, defined for an
H-module X as

(f ′g,h)X = λ(gh)X(fg,h)XTg(λ(h)−1
X )λ(g)−1

φ∗h(X).

The isomorphisms f ′g,h determine an invertible map σ : G×G → H

such that σ(g, h)−1|X = f ′g,h|X , for all g, h ∈ G, and for all H-module
X.

The data φ, σ, J satisfy the following conditions:

(g.σ(h, t))σ(g, ht) = σ(gh, t)σ(g, h), σ(1, g) = σ(g, 1) = 1,(4.5)

g.(h.a) = σ(g, h)(gh.a)σ(g, h)−1,(4.6)

∆(σ(g, h))J(gh) = J(g)(g.J(h)) (σ(g, h)⊗ σ(g, h)),(4.7)

for all g, h, t ∈ G, a, b ∈ H. Indeed, (4.5) and (4.6) are equivalent to
σ(g, h) being isomorphisms of k-linear functors, and (4.7) is equiva-
lent to σ(g, h) being morphisms of tensor functors.

Conditions (4.3)–(4.7), together with the twist conditions for J(g),
imply that the vector space H ′ = HJ#σkG is a Hopf algebra (the
bicrossed product associated to the weak σ-action φ : kG⊗H → H,
2-cocycle σ : kG ⊗ kG → H, and dual cocycle J : kG → H ⊗ H)
with multiplication and comultiplication given by

(a#g)(b#h) = a(g.b)σ(g, h)#gh,(4.8)

∆(a#g) = ∆(a)J(g)(g ⊗ g),(4.9)

for all a, b ∈ H, g, h ∈ G. Moreover, the obvious maps give a cocen-
tral exact sequence of Hopf algebras k → H → H ′

π→ kG→ k.

Proposition 4.2. Let G be a finite group and let H̃ be a semisimple
Hopf algebra. Then the following are equivalent:
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(i) There exists a semisimple Hopf algebra H and an action of
G on RepH by tensor autoequivalences, such that Rep H̃ '
(RepH)G.

(ii) H̃ is twist equivalent to a Hopf algebra H ′ that fits into a
cocentral exact sequence k → H → H ′ → kG→ k.

Proof. The implication (ii) ⇒ (i) is [N7, Proposition 3.5]. We shall
show that (i) ⇒ (ii). The proof is based on the relation between
G-actions and Hopf monads, as studied in [BrN], see Subsection 5.1.
Keep the notation above. Let TG be the Hopf monad on RepH cor-
responding to the given action of G. Consider the bicrossed product
Hopf algebra H ′ = HJ#σkG as above. The weak action of G on
H given by g.a = φg(a) together with σ and J , induce an action of
G on RepH by tensor autoequivalences such that the corresponding
equivariantization is equivalent to Rep H̃ [N7, Proposition 3.5]. This
action determines in turn a Hopf monad T ′G on RepH.

By definition of φ and σ, there exists an isomorphism of Hopf
monads (that is, a morphism of monads which is monoidal) λ =
⊕gλ(g) : TG → T ′G, where λ(g) : (Tg, jg) → (φ∗g, J(g)−1) are the
given isomorphisms of tensor functors. Indeed, by definition of the
isomorphisms f ′g,h, λ is a morphism of monads, and it is comonoidal
because λ(g) is an isomorphism of tensor functors, for all g ∈ G.

Hence, (RepH)TG ' (RepH)T
′
G as tensor categories [BV]. The

proposition follows from the fact that Rep H̃ ' (RepH)TG , while
(RepH)T

′
G ' RepH ′, by [N7]. �

4.4. Weakly group-theoretical fusion categories. The concepts
of G-extension and G-equivariantization discussed previously lead to
the notions of nilpotent and solvable fusion categories.

Definition 4.3. [ENO2, GNi]. A fusion category C is called (cycli-
cally) nilpotent if there is a sequence of fusion categories

C0 = Veck, C1, . . . , Cn = C,
such that Ci is a Gi-extension of Ci−1, for some finite (cyclic) groups
G1, . . . , Gn.
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This definition extends the definition of nilpotency of a finite group,
that is, the group G is nilpotent if and only if RepG is a nilpotent
fusion category. We have in addition:

Proposition 4.4. Let C = RepH, where H is a semisimple Hopf
algebra. Then C is nilpotent if and only if there is a sequence of
(normal) quotient Hopf algebras

H(n) = H → H(n−1) → · · · → H(0) = k,

such that Hi = HcoH(i−1) ' kGi is a central Hopf subalgebra of H(i),
for all i = 1, . . . , n.

Dually, the category CorepH is nilpotent if and only if there is a
sequence of (normal) Hopf subalgebras

k = H0 ⊆ H1 · · · ⊆ Hn = H,

such that Hi = Hi/HiH
+
i−1 ' kGi is a cocentral Hopf algebra quotient

of Hi, for all i = 1, . . . , n.

Proof. Suppose C = RepH is nilpotent. Let C0 = Veck, C1, . . . , Cn =
C, be a sequence of fusion categories such that Ci is a Gi-extension
of Ci−1, where G1, . . . , Gn are finite groups. In particular, Cn−1 is iso-
morphic to a full fusion subcategory of Cn = RepH (the trivial com-
ponent with respect to the Gn-grading), hence Cn−1 ' RepH(n−1),
for some quotient Hopf algebra H = H(n) → H(n−1). Furthermore,
by Proposition 4.1 there is a central exact sequence k → kGn →
H(n) → H(n−1) → k. The claim follows by induction on n. Note
that each of the factors of the resulting series is one the Hopf sub-

algebras H
coH(i−1)

(i) = kGi , which is a central Hopf subalgebra of H(i),
i = 1, . . . , n.

For the statement on the category of corepresentations, apply the
above to RepH∗ = CorepH. �
Corollary 4.5. Let H be a semisimple Hopf algebra. Then we have:

(i) RepH is nilpotent if and only if H is upper semisolvable with
central factors kGi.

(ii) CorepH is nilpotent if and only if H is lower semisolvable
with cocentral factors kGi.
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Let us say that a semisimple Hopf algebra H is nilpotent if the
category RepH is nilpotent.

In view of the results of Masuoka [M2], every semisimple Hopf alge-
bra of dimension pn, p a prime number is nilpotent. More generally,
every fusion category of dimension pn is nilpotent [GNi, Example
4.5].

Remark 4.6. Nilpotency of a semisimple Hopf algebra is not a self-
dual notion. Indeed, if G is a finite group, then the Hopf algebra kG

is always nilpotent. However, the group algebra kG is nilpotent if
and only if G is a nilpotent group.

Example 4.7. The universal grading group of a group-theoretical
category C = C(G,ω, S, α) is computed in [GNa]. It is shown in
[GNa, Corollary 4.3] that C is a nilpotent fusion category, if and only
if the normal closure of S in G is nilpotent.

Let G be a finite group and let A = A(S, α) be the kG-Galois object
corresponding to a subgroup S ⊆ G and a nondegenerate 2-cocycle
α ∈ H2(S, k×), as described in Example 2.3. Associated to A there
is a semisimple Hopf algebra H which is a cocycle twisting of kG,
and such that CorepH ' Corep kG = RepG. We have in addition
RepH ' C(G,S, α), by [O1, Theorem 4.2].

Then H is a nilpotent Hopf algebra if and only C = C(G,S, α) is a
nilpotent fusion category, if and only if the normal closure of S in G
is nilpotent.

Note that H∗ = (kG)J is a twisting of kG, so that H∗ is nilpotent
if and only if G is nilpotent. In particular, in this case, H is nilpotent
if H∗ is, but it may happen that H is nilpotent and H∗ is not.

In the paper [ENO2], the authors define a fusion category to be
simple if it contains no proper fusion subcategories.

When C = RepH for a semisimple Hopf algebra H, C is simple if
and only if H has no Hopf algebra quotients at all (normal or not).
In particular, if G is a finite group RepG is simple if and only if G
is a simple group, but the category C(G) of G-graded vector spaces
is simple if and only if G is a cyclic group of prime order (that is, G



144 SONIA NATALE

has no proper subgroups). A different notion of simplicity of a tensor
category, discussed later on in Section 5, is given in [BrN].

The following corollary can be seen as a consequence of the results
of [N4].

Corollary 4.8. Let H be a semisimple Hopf algebra of dimension
< 60. If RepH is simple in the sense of [ENO2], then H ' kZp, p
prime.

More generally, by [ENO2, 9.5] the only simple fusion categories
with integer Frobenius-Perron dimension < 60 are the categories
C(G,ω), where G is a cyclic group of prime order and ω ∈ H3(G, k×).
Indeed, it follows from the results loc. cit. that a fusion category
of dimension < 60 is always solvable (dimension paqb) or group-
theoretical (dimension pqr).

On the other hand, a simple fusion category of (Frobenius-Perron)
dimension 60 is necessarily isomorphic to the representation category
RepA5 [ENO2, Theorem 9.12]. In particular, a semisimple Hopf
algebra H of dimension 60 such that RepH is simple in the sense of
[ENO2] is a twisting of the alternating group A5.

Definition 4.9. [ENO2]. A fusion category C is called weakly group-
theoretical if there exists an indecomposable algebra A in C such
that ACA is a nilpotent fusion category. In the case where ACA is a
cyclically nilpotent fusion category, then C is called solvable.

Here, ACA is the category of A-bimodules in C with tensor product
⊗A. This definition can be rephrased saying that C is Morita equiv-
alent to a nilpotent fusion category in the sense of Müger [Mg2].

Solvable fusion categories can be alternatively defined as follows
[ENO2, Proposition 4.4]: C is solvable if and only if there is a sequence
of fusion categories

C0 = Veck, C1, . . . , Cn = C,

such that Ci is obtained from Ci−1 either by a Gi-equivariantization or
as a Gi-extension, where G1, . . . , Gn are cyclic groups of prime order.
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If G is a finite group and ω ∈ H3(G, k×), we have that the cate-
gories C(G,ω) and RepG are solvable if and only if G is solvable. In
addition, the following facts are pointed out in [ENO2, Remark 4.6]:

• Let G be a non-solvable group. Then the category C(G) of G-
graded vector spaces is nilpotent, but not solvable.

• Let G be a solvable group and let J ∈ kG⊗ kG be a twist such
that H = (kG)J is simple as a Hopf algebra, as in [GN]. Then the
category RepH ' RepG is solvable, but H is not semisolvable.

• Let H be an abelian extension k → kA4 → H → kZ5 → k, cor-
responding to the exact factorization A5 = A4.Z5. Then H is semi-
solvable, but RepH is not solvable. (Indeed, the class of solvable
fusion categories is closed under Morita equivalence [ENO2, Proposi-
tion 4.5], and we have that the category CorepH is Morita equivalent
to C(A5, ω), where ω is the Kac 3-cocycle.)

It is shown in [ENO2] that a fusion category C is weakly group-
theoretical in several cases, allowing to give general classification re-
sults for fusion categories of certain specific dimensions.

We have the following analogue of Burnside’s paqb-Theorem.

Theorem 4.10. [ENO2, Theorem 1.6]. Let p, q prime numbers and
a, b nonnegative integers. Then every fusion category of Frobenius-
Perron dimension paqb is solvable.

Let G be a finite group and let ω be a 3-cocycle of G. Let C =
C(G,ω) be the category of G-graded vector spaces with associativity
isomorphism given by ω. Let also F be a subgroup of G and α a
2-cocycle on F . Suppose that the restriction of ω to F is trivial, so
that the twisted group algebra kαF is an algebra in C. Then the
category C(G,ω, F, α) of kαF -bimodules in C is a tensor category.

Definition 4.11. [ENO, 8.8]. C(G,ω, F, α) is called a group-theoretical
category. A (quasi-)Hopf algebra is called group-theoretical if its cat-
egory of representations is group-theoretical.

Thus every group-theoretical fusion category is weakly group-theoretical,
but the converse is not true. Examples of semisimple quasi-Hopf al-
gebras which are not group-theoretical arise from the construction



146 SONIA NATALE

of Tambara and Yamagami [TY] and correspond to nondegenerate
bilinear forms of elliptic type on certain finite abelian groups.

An important problem related to the classification of semisimple
Hopf algebras over k was the question raised in the paper [ENO],
whether all semisimple Hopf algebras over k are group-theoretical.

Every abelian extension is group-theoretical [N2]. Some other pos-
itive answers to this question have been obtained for certain cases:
semisimple Hopf algebras of dimension pn and pq2, integral fusion
categories of dimension pqr, where p, q, r are prime numbers, are
group-theoretical [DGNO, ENO2].

In the general case, the question was answered negatively by Nikshych
[Nk2]. In fact, a family of semisimple Hopf algebras which are not
group-theoretical is constructed in [Nk2]: a Hopf algebra H in this
family fits into an exact sequence

(4.10) k → kZ2 → H → (kG)J → k,

where G is a certain finite group and J ∈ kG ⊗ kG is an invert-
ible twist. It turns out that these examples are all semisolvable.
The smallest such example has dimension 36, and according to [N7]
this is the smallest possible dimension that a non-group-theoretical
semisimple Hopf algebra can have.

Note in addition that the results of Nikshych also imply the fol-
lowing:

Corollary 4.12. The class of group-theoretical Hopf algebras is not
closed under Hopf algebra extensions. �

Remark 4.13. In the paper [N7] we considered semisimple Hopf alge-
bras which fit into an exact sequence

(4.11) k → (kG)J → H → kZ2 → k,

where G is a finite group and J ∈ kG⊗ kG is an invertible twist.
Contrary to the situation for the extensions (4.10), those in (4.11)

are always group-theoretical, despite of the symmetry in the form
of the extensions. Moreover, a Hopf algebra H as in (4.11) is twist
equivalent to an abelian extension.
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5. Exact sequences of fusion categories

The results in this section are contained in [BrN]. Our exposition
here concentrates mainly in the context of fusion (in particular, finite)
tensor categories.

Let C, C ′′ be tensor categories. Recall that a tensor functor F :
C → C ′′ is called dominant if any object Y of C ′′ is a subobject of
F (X) for some X in C. F is called normal if for any object X of
C, there exists a subobject X0 ⊂ X such that F (X0) is the largest
trivial subobject of F (X).

Let KerF denote the full subcategory of C whose objects are those
X such that F (X) is trivial, that is, isomorphic to 1n, n ≥ 1. When
C, C ′′ are fusion categories, the functor F is normal if and only if any
simple object X of C such that HomC′′(1, F (X)) 6= 0 belongs to KerF .

Definition 5.1. [BrN, Definition 2.7]. Let C ′, C, C ′′ be tensor cate-

gories over k. A sequence of tensor functors C ′ f→ C F→ C ′′ is called an
exact sequence of tensor categories if the following conditions hold:

(i) F is dominant and normal;
(ii) f is a full embedding;

(iii) The essential image of f is KerF .

This definition leads to the related notions of normal fusion subcat-
egory and simple fusion category. A fusion subcategory C ′ ⊂ C is nor-
mal if C fits into an exact sequence of fusion categories C ′ → C → C ′′.
C is simple if it has no non-trivial normal fusion subcategory. This
notion of simplicity differs from the one introduced in [ENO2]. For
instance, when G is a finite group, then the simplicity of RepG is
equivalent to the simplicity of G and also to the simplicity of the
fusion category C(G) of G-graded vector spaces.

It follows from [BrN, Proposition 3.9] that every exact sequence of

finite dimensional (semisimple) Hopf algebras k → K
i→ H

π→ H →
k gives rise to an exact sequence of tensor (fusion) categories

(5.1) RepH
π∗→ RepH

i∗→ RepK.
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Here, the functors π∗ and i∗ correspond to restriction of representa-
tions along the Hopf algebra maps π and i, respectively.

Conversely, suppose that

(5.2) C ′ f→ C F→ C ′′

is an exact sequence of tensor categories, and C ′′ = RepK for some
finite dimensional Hopf algebra K. Denote by ω : RepK → Veck the
forgetful functor, so that K = End(ω). Then, letting H = End(ωF )
and H = End(ωFf), we have C ' RepH, C ′ ' RepH, and there is
an exact sequence of Hopf algebras

k → K
i→ H

π→ H → k,

where i : K → H and π : H → H are Hopf algebra maps induced by
f and F , respectively, in such a way that the induced exact sequence
(5.1) of tensor categories is isomorphic to (5.2). See [BrN, Remark
2.13].

In view of the above, we can state the following:

Corollary 5.2. Let H be a finite dimensional Hopf algebra and let
C = RepH. Then C fits into a nontrivial exact sequence (5.2) if and
only if H is twist equivalent to a Hopf algebra extension. �

There exist examples of semisimple Hopf algebras which are twist
equivalent to Hopf algebra extensions (actually to solvable groups),
but which are simple as Hopf algebras. See [GN].

Combining Corollary 5.2 with the main result of [N4], we get:

Corollary 5.3. Let H be a semisimple Hopf algebra of dimension
< 60. Then RepH is not simple in the sense of [BrN]. �

The result discussed in Remark 3.2 was extended to general fusion
categories in the case p = 2. The the Frobenius-Perron index of a
dominant tensor functor F : C → D between fusion categories is the
ratio FPdimC/FPdimC ′′, which is an algebraic integer [ENO].

Proposition 5.4. Let F : C → D be a dominant tensor functor
between fusion categories of Frobenius-Perron index 2. Then F is
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normal, and we have an exact sequence of fusion categories

RepZ2 → C F→ D.

5.1. Extensions and Hopf monads. Exact sequences of tensor
categories can be classified in terms of normal faithful Hopf monads.

A Hopf monad on a rigid categoryD is an algebra T in the monoidal
category End(D) of endofunctors of D, which is also a comonoidal
functor in a compatible way, and possesses left and right antipodes.
In this case the category CT of T -modules in C is a tensor category
(and, moreover, a fusion category if T is semisimple and so is C). See
[BV].

A k-linear right exact Hopf monad T on a tensor category C is
called normal if T (1) is a trivial object.

If T is a normal faithful Hopf monad on C, then there is an exact
sequence of tensor categories

CorepH → CT → C,

where H is a certain Hopf algebra induced by T .

The following is one of the main results of [BrN].

Theorem 5.5. Exact sequences of finite tensor categories C ′ f→ C F→
C ′′ are classified by k-linear normal faithful Hopf monads T on cate-
gory C ′′, in such a way that C ' CT .

Examples of exact sequences of tensor categories arise from equiv-
ariantization under group actions. If a finite group G acts on a ten-
sor category C by tensor autoequivalences, then we have an exact
sequence

RepG→ CG → C.
Indeed, the action of G on C can be seen as a Hopf monad T on
C, defined by T =

⊕
g∈G Tg. In this case we have CG = CT . Hopf

monads on C corresponding to a group action are characterized in
[BrN, Theorem 4.24].
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Consider for instance an exact sequence of finite groups 1→ G′′
ι→

G
π→ G′ → 1, and the associated exact sequence of fusion categories

RepG′ → RepG → RepG′′. The normal Hopf monad T on RepG′′

associated with this exact sequence is described as follows. The in-
duction functor IndGG′′ : RepG′′ → RepG is left adjoint to the restric-
tion functor i∗ = ResGG′′ . Let Y be a kG′′-module. As a consequence
of Mackey’s Subgroup Theorem, there is a natural isomorphism

ResGG′′ IndGG′′(Y ) ' ⊕γ∈G/G′′γY,
where γY denotes the kG′′-module conjugated to Y under the action
of an element g ∈ G representing the class γ. Then the Hopf monad
T is given, as an endofunctor of RepG′, by:

T (Y ) = ⊕γ∈G′ γY.
This comes in fact from the action by tensor autoequivalences of G′

on RepG′′ by conjugation.

5.2. Extensions and commutative central algebras. We next
discuss another characterization of exact sequences of fusion cate-
gories from [BrN], in terms of commutative central algebras. This
relies on results of [BLV].

Let C be a fusion category. A central algebra of C is a pair (A, σ),
where A is an algebra in C endowed with natural isomorphisms (half-
braiding) σX : A⊗X → X ⊗ A, X ∈ C, such that the pair (A, σ) is
an algebra in the center Z(C) of C.

A central algebra (A, σ) is called commutative if mσA = m, where
m : A⊗ A→ A denotes the multiplication in A.

Let (A, σ) be a commutative central algebra of C. Assume A is
semisimple. The the category mod CA = mod C(A, σ) of right A-
modules in C is a fusion category with tensor product ⊗A and unit
object 1 [BrN, Proposition 5.5].

There is a free module functor FA : C → mod CA, X 7→ X ⊗ A,
which is a tensor functor. The central algebra (A, σ) is called the
induced central algebra of F = FA.
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The algebra A is called self-trivializing if FA(A) is a trivial object of
mod CA. The following proposition is contained in [BrN, Proposition
5.7].

Proposition 5.6. Suppose F : C → D is an exact tensor functor
between fusion categories. Let (A, σ) be its induced central algebra.
Then F is normal if and only if the algebra A is self-trivializing. In
that case, KerF = 〈A〉 ⊂ C and we have an exact sequence of tensor
categories 〈A〉 → C → D.

Here, 〈A〉 denotes the smallest abelian subcategory of C containing
A and stable by direct sums, subobjects and quotients.

The following characterization is contained in [BrN, Corollary 5.8].

Theorem 5.7. An exact sequence of fusion categories C ′ → C F→ C ′′
is equivalent to the exact sequence 〈A〉 → C FA→ mod C(A, σ), where
(A, σ) denotes the induced central algebra of F .

As a consequence, further necessary and sufficient conditions for
an exact sequence to come from an equivariantization were given in
terms of the induced central algebra A.

Let H be a semisimple Hopf algebra over k. Consider the forgetful
functor U : CorepH → Veck. The induced central algebra (A, σ) is
a commutative algebra in Z(RepH), that is, a commutative algebra
in RepD(H), where D(H) is the Drinfeld double of H.

As an algebra in CorepH, A = H with right coaction given by the
comultiplication. The half-braiding σV : A ⊗ V → V ⊗ A is defined
by

σV (h⊗ v) = v(0) ⊗ S(v(1))h v(2).

for any right H-comodule V . We have mod CorepH(A, σ) ' Veck as
tensor categories.

Let f : H → H ′ be a surjective Hopf algebra map. Let F = f∗ :
CorepH → CorepH ′ be the dominant tensor functor defined by f .
The functor R = −�H′H is a right adjoint of F . The induced central
algebra (B, σ′) of F is a commutative algebra in Z(CorepH).
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The algebra B can be described as B = R(1) = k�H′H = HcoH′ ⊂
H, where H is seen as a commutative central algebra of CorepH as
before.

We get thus the tensor equivalence (see [Sc1, Theorem II]):

mod CorepH(B, σ′) ' CorepH ′.

Note that the k-linear category mod CorepH(B, σ′) is in this case the
category of (B,H)-Hopf modules.

By Proposition 5.6, the functor F is normal (and thus we have an
exact sequence of fusion categories) if and only if FB(B) = B ⊗B '
Bn, n = dimB, as (B,H)-Hopf modules.

5.3. Some examples of RepG-extensions. Examples of RepG-
extensions of fusion categories which do not come from equivarianti-
zations were given in [BrN, Example 4.26]. We discuss some further
examples in this subsection.

Lemma 5.8. Suppose k → kΓ → H → kG → k is a cocentral exact
sequence of Hopf algebras. If Γ is cyclic, then H is cocommutative.

Proof. The coalgebra structure of H is that of a crossed product H '
kΓτ#kG, determined by a certain weak coaction ρ : kG → kG ⊗ kΓ

coming, in this case, from an action B: Γ×G→ G, and an invertible
2-cocycle τ : Γ× Γ→ kG, in the form:

(5.3) ∆(eh#g) =
∑

st=h

τ(s, t)(g) es#(t B g)⊗ et#g,

for all h ∈ Γ, g ∈ G. Here, eh ∈ kΓ is the basic idempotent such
that eh(s) = δh,s, s ∈ Γ. By [N7, Lemma 3.3] ρ, hence also B,
are trivial. Also τ is trivial, because Γ is cyclic. Therefore H is
cocommutative. �

Let p be a prime number and let K be one of the nontrivial self-dual
semisimple Hopf algebras of dimension p3 as in [M].

The Hopf algebra K fits into an exact sequence of Hopf algebras
k → kZp → K → k(Zp×Zp)→ k, that gives rise to an exact sequence
of fusion categories

(5.4) Rep(Zp × Zp)→ RepK → RepZp.
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We claim that this exact sequence does not come from an equivari-
antization. Indeed, if p is odd, then by [M1] K admits no quasi-
triangular structure, and thus it is not twist equivalent to any co-
commutative Hopf algebra. If p = 2, then K is isomorphic to the
Kac-Paljutkin Hopf algebra H8 of dimension 8, which is not twist
equivalent to a cocommutative Hopf algebra neither, by [TY]. It fol-
lows from Proposition 4.2 and Lemma 5.8 that RepK is not equiva-
lent to an equivariantization (RepZp)Zp×Zp .

5.4. Exact sequences in the braided context. A special case of
an extension of fusion categories is provided by the modularization
process of a premodular (braided) category C [Br, Mg].

Let C be a premodular category with braiding cX,Y : X ⊗ Y →
Y ⊗ X. Consider the category T ⊆ C of transparent objects of C.
That is, objects of T are those X such that cY,XcX,Y = idX⊗Y , for all
objects Y of C.

Assume C is modularizable, and let F : C → C̃ be its modulariza-
tion (see [Br]). The functor F is dominant and normal, and we have
KerF = T , by [Br, Propositions 2.3 and 3.2]. Therefore, we get an
exact sequence of fusion categories:

T → C F→ C̃.
Moreover, this exact sequence comes from an equivariantization.

In fact, T is a tannakian category, so that T ' RepG as symmetric
tensor categories, where G is a finite group that acts on C̃ and such
that C = C̃G.

As an application of the notion of exact sequence of fusion cate-
gories, the following classification result was proved in [BrN].

Theorem 5.9. Let C be a braided fusion category over k such that
FPdim C is odd and square-free. Then C is equivalent to Rep Γ as a
fusion category, for some finite group Γ.

The proof relies on the concept of modularization and on the fact
that a quasitriangular Hopf algebra whose dimension is odd and
square-free is in fact a group algebra [N6].
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In [N6], a construction of certain canonical quotients of a finite
dimensional quasitriangular Hopf algebra, related to modularization,
was given. This construction is based on properties of the ’transmu-
tation’ studied by S. Majid and on a correspondence between Hopf
algebra quotients and coideal subalgebras, due to Takeuchi. The first
notion concerns a natural map ΦR : H∗ → H (which is not a Hopf
algebra map) associated by Drinfeld to an R-matrix R ∈ H ⊗H.

Two extreme classes of quasitriangular Hopf algebras appear in
relation with the map ΦR: the class of triangular Hopf algebras,
which are those such that ΦR is trivial, and the class of factorizable
Hopf algebras, which are those such that ΦR is an isomorphism.

Finite dimensional triangular Hopf algebras were classified in a se-
ries of papers by Andruskiewitsch, Etingof and Gelaki, based on re-
sults of Deligne on symmetric categories. On the other hand, several
important results have been established for factorizable Hopf alge-
bras. The last ones are related to the so called modular categories,
which give rise to invariants of 3-manifolds. The Drinfeld double of a
finite dimensional Hopf algebra is always a factorizable Hopf algebra.

The main result of [N6] says that, in a certain sense, every qua-
sitriangular Hopf algebra of finite dimension is a kind of extension
of the image of the transmutation map ΦR by a canonical triangu-
lar quotient. In particular, it was shown that every quasitriangular
Hopf algebra whose dimension is odd and square free is necessarily
semisimple and cocommutative. This gave a partial answer to Ques-
tion 6.5 in [A] (still open in the general case, even in the situation
when the dimension is the product of two distinct primes).

6. Some invariants of a fusion category

In this section, we discuss briefly some known results on certain
specific invariants of a fusion category C.

Regarding representations of semisimple (quasi-)Hopf algebras, since
H and K have isomorphic representation categories if and only if H
and K are twist equivalent, invariants of their fusion categories of
representations are therefore gauge invariants, that is, invariants un-
der twisting deformations.
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6.1. Grothendieck ring. The tensor product of C endows its Grothendieck
group G(C) with a ring structure; this is a finitely generated ring with
an involution induced by duality in C. The product in G(C) gives
rise to a notion of dimension, called the Frobenius-Perron dimension,
of objects in C. For the category of modules or comodules over a
(quasi-)Hopf algebra, the Frobenius-Perron dimension coincides with
the dimension of the underlying vector space.

One of the most longstanding open problems about semisimple
Hopf algebras is the following:

Conjecture 6.1. (Kaplansky, 1975.) Let H be a semisimple Hopf
algebra and let V be a simple H-module. Then dimV divides dimH.

A semisimple Hopf algebra satisfying this conjecture is called of
Frobenius type. This notion can be extended to fusion categories
using Frobenius-Perron dimensions; see [ENO2, Definition 1.4].

The conjecture is known to be true in either of the following cases:

• H is quasitriangular. This was proved by Etingof and Gelaki,
using the modular structure of the representation category of the
Drinfeld double of H.
• H is (upper or lower) semisolvable [MW].
• dimV = 2. This was proved by Nichols and Richmond as a con-

sequence of structural result [NR, Theorem 11] on simple comodules
of dimension 2.

More generally, it is shown in [KSZ] that a semisimple Hopf al-
gebra that has a nontrivial self-dual simple module must be even
dimensional, generalizing a result of Burnside for finite groups. As
a consequence, it turns out that a semisimple Hopf algebra having a
simple module of even dimension must have even dimension.
• dimV = 3 and H is odd dimensional [Bu, KSZ2]. The proof

in [Bu] uses a result on the Grothendieck ring, similar to the one in
[NR].
• H (and more generally, a fusion category C) is weakly group-

theoretical [ENO2].

For the category C(G,ω, F, α), the ring G(C) is known in some
cases: when ω = 1, it is determined in [KMY]; in [Nk] it is shown
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to be a semidirect product for certain particular classes of abelian
extensions; Y.-C. Zhu establishes in the paper [Z2] an interesting
relation of the Grothendieck ring of C with the Hecke algebra of the
pair G,F (in the case ω = 1, α = 1).

The Grothendieck ring of certain bimodule categories over a mod-
ular tensor category is described in [FRS].

An important result concerning the structure of the Grothendieck
ring of a semisimple Hopf algebra is the following Class Equation,
due to G. I. Kac and Y.-C. Zhu. Here, R(H) denotes the subalgebra
G(RepH) ⊗Z k ⊆ H∗. This is a semisimple algebra that coincides
with the character algebra of H, that is, the subalgebra generated by
the characters of (irreducible) representations: if V is an H-module
affording the representation ρ : H → End(V ), the corresponding
character is the element χ = χV ∈ H∗, where χ(h) = Tr(ρ(h)).
Every representation of H is determined by its character, up to iso-
morphisms.

Theorem 6.2. [Ka2, Z]. Let e ∈ R(H) be a primitive idempotent.
Then dim eH∗ divides dimH.

A generalization of this result to spherical fusion categories appears
in [ENO, Proposition 5.7].

The degree of the character χ is defined as degχ = χ(1) = dimV ,
if χ = χV . Let Irr(H) denote the set of irreducible characters of H.
Following [I, Chapter 12], let us consider the set

cd(H) = {degχ|χ ∈ Irr(H)}.
For a finite group, the knowledge of the set cd(G) = cd(kG) gives

in some cases substantial information about the structure of G. For
instance, if cd(G) = {1,m}, m ≥ 1, then either G has an abelian
normal subgroup of index m or m is a power of a prime p and G is
the direct product of a p-group and an abelian group [I, Theorem
12.5].

For semisimple Hopf algebras, a result in this direction is the fol-
lowing one:
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Theorem 6.3. [BN, Corollary 6.6]. Suppose that cd(H∗) = {1, 2}.
Then H is lower semisolvable.

The proof of this theorem relies on a refinement of the above men-
tioned result of Nichols and Richmond given in [BN].

6.2. Module categories. A generalized fiber functor is an exact
faithful tensor functor C → R − Bimod, where R is a separable al-
gebra. This functors play the rôle of ’representations’ of C. They
correspond to so called module categories over C, that is, semisim-
ple k-linear categories M over k endowed with an exact functor
C × M → M, (X,M) 7→ X ⊗ M , satisfying appropriate associa-
tivity and unit axioms. See [O1] and references therein. In this way,
module categories can be seen as an analogue of the notion of modules
over rings.

When C is the representation category of a semisimple Hopf algebra
H, this functors are also in correspondence with H-Galois extensions
R ⊆ A [S2, Theorem 2.5.3]. Some references for the theory of Hopf
Galois extensions of a Hopf algebra and their most important features
are [B, Mo2, S2, SS].

Indecomposable module categories over RepG, where G is a finite
group, are classified in [O1, Theorem 3.2]. They are in one-to-one
correspondence with conjugacy classes of pairs (Γ, α), where Γ ⊆ G
is a subgroup and α ∈ H2(Γ, k×). This contains the classification of
Galois objects of Movshev and Davydov, described in Example 2.3.

For a group-theoretical category C(G,ω, F, α), module categories
have been classified by Ostrik: according to [O2, Theorem 3.1], they
are in one-to-one correspondence with classes of pairs (Γ, β) where Γ
is a subgroup of G such that ω|Γ is trivial, and β ∈ H2(Γ, k×).

The corresponding module category is the category of (kαF, kβΓ)-
bimodules in C(G,ω). This module category is of rank one (that is,
it corresponds to a fiber functor on C, and thus to a semisimple Hopf
algebra H with RepH ' C), if and only if FΓ = G and the cocycle
αβ−1 is non-degenerate on F ∩ Γ.

Module categories over an equivariantized category CG are classi-
fied in [ENO2, Proposition 5.4], generalizing results of [Nk2]. More
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recently, the classification has also been obtained in [MS] for any
G-extension of a fusion category.

6.3. Frobenius-Schur indicators. These invariants are defined for
a semisimple pivotal tensor category (that is, categories which admit
a tensor isomorphism between the identity functor and the functor
V → V ∗∗) in [FGSV]. They were studied by Mason and Ng [MN]
in the context of semisimple quasi-Hopf algebras. They generalize
the indicators for finite groups as well as those for semisimple Hopf
algebras introduced by Linchenko and Montgomery [LM]. The indi-
cators satisfy a Frobenius-Schur theorem, and they are related with
the trace of the antipode in the case of a semisimple Hopf algebra.

Higher Frobenius-Schur indicators were studied by Kashina, Som-
merhausser and Zhu [KSZ2] in the context of semisimple Hopf alge-
bras, and later generalized to quasi-Hopf algebras by Ng and Schauen-
burg [NS1, NS2] (more generally, to pivotal categories). In the paper
[NS3] a new invariant is defined, that turns out to generalize the expo-
nent of finite groups and semisimple Hopf algebras (discussed below),
that the authors call Frobenius-Schur (FS for short) exponent.

The computation of the second Frobenius-Schur indicators for group-
theoretical quasi-Hopf algebras, in group-theoretical terms, was done
in [N3]. This result generalized previous computations in [KMM] for
abelian extensions.

In the paper [GM] the second indicators are computed for simple
modules over the Drinfeld double (which, as a Hopf algebra, is an
abelian extension) of a finite real reflection group, showing that they
always equal +1, generalizing a classical result for the group itself.

Formulas for the higher indicators of simple objects of certain
abelian extensions appear in [KSZ2]. For Tambara-Yamagami cat-
egories [TY], they were given in the recent paper [Sh], where some
arithmetical properties were established.

6.4. Exponent. The exponent of a fusion category was introduced
by [E], generalizing the notion of exponent of a semisimple Hopf
algebra studied in [K, EG3]. By the results of [E] the exponent
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of C coincides with the exponent of its Drinfeld’s center Z(C), and
moreover, it is an invariant under Morita equivalence.

For a semisimple Hopf algebra H over k, the exponent expH of H
is, by definition, the smallest positive integer n such that h(1) . . . h(n) =
ε(h)1, for all h ∈ H.

The following conjecture is still an open problem:

Conjecture 6.4. [K]. Let H be a semisimple Hopf algebra over k.
Then expH divides dimH.

It was shown by Etingof and Gelaki that expH divides (dimH)3

[EG3]. On the other hand, the conjecture was proved to be true for
certain Hopf algebra extensions in [K].

In the paper [NS3] the notion of FS-exponent of a semisimple quasi-
Hopf algebra was introduced. The FS-exponent does not coincide, in
general, with the exponent defined by Etingof. Both exponents differ
at most by a 2 factor (namely, FS- exp C = exp C or 2 exp C), and
they do coincide, for instance, when dimH is odd.

Ng and Schauenburg proved also the following version of the Cauchy’s
Theorem for semisimple quasi-Hopf algebras; in turn this result was
obtained previously in [KSZ2] for semisimple Hopf algebras, allowing
to give an affirmative answer to another conjecture formulated by
Etingof and Gelaki [EG3]:

Theorem 6.5. [NS3, Theorem 8.4]. The exponent, the FS-exponent
and the dimension of a quasi-Hopf algebra H have the same prime
factors.

A description of the exponent of group-theoretical category was
given in [N5] in terms of group cohomology. It turns out that the ex-
ponent of C(G,ω, F, α) divides the modified exponent of G, defined
by expω G := mcm(e(ωg)|g| : g ∈ G); where e(ωg) denotes the order
of the cohomology class of the restriction of ω to the subgroup gen-
erated by g ∈ G. Moreover, exp C = expω G in certain cases. As a
consequence, the exponent of a group-theoretical quasi-Hopf algebra
divides the square of its dimension and, in addition, this bound is
optimal.
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In the paper [LMS] the authors studied the properties of the so
called Hopf order of an element h ∈ H: this is the least n such
that h(1) . . . h(n) = ε(h)1. Hopf orders are investigated for some split
abelian extensions, including Drinfeld doubles of certain groups (in
particular, a semisimple Hopf algebra H may have elements of prime
Hopf order p, even when p does not divide dimH). The spaces of ele-
ments with trivial n-th Hopf powers are discussed, showing, however,
that they do not give a twist invariant of H.

7. Some further questions

As already explained, there exist group-theoretical Hopf algebras
(specifically, twistings of group algebras), which are not semisolvable.
We believe it would be interesting to describe those semisimple Hopf
algebras that can be obtained as extensions from (weakly) group-
theoretical Hopf algebras. In particular, we do not know the answer
to the following question:

Question 7.1. Let k → A → H → B → k be an extension of Hopf
algebras. Suppose A and B are weakly group-theoretical. Is it true
that H is weakly group-theoretical?

It is known [N2] that if the extension is abelian then the answer
is affirmative. In any case, if the answer were affirmative in general,
this would imply that the class of semisimple Hopf algebras which
are semisolvable would be contained in the class of weakly group-
theoretical Hopf algebras.

In relation with the classification of semisimple Hopf algebras from
its character degrees, we do not know the answers to the following
questions:

Question 7.2. Let p be a prime number. LetH be a semisimple Hopf
algebra such that cd(H) = {1, p}. Is it true that H is semisolvable?

It is known [I, Theorem (12.11)] that a finite group G whose irre-
ducible character degrees are either 1 or p must be an extension of
an abelian group by Zp or else |G : Z(G)| = p3. So these groups are
solvable.
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Also, the result in [IK, Theorem IX.8 (iii)] implies that answer to
Question 7.2 is ’yes’ for Kac algebras H when |G(H∗)| = p.

Question 7.2 also makes sense in the context of fusion categories,
considering solvability instead of semisolvability.

In the context of the exact sequences of tensor categories intro-
duced in [BrN], we think it would be interesting to extend the semi-
solvability results in low dimension of [N4] to fusion categories. We
know that the notion of simplicity of fusion categories considered in
[BrN] extends that of finite groups. In particular, the category of
representations of the alternating group A5 is a simple fusion cate-
gory.

Question 7.3. Does there exist a fusion category of dimension < 60
which is simple in the sense of [BrN]?

As pointed out in Subsection 4.4, the answer is ’no’ if one consid-
ers instead the notion of simplicity studied in [ENO2]. In view of the
main result of [N4] the answer is also ’no’ if one considers fusion cate-
gories that admit a fiber functor, that is, categories of representations
of semisimple Hopf algebras.

In the same spirit, the following questions are natural:

Question 7.4. Does there exist a fusion category of dimension paqb,
where p and q are distinct prime numbers, which is simple in the
sense of [BrN]?

Question 7.5. Does there exist a fusion category of prime power
dimension pn, n > 1, which is simple in the sense of [BrN]?

It is clear that fusion categories of prime dimension are simple
(according to both definitions of simplicity). On the other hand,
fusion categories of dimensions paqb are always solvable. In particular,
they are not simple in the sense of [ENO2] if a+ b > 1.

In relation with the invariants of fusion categories described in
Section 6, we believe it would be of interest to compute them for the
category CT , where T is a semisimple faithful (normal) Hopf monad
on a fusion category C. In particular, an answer to the following
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question would give a generalization of the description of module
categories for equivariantized categories given in [ENO2]:

Question 7.6. What are module categories for the category CT ?

Concerning extensions of fusion categories, as explained in Section
5, we have the following natural question:

Question 7.7. Let C ′ → C → C ′′ be an exact sequence of fusion
categories, and suppose that C ′ and C ′′ are of Frobenius type. Is it
true that C is of Frobenius type?
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FaMAF, 1995.

[Sh] K. Shimizu, Frobenius-Schur indicators in Tambara-Yamagami cate-
gories, preprint arXiv:1005.4500.

[St] D. Stefan, Hopf algebras of low dimension, J. Algebra 111, 343-361
(1999).

[T2] D. Tambara, Invariants and semi-direct products for finite group actions
on tensor categories, J. Math. Soc. Japan 53, 429–456 (2001).

[TY] D. Tambara and S. Yamagami, Tensor categories with fusion rules of
self-duality for finite abelian groups, J. Algebra 209, 692–707 (1998).

[V] L. Vainerman, 2-cocycles and twisting of Kac algebras, Commun. Math.
Phys. 191, 697–721 (1998).

[Z] Y.-C. Zhu, Hopf algebras of prime dimension, Int. Math. Res. Not. 1,
53–59 (1994).

[Z2] Y.-C. Zhu, Hecke algebras and representation ring of Hopf algebras, Adv.
Math. 20, 219-227 (2001).
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AN EXAMPLE CONCERNING THE THEORY OF
LEVELS FOR CODIMENSION-ONE FOLIATIONS

ANDRÉS NAVAS

An important aspect of foliations concerns the existence of local
minimal sets. Recall that a foliated manifold has the LMS property
if, for every open, saturated set W and every leaf L ⊂ W , the relative
closure L̄ ∩W contains a minimal set of F |W . A fundamental result
(due to Cantwell-Conlon [2] and Duminy-Hector [5]) establishes the
LMS property for codimension-one foliations that are transversely of
class C1+Lipschitz. This is the basic tool of the so-called Theory of
Levels.

A classical example due to Hector (which corresponds to the sus-
pension of a group action on the interval) shows that the LMS prop-
erty is no longer true for codimension-one foliations which trans-
versely are only continuous (see [1, Example 8.1.13]). Despite of this,
in recent years, the possibility of extending some of the results of the
Theory of Levels to smoothness smaller than C1+Lipschitz has been
naturally addressed [3, 4]. In this Note we will show that, however,
analogues of Hector’s example appear in class C1 (and actually in
class C1+α for small values of α).

1. A General Construction

Let (an)n∈Z be a sequence such that an+1 < an for all n ∈ Z,
an → 0 as n → ∞, and an → 1 as n → −∞. Let (nk) be a strictly
increasing sequence of positive integers, and let f : [0, 1]→ [0, 1] be a
homeomorphism such that f(an+1) = an for all n ∈ Z. For each k >
0, we let uk, vk, bk, ck be such that ank+1 < bk < uk < vk < ck < ank

.
For each i ∈ {0, . . . , nk+1−nk}, we set uik := f i(uk) and vik := f i(vk).

Partially funded by the Math-AMSUD Project DySET..
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170 ANDRÉS NAVAS

Notice that

f i([u0k+1, v
0
k+1]) = [uik+1, v

i
k+1] ⊂ f i([a1+nk+1

, ank+1
]) = [ank+1−i+1, ank+1−i].

Now, we let g : [0, 1]→ [0, 1] be a homeomorphism such that:

– g = Id on [an+1, an] for each n < 0, as well as each n > 0 such that
n 6= nk for every k;
– g = Id on [a1+nk

, bk]∪ [ck, ank
], g(u0k) = v0k, and g has no fixed point

on ]bk, ck[.

Main assumption: In order that f, g generate a group of home-
omorphisms of [0, 1] whose associated suspension does not have the
LMS property, we assume that (see Figure 1)

u
nk+1−nk

k+1 = bk and v
nk+1−nk

k+1 = ck.

With these general notations, Hector’s example corresponds to the
choice nk = k. We will show that, by taking nk = 2k, one may
perform this construction in such a way the resulting maps f and
g are diffeomorphisms of class C1 (actually, of class C1+α for any
α < (

√
5 − 1)/2). It is quite possible that slightly improving our

method, one can smooth the action up to the class C2−δ for any δ > 0.
(Compare [7], where for a similar construction, T. Tsuboi deals with
the C3/2−δ case before the C2−δ case due to technical difficulties.)

bk+1 ck+1

( )
bk ck
( )

a1+nk+1
ank+1

( )

fnk+1−nk
gg

a1+nk ank
( )uk+1 vk+1

( )
uk vk
( )

.................
...................

.....................
.........................

...............................
................................................

................................................................................................................................................................................................................................................... ........... .........
...

.......

.......
.......
........
..........

.................................................................................. .......
.....
.......
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.......
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..........

.................................................................................. .......
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.......
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Figure 1
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2. The length of the intervals and some estimates

We let |[uik+1, v
i
k+1]| := λik|[uk+1, vk+1]|, where the constant λk>

1 satisfies the compatibility relation

(1) λ2
k

k =
|[u2kk+1, v

2k

k+1]|
|[uk+1, vk+1]|

=
|[bk, ck]|

|[uk+1, vk+1]|
.

Let ε > 0 be very small (to be fixed in a while). We set:

– |[an+1, an]| := cε
(1+|n|)1+ε , where cε is chosen so that

∑
n∈Z |[an+1, an]| =

1;

– |[bk, ck]| := 1
2
|[a2k+1, a2k ]| = cε

2(1+2k)1+ε , where k > 0;

– |[uk, vk]| := |[bk, ck]|1+θ.
We assume that the center of [a2k+1, a2k ] coincides with the center

of [bk, ck] and with that of [uk, vk]. Furthermore, we assume that for
each i∈{0, . . . , 2k}, the centers of [uik+1, v

i
k+1] and [a2k+1−i+1, a2k+1−i]

coincide.
For the estimates concerning regularity, we will strongly use the

following lemma from [6].

Technical Lemma. Let ω : [0, η]→ [0, ω(η)] be a function (modulus
of continuity) such that s 7→ s/ω(s) is non-increasing. If I, J are
closed non-degenerate intervals such that 1/2 ≤ |I|/|J | ≤ 2 and

∣∣∣∣
|J |
|I| − 1

∣∣∣∣
1

ω(|I|) ≤M,

then there exists a C1+ω diffeomorphism f : I → J that is tangent
to the identity at the endpoints and whose derivative has ω-norm
bounded from above by 6πM .
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Actually, for I :=[a, b] and J :=[a′, b′], one may take f = ϕ−1a′,b′◦ϕa,b,
where ϕa,b is defined by (a similar definition stands for ϕa′,b′)

ϕa,b(x) = − 1

(b− a)
ctg

(
π
(x− a
b− a

))
.

The condition on the derivative at the endpoints allows us to fit
together the maps in order to create a diffeomorphism of a larger
interval. Actually, if all of the involved sub-intervals of type I, J
satisfy the hypothesis of the lemma above for the same constant M ,
then the ω-norm of the derivative of the induced diffeomorphism is
bounded from above by 12πM .

In what follows, we will deal with the modulus of continuity ω(s)=
sα for the derivative, where α > 0. A constant depending on the three
parameters α, θ, ε, and whose value is irrelevant for our purposes, will
be generically denoted by M .

Estimates for f : The diffeomorphism f is constructed by fitting
together the maps provided by the Technical Lemma sending (see
Figure 2):

(i) [uik+1, v
i
k+1] into [ui+1

k+1, v
i+1
k+1],

(ii) [a2k+1−i, u
i
k+1] into [a2k+1−i−1, u

i+1
k+1],

(iii) [vik+1, a2k+1−i−1] into [vi+1
k+1, a2k+1−i−2].

For (i), we have

∣∣∣∣∣
|[ui+1

k+1, v
i+1
k+1]|

|[uik+1, v
i
k+1]|

− 1

∣∣∣∣∣
1

|[uik+1, v
i
k+1]|α

= |λk − 1| 1

(λik|[u0k+1, v
0
k+1]|)α

≤ |λk − 1| 1

|[bk+1, ck+1]|(1+θ)α
.

Now from (1) one obtains

λ2
k

k =

cε
2(1+2k)1+ε

( cε
2(1+2k+1)1+ε )1+θ

≤M
((1 + 2k+1)1+θ

1 + 2k

)1+ε
≤M2kθ(1+ε).
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From the inequality |2α − 1| ≤ α (which holds for α positive and
small) one concludes that

|λk − 1| ≤M
k

2k
.

On the other hand,

1

|[bk+1, ck+1]|
≤M(1 + 2k+1)1+ε ≤M2k(1+ε).

Therefore,

(2)

∣∣∣∣∣
|[ui+1

k+1, v
i+1
k+1]|

|[uik+1, v
i
k+1]|

− 1

∣∣∣∣∣
1

|[uik+1, v
i
k+1]|α

≤M
k

2k
2k(1+ε)(1+θ)α.

A C

B D

a2k+1−i a2k+1−i−1

( )

f

a2k+1−i−1 a2k+1−i−2

( )
uik+1 vik+1

( )
ui+1
k+1 vi+1

k+1

( )
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Figure 2

Now, for (ii), set A := |[uik+1, v
i
k+1]|, B := |[a2k+1−i, a2k+1−i−1]|,

C := |[ui+1
k+1, v

i+1
k+1]|, and D := |[a2k+1−i−1, a2k+1−i−2]|. Then

∣∣∣∣∣
|[a2k+1−i−1, u

i+1
k+1]|

|[a2k+1−i, u
i
k+1]|

− 1

∣∣∣∣∣
1

|[a2k+1−i, u
i
k+1]|α

=

∣∣∣∣
D − C
B − A − 1

∣∣∣∣
2α

(B − A)α
.
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Moreover, since A ≤ B/2 and C = λkA,
∣∣∣∣
D − C
B − A − 1

∣∣∣∣ ≤
∣∣∣∣
D −B
B − A

∣∣∣∣+

∣∣∣∣
C − A
B − A

∣∣∣∣ ≤ 2

∣∣∣∣
D −B
B

∣∣∣∣+ |λk − 1|

=
M

B

[
1

(2k+1 − i− 2)1+ε
− 1

(2k+1 − i− 1)1+ε

]
+M

k

2k

≤ MB
[
(2k+1 − i− 1)1+ε − (2k+1 − i− 2)1+ε

]
+M

k

2k

≤ M

2k(1+ε)
2kε +M

k

2k

≤ M
k

2k
.

Therefore,
∣∣∣∣
D − C
B − A − 1

∣∣∣∣
2α

(B − A)α
≤M

k

2k
2k(1+ε)α,

hence

(3)

∣∣∣∣∣
|[a2k+1−i−1, u

i+1
k+1]|

|[a2k+1−i, u
i
k+1]|

− 1

∣∣∣∣∣
1

|[a2k+1−i, u
i
k+1]|α

≤M
k

2k(1−(1+ε)α)
.

Finally, notice that by construction, the estimates for (iii) are the
same as those for (ii).

Estimates for g: The diffeomorphism g is obtained by fitting to-
gether the maps provided by the Technical Lemma sending:

(i) [bk, u
0
k] into [bk, v

0
k],

(ii) [u0k, ck] into [v0k, ck],

(iii) [a2k+1, bk] and [ck, a2k ] into themselves as the identity.

For (i), notice that
∣∣∣∣
|[bk, v0k]|
[bk, u0k]

− 1

∣∣∣∣
1

|[bk, u0k]|α
=
|[u0k, v0k]|
|[bk, u0k]|1+α

≤ 21+α|[u0k, v0k]|
(|[bk, ck]| − |[u0k, v0k]|)

1+α

=
21+α|[bk, ck]|1+θ

(|[bk, ck]| − |[bk, ck]|1+θ)1+α
,
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thus

(4)

∣∣∣∣
|[bk, v0k]|
[bk, u0k]

− 1

∣∣∣∣
1

|[bk, u0k]|α
≤M |[bk, ck]|θ−α.

The estimates for (ii) are similar to those for (i) and we leave them
to the reader.

The choice of the parameters: According to our Technical
Lemma, and due to (2), (3), and (4), sufficient conditions for the
C1+α smoothness of f, g are:
– (1 + ε)(1 + θ)α < 1,

– 1
1+ε

> α

– θ > α.

Now, for 0 < α < (
√

5 − 1)/2, one easily checks that these condi-
tions are satisfied for θ := α+ ε, where ε > 0 is small enough so that
(1 + ε)(1 + α + ε)α < 1.

Acknowledgments. I would like to thank J. Cantwell and L. Conlon
for motivating me to work on and write out the example of this Note.
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ACCESSIBILITY AND ABUNDANCE OF
ERGODICITY IN DIMENSION THREE: A SURVEY.

FEDERICO RODRIGUEZ HERTZ, JANA RODRIGUEZ HERTZ,
AND RAÚL URES

Abstract. In [18] the authors proved the Pugh-Shub conjec-
ture for partially hyperbolic diffeomorphisms with 1-dimensional
center, i.e. stably ergodic diffeomorphisms are dense among the
partially hyperbolic ones and, in subsequent results [20, 21], they
obtained a more accurate description of this abundance of ergod-
icity in dimension three. This work is a survey type paper of this
subject.

1. Introduction

The purpose of this survey is to present the state of the art in the
study of the ergodicity of conservative partially hyperbolic diffeo-
morphisms on three dimensional manifolds. In fact, we shall mainly
describe the results contained in [20, 21]. The study of partial hy-
perbolicity has been one of the most active topics on dynamics over
the last years and we do not pretend to describe all the related re-
sults, even for 3-manifolds. Some of the important themes excluded
in this survey are entropy maximizing measures, absolute continu-
ity of center foliations, co-cycles over partially hyperbolic systems,
SRB-measures, dynamical coherence, classification, etc.

A diffeomorphism f : M → M of a closed smooth manifold M is
partially hyperbolic if TM splits into three invariant bundles such
that one of them is contracting, the other is expanding, and the

Date: August 24, 2011.
2000 Mathematics Subject Classification. Primary: 37D30, Secondary: 37A25.
Key words and phrases. partial hyperbolicity; accessibility property; ergodic-

ity; laminations.
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third, called the center bundle, has an intermediate behavior, that is,
not as contracting as the first, nor as expanding as the second (see
Subsection 2.3 for a precise definition). The first and second bundles
are called strong bundles.

A central point in dynamics is to find conditions that guarantee
ergodicity. In 1994, the pioneer work of Grayson, Pugh and Shub
[9] suggested that partial hyperbolicity could be “essentially” a suf-
ficient condition for ergodicity. Indeed, soon afterwards, Pugh and
Shub conjectured that stable ergodicity (open sets of ergodic dif-
feomorphisms) is dense among partially hyperbolic systems. They
proposed as an important tool the accessibility property (see also the
previous work by Brin and Pesin [2]): f is accessible if any two points
of M can be joined by a curve that is a finite union of arcs tangent
to the strong bundles. Essential accessibility is the weaker property
that any two measurable sets of positive measure can be joined by
such a curve. In fact, accessibility will play a key role in this survey.

Pugh and Shub split their Conjecture into two sub-conjectures: (1)
essential accessibility implies ergodicity, (2) the set of partially hy-
perbolic diffeomorphisms contains an open and dense set of accessible
diffeomorphisms.

Many advances have been made since then in the ergodic theory
of partially hyperbolic diffeomorphisms. In particular, there is a re-
sult by Burns and Wilkinson [4] proving that essential accessibility
plus a bunching condition (trivially satisfied if the center bundle is
one dimensional) implies ergodicity. There is also a result by the
authors [18] obtaining the complete Pugh-Shub conjecture for one-
dimensional center bundle. See [19] for a survey on the subject.

We have therefore that almost all partially hyperbolic diffeomor-
phisms with one dimensional bundle are ergodic. This means that
the non-ergodic partially hyperbolic systems are very few. Can we
describe them? Concretely,

Question 1.1. Which manifolds support a non-ergodic partially hy-
perbolic diffeomorphism? How do they look like?

In this survey we give a description of what is known about this
question for three dimensional manifolds. We study the sets of points
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that can be joined by paths everywhere tangent to the strong bundles
(accessibility classes), and arrive, using tools of geometry of lamina-
tions and topology of 3-manifolds, to the somewhat surprising con-
clusion that there are strong obstructions to the non-ergodicity of a
partially hyperbolic diffeomorphism. See Theorems 1.4, 1.6 and 1.7.

This gave us enough evidence to conjecture the following:

Conjecture 1.2 ([20]). The only orientable manifolds supporting
non-ergodic partially hyperbolic diffeomorphisms in dimension 3 are
the mapping tori of diffeomorphisms of surfaces which commute with
Anosov diffeomorphisms.

Specifically, they are (1) the mapping tori of Anosov diffeomor-
phisms of T2, (2) T3, and (3) the mapping torus of −id where id :
T2→T2 is the identity map on the 2-torus.

Indeed, we believe that for 3-manifolds, all partially hyperbolic
diffeomorphisms are ergodic, unless the manifold is one of the listed
above.

In the case that M = T3 we can be more specific and we also
conjecture that:

Conjecture 1.3. Let f : T3 → T3 be a conservative partially hyper-
bolic diffeomorphism homotopic to a hyperbolic automorphism. Then,
f is ergodic.

In [20] we proved Conjecture 1.2 when the fundamental group of
the manifold is nilpotent:

Theorem 1.4. All the conservative C2 partially hyperbolic diffeomor-
phisms of a compact orientable 3-manifold with nilpotent fundamental
group are ergodic, unless the manifold is T3.

A paradigmatic example is the following. Let M be the mapping
torus of Ak : T2→T2, where Ak is the automorphism given by the

matrix

(
1 k
0 1

)
, k a non-zero integer. That is, M is the quotient

of T2 × [0, 1] by the relation ∼, where (x, 1) ∼ (Akx, 0). The mani-
fold M has nilpotent fundamental group; in fact, it is a nilmanifold.
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Theorem 1.4 then implies that all conservative partially hyperbolic
diffeomorphisms of M are ergodic.

In fact, the above case, namely the case of nilmanifolds, is the only
one where Theorem 1.4 is non-void (see [20]). In fact, the other cases
of Theorem 1.4 are ruled out by a remarkable result by Burago and
Ivanov [3]:

Theorem 1.5 ([3]). There are no partially hyperbolic diffeomorphisms
in S3 or S2 × S1.

The proofs of most of the theorems of this survey involve deep
results of the geometry of codimension one foliations and the topology
of 3-manifolds. In Subsection 2.1 we shall include, for completeness,
the basic facts and definitions that we shall be using in this work.
However, the interested reader is strongly encouraged to consult [5],
[6], [12] and [13] for a well organized and complete introduction to
the subject.

Let us explain a little bit our strategy. In the first place, it follows
from the results in [4, 18] that accessibility implies ergodicity. So, our
strategy will be to prove that all partially hyperbolic diffeomorphisms
of compact 3-manifolds except the ones of the manifolds listed in
Conjecture 1.2 satisfy the (essential) accessibility property.

In dimension 3, and in fact, whenever the center bundle is 1-
dimensional, the non-open accessibility classes are codimension one
immersed manifolds [18]; the union of all non-open accessibility classes
is a compact set laminated by the accessibility classes (see Subsection
2.1 for definitions). So, either f has the accessibility property or else
there is a non-trivial lamination formed by non-open accessibility
classes.

Let us first assume that the lamination is not a foliation (i.e. does
not cover the whole manifold). Then in [20] it is showed that it either
extends to a true foliation without compact leaves, or else it contains
a leaf that is a periodic 2-torus with Anosov dynamics. In the first
case, we have that the boundary leaves of the lamination contain a
dense set of periodic points [18]. Moreover, the fundamental group
of any boundary leaf injects in the fundamental group of the mani-
fold. In the second case, let us call any embedded 2-torus admitting
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an Anosov dynamics extendable to the whole manifold, an Anosov
torus. That is, T ⊂ M is an Anosov torus if there exists a home-
omorphism h : M→M such that h|T is homotopic to an Anosov
diffeomorphism. In [21] we obtained that the manifold must be again
one of the manifolds of Conjecture 1.2 if it has an Anosov torus.

Theorem 1.6. A closed oriented irreducible 3-manifold admits an
Anosov torus if and only if it is one of the following:

(1) the 3-torus
(2) the mapping torus of −id
(3) the mapping torus of a hyperbolic automorphism

Let us recall that a 3-manifold is irreducible if any embedded 2-
sphere bounds a ball. After the proof of the Poincaré conjecture
this is the same of having trivial second fundamental group. Three
dimensional manifolds supporting a partially hyperbolic diffeomor-
phism are always irreducible thanks to Burago and Ivanov results
in [3]. Indeed, the existence of a Reebless foliation implies that the
manifold is irreducible or it is S2 × S1.

Secondly suppose that there are no open accessibility classes. Then,
accessibility classes must foliate the whole manifold. Let us see that
this foliation can not have compact leaves. Observe that any such
compact leaf must be a 2-torus. So, we have three possibilities: (1)
there is an Anosov torus, (2) the set of compact leaves forms a strict
non-trivial lamination, (3) the manifold is foliated by 2-tori. The
first case has just been ruled out. In the second case, we would have
that the boundary leaves contain a dense set of periodic points, as
stated above, and hence they would be Anosov tori again, which is
impossible. Finally, in the third case, we conclude that the manifold
is a fibration of tori over S1. This can only occur, in our setting,
only if the manifold is the mapping torus of a diffeomorphism which
commutes with an Anosov diffeomorphism as in Conjecture 1.2.

The following theorem is the first step in proving Conjectures 1.2
and 1.3. See definitions in Subsection 2.1:
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Theorem 1.7. Let f : M →M be a conservative partially hyperbolic
diffeomorphism of an orientable 3-manifold M . Suppose that the bun-
dles Eσ are also orientable, σ = s, c, u, and that f is not accessible.
Then one of the following possibilities holds:

(1) M is the mapping torus of a diffeomorphism which commutes
with an Anosov diffeomorphism as in Conjecture 1.2.

(2) there is an f -invariant lamination ∅ 6= Γ(f) 6= M tangent to
Es⊕Eu that trivially extends to a (not necessarily invariant)
foliation without compact leaves of M . Moreover, the bound-
ary leaves of Γ(f) are periodic, have Anosov dynamics and
dense periodic points.

(3) there is a minimal invariant foliation tangent to Es ⊕ Eu.

The assumption on the orientability of the bundles and M is not
essential, in fact, it can be achieved by a finite covering. The proof
of Theorem 1.7 appears at the end of Section 5.

We do not know of any example satisfying (2) in the theorem above.
We have the following question.

Question 1.8. Let f : N → N be an Anosov diffeomorphism on a
complete Riemannian manifold N . Is it true that if Ω(f) = N then
N is compact?

2. Preliminaries

2.1. Geometric preliminaries. In this section we state several def-
initions and concepts that will be useful in the rest of this paper.
From now on, M will be a compact connected Riemannian 3-manifold.

A lamination is a compact set Λ ⊂M that can be covered by open
charts U ⊂ Λ with a local product structure φ : U→Rn × T , where
T is a locally compact subset of Rk. On the overlaps Uα ∩ Uβ, the
transition functions φβ ◦φ−1α : Rn×T →Rn×T are homeomorphisms
and take the form:

φβ ◦ φ−1α (u, v) = (lαβ(u, v), tαβ(v)),

where lαβ are C1 with respect to the u variable. No differentiability
is required in the transverse direction T . The sets φ−1(Rn × {t}) are
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called plaques. Each point x of a lamination belongs to a maximal
connected injectively immersed n-submanifold, called the leaf of x
in L. The leaves are union of plaques. Observe that the leaves are
C1, but vary only continuously. The number n is the dimension of
the lamination. If n = dimM − 1, we say Λ is a codimension-one
lamination. The set L is an f -invariant lamination if it is a lamination
such that f takes leaves into leaves.

We call a lamination a foliation if Λ = M . In this case, we shall
denote by F the set of leaves. In principle, we shall not assume
any transverse differentiability. However, in case lαβ is Cr with re-
spect to the v variable, we shall say that the foliation is Cr. Note
that even purely C0 codimension-one foliations admit a transverse
1-dimensional foliation (see Siebenmann [25], ). In our case the exis-
tence of this 1-dimensional foliation is trivial thanks to the existence
of the 1-dimensional center bundle Ec. These allows us to translate
many local deformation arguments, usually given in the C2 category,
into the C0 category as observed, for instance, by Solodov [26]. In
particular, Theorems 2.1 and 2.3, which were originally formulated for
C2 foliations hold in the C0 case. We shall say that a codimension-one
foliation F , is transversely orientable if the transverse 1-dimensional
foliation mentioned above is orientable. An invariant foliation is a
foliation that is an invariant lamination.

Let Λ be a codimension-one lamination that is not a foliation. A
complementary region V is a component of M \ Λ. A closed comple-

mentary region V̂ is the metric completion of a complementary region
V with the path metric induced by the Riemannian metric, the dis-
tance between two points being the infimum of the lengths of paths in
V connecting them. A closed complementary region is independent
of the metric. Note that they are not necessarily compact. If Λ does
not have compact leaves, then every closed complementary region
decomposes into a compact gut piece and non-compact interstitial re-
gions which are I-bundles over non-compact surfaces, and get thinner
and thinner as they go away from the gut (see [13] or [8]). The in-
terstitial regions meet the gut along annuli. The decomposition into
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interstitial regions and guts is unique up to isotopy. Moreover, one
can take the interstitial regions as thin as one wishes.

A boundary leaf is a leaf corresponding to a component of ∂V , for
V a closed complementary region. That is, a leaf is a non-boundary
leaf if it is not contained in a closed complementary region.

Figure 1. A Reeb component

The geometry of codimension-one foliations is deeply related to the
topology of the manifold that supports them. The following subset
of a foliation is important in their description. A Reeb component
is a solid torus whose interior is foliated by planes transverse to the
of core of the solid torus, such that each leaf limits on the boundary
torus, which is also a leaf (see Figure 1). A foliation that has no Reeb
components is called Reebless.

The following theorems show better the above mentioned relation:

Theorem 2.1 (Novikov). Let M be a compact orientable 3-manifold
and F a transversely orientable codimension-one foliation. Then each
of the following implies that F has a Reeb component:

(1) There is a closed, nullhomotopic transversal to F
(2) There is a leaf L in F such that π1(L) does not inject in

π1(M)
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The statement of this theorem can be found, for instance, in [6,
Theorems 9.1.3 & 9.1.4., p.288]. We shall also use the following
theorem

Theorem 2.2 (Haefliger). Let Λ be a codimension one lamination in
M . Then the set of points belonging to compact leaves is compact.

This theorem was originally formulated for foliations [10]. How-
ever, it also holds for laminations, see for instance [13].

We have the following consequence of Novikov’s Theorem about
Reebless foliations. This theorem is stated in [24] as Corollary 2 on
page 44.

Theorem 2.3. If M is a compact 3-manifold and F is a transversely
orientable codimension-one Reebless foliation, then either F is the
product foliation of S2 × S1, or F̃ , the foliation induced by F on the
universal cover M̃ of M , is a foliation by planes R2. In particular,
if M 6= S2 × S1 then M is irreducible.

This theorem was originally stated for C2 foliations, but it also
holds for C0 foliations, due to Siebenmann’s theorem mentioned
above.

2.2. Topologic preliminaries. Let M be a 3-dimensional mani-
fold. A manifold M is irreducible if every 2-sphere S2 embedded in
the manifold bounds a 3-ball. Recall that a 2-torus T embedded in
M is an Anosov torus if there exists a diffeomorphism f : M→M
such that f(T ) = T and the action induced by f on π1(T ), that is,
f#|T : π1(T )→ π1(T ), is a hyperbolic automorphism. Equivalently,
f restricted to T is isotopic to a hyperbolic automorphism.

We shall assume from now on, that M is an irreducible 3-manifold
since this is the case for 3-manifolds supporting partially hyperbolic
diffeomorphisms. In this subsection, we will focus on what is called
the JSJ-decomposition of M (see below). That is, we will cut M
along certain kind of tori, called incompressible, and will obtain cer-
tain 3-manifolds with boundary that are easier to handle, which are,
respectively, Seifert manifolds, and atoroidal and acylindrical mani-
folds. Let us introduce these definitions first.
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An orientable surface S embedded in M is incompressible if the
homomorphism induced by the inclusion map i# : π1(S) ↪→ π1(M) is
injective; or, equivalently, if there is no embedded disc D2 ⊂M such
that D ∩ S = ∂D and ∂D � 0 in S (see, for instance, [12, Page 10]).
We also require that S 6= S2.

A manifold with or without boundary is Seifert, if it admits a one
dimensional foliation by closed curves, called a Seifert fibration. The
boundary of an orientable Seifert manifold with boundary consists of
finite union of tori. There are many examples of Seifert manifolds,
for instance S3, T1S where S is a surface, etc.

The other type of manifold obtained in the JSJ-decomposition is
atoroidal and acylindrical manifolds. A 3-manifold with boundary N
is atoroidal if every incompressible torus is ∂-parallel, that is, isotopic
to a subsurface of ∂N . A 3-manifold with boundary N is acylindrical
if every incompressible annulus A that is properly embedded, i.e. ∂A ⊂
∂N , is ∂-parallel, by an isotopy fixing ∂A.

As we mentioned before, a closed irreducible 3-manifold admits a
natural decomposition into Seifert pieces on one side, and atoroidal
and acylindrical components on the other:

Theorem 2.4 (JSJ-decomposition [14], [15]). If M is an irreducible
closed orientable 3-manifold, then there exists a collection of disjoint
incompressible tori T such that each component of M \ T is either
Seifert, or atoroidal and acylindrical. Any minimal such collection is
unique up to isotopy. This means that if T is a collection as described
above, it contains a minimal sub-collection m(T ) satisfying the same
claim. All collections m(T ) are isotopic.

Any minimal family of incompressible tori as described above is
called a JSJ-decomposition ofM . When it is clear from the context we
shall also call JSJ-decomposition the set of pieces obtained by cutting
the manifold along these tori. Note that if M is either atoroidal or
Seifert, then T = ∅.

2.3. Dynamic preliminaries. Throughout this paper we shall work
with a partially hyperbolic diffeomorphism f , that is, a diffeomorphism
admitting a non-trivial Tf -invariant splitting of the tangent bundle



ABUNDANCE OF ERGODICITY IN DIMENSION THREE 187

TM = Es⊕Ec⊕Eu, such that all unit vectors vσ ∈ Eσ
x (σ = s, c, u)

with x ∈M verify:

‖Txfvs‖ < ‖Txfvc‖ < ‖Txfvu‖
for some suitable Riemannian metric. f also must satisfy that ‖Tf |Es‖ <
1 and ‖Tf−1|Eu‖ < 1. We shall say that a partially hyperbolic dif-
feomorphism f that satisfies

‖Txfvs‖ < ‖Tyfvc‖ < ‖Tzfvu‖ ∀x, y, z ∈M
is absolutely partially hyperbolic.

We shall also assume that f is conservative, i.e. it preserves Lebesgue
measure associated to a smooth volume form.

It is a known fact that there are foliations Wσ tangent to the dis-
tributions Eσ for σ = s, u (see for instance [2]). The leaf of Wσ

containing x will be called W σ(x), for σ = s, u. The connected com-
ponent of x in the intersection of W s(x) with a small ε-ball centered
at x is the ε-local stable manifold of x, and is denoted by W s

ε (x).
In general it is not true that there is a foliation tangent to Ec. It is

false even in case dimEc = 1 (see [22]). However, in Proposition 3.4
of [1] it is shown that if dimEc = 1, then f is weakly dynamically co-
herent. This means that for each x ∈M there are complete immersed
C1 manifolds which contain x and are everywhere tangent to Ec, Ecs

and Ecu, respectively. We will call a center curve any curve which is
everywhere tangent to Ec. Moreover, we will use the following fact:

Proposition 2.5 ([1]). If γ is a center curve through x, then

W s
ε (γ) =

⋃

y∈γ
W s
ε (y) and W u

ε (γ) =
⋃

y∈γ
W u
ε (y)

are C1 immersed manifolds everywhere tangent to Es⊕Ec and Ec⊕
Eu respectively.

We shall say that a set X is s-saturated or u-saturated if it is a union
of leaves of the strong foliations Ws or Wu respectively. We also say
that X is su-saturated if it is both s- and u-saturated. The acces-
sibility class AC(x) of the point x ∈ M is the minimal su-saturated
set containing x. Note that the accessibility classes form a partition
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of M . If there is some x ∈ M whose accessibility class is M , then
the diffeomorphism f is said to have the accessibility property. This
is equivalent to say that any two points of M can be joined by a
path which is piecewise tangent to Es or to Eu. A diffeomorphism is
said to be essentially accessible if any su-saturated set has full or null
measure.

The theorem below relates accessibility with ergodicity. In fact it
is proven in a more general setting, but we shall use the following
formulation:

Theorem 2.6 ([4],[18]). If f is a C2 conservative partially hyper-
bolic diffeomorphism with the (essential) accessibility property and
dimEc = 1, then f is ergodic.

In [20] it is proved that there are manifolds whose topology implies
the accessibility property holds for all partially hyperbolic diffeomor-
phisms. In these manifolds, all partially hyperbolic diffeomorphisms
are ergodic.

Sometimes we will focus on the openness of the accessibility classes.
Note that the accessibility classes form a partition of M . If all of them
are open then, in fact, f has the accessibility property. We will call
U(f) = {x ∈M ;AC(x) is open} and Γ(f) = M \ U(f). Note that f
has the accessibility property if and only if Γ(f) = ∅. We have the
following property of non-open accessibility classes:

Proposition 2.7 ([18]). The set Γ(f) is a codimension-one lamina-
tion, having the accessibility classes as leaves.

In fact, any compact su-saturated subset of Γ(f) is a lamination.

The above proposition is Proposition A.3. of [18]. The fact that the
leaves of Γ(f) are C1 may be found in [7]. The following proposition
is Proposition A.5 of [18]:

Proposition 2.8 ([18]). If Λ is an invariant sub-lamination of Γ(f),
then each boundary leaf of Λ is periodic and the periodic points are
dense in it (with the induced topology).

Moreover, the stable and unstable manifolds of each periodic point
are dense in each plaque of a boundary leaf of Λ.
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Observe that the proof of Proposition A.5 of [18] shows in fact that
periodic points are dense in the accessibility classes of the boundary
leaves of V endowed with its intrinsic topology. In other words,
periodic points are dense in each plaque of the boundary leaves of
V .

We shall also use the following theorem by Brin, Burago and Ivanov,
whose proof is in [1], after Proposition 2.1.

Theorem 2.9 ([1]). If f : M3→M3 is a partially hyperbolic dif-
feomorphism, and there is an open set V foliated by center-unstable
leaves, then there cannot be a closed center-unstable leaf bounding a
solid torus in V .

3. Anosov tori

In this section we will say a few words about the proof of Theorem
1.6. The idea in its proof is that, given an Anosov torus T , we can
“place” T so that either T belongs to the family T given by the JSJ-
decomposition (Theorem 2.4), or else T is in a Seifert component,
and it is either transverse to all fibers, or it is union of fibers of this
Seifert component. See Proposition 3.3.

It is important to note the following property of Anosov tori:

Theorem 3.1 ([20]). Anosov tori are incompressible.

An Anosov torus in an atoroidal component will then be ∂-parallel
to a component of its boundary. In this case, we can assume T ∈ T .
On the other hand, the Theorem of Waldhausen below, guarantees
that we can always place an incompressible torus in a Seifert manifold
in a “standard” form; namely, the following: a surface is horizontal
in a Seifert manifold if it is transverse to all fibers, and vertical if it
is union of fibers:

Theorem 3.2 (Waldhausen [27]). Let M be a compact connected
Seifert manifold, with or without boundary. Then any incompressible
surface can be isotoped to be horizontal or vertical.

The architecture of the proof of Theorem 1.6 is contained in the
following proposition.
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Proposition 3.3. Let T be an Anosov torus of a closed irreducible
orientable manifold M . Then, there exists a diffeomorphism f : M →
M and a JSJ-decomposition T such that

(1) f |T is a hyperbolic toral automorphism,
(2) f(T ) = T , and
(3) one of the following holds

(a) T ∈ T
(b) T is a vertical torus in a Seifert component of M \ T ,

and T is not ∂-parallel in this component.
(c) M is a Seifert manifold (T = ∅), and T is a horizontal

torus,

The proposition above allows us to split the proof of Theorem 1.6
into cases. Note that case (3b) includes the case in which M is a
Seifert manifold and T is a vertical torus.

In the case that T is a vertical torus in a Seifert component we
can cut this component along T . Then we can suppose that T is in
the boundary. We take profit of the fact that in most manifolds the
Seifert fibration is unique up to isotopy. Since the dynamics restricted
to T is Anosov we have that the manifold has more than one Seifert
fibration. This lead us to show that this Seifert component must be
T2 × [0, 1]. This gives that the whole manifold must be one of the
manifolds of Theorem 1.6.

If T is horizontal torus then the manifold M is Seifert and T inter-
sects all the fibers. This is discarded in a case by case study thanks
to the fact that the Seifert manifolds having horizontal torus a finite.

The last and more difficult case is when T is part of the JSJ-
decomposition but it is not the boundary of a Seifert component.
The proof in this case is complicated but a very rough idea is to take
a properly embedded surface S with an essential circle of T in its
boundary. Taking a large iterate fn(S) and considering S ∩ fn(S),
it is possible to construct a non-parallel incompressible cylinder as a
union of a band in S and a band in fn(S). This leads to contradiction
because the component is not Seifert and then, it is acylindrical.
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4. The su-lamination Γ(f)

Let f be a partially hyperbolic diffeomorphism of a compact 3-
manifold M . From Subsection 2.3 it follows that we have three pos-
sibilities: (1) f has the accessibility property, (2) the union of all non-
open accessibility classes is a strict lamination, ∅  Γ(f)  M or (3)
the union of all non-open accessibility classes foliates M : Γ(f) = M .

Now, we shall distinguish two possible cases in situations (2) and
(3):

(a) the lamination Γ(f) does not contain compact leaves
(b) the lamination Γ(f) contains compact leaves

In this section we deal with the case (2a). In fact, for our purposes
it will be sufficient to assume that there exists an f -invariant sub-
lamination Λ of Γ(f) without compact leaves. Section 5 treats the
cases (2b) and (3b). Section 6 treats the case (3a).

In this section, we will prove that the complement of Λ consists
of I-bundles. To this end, we shall assume that the bundles Eσ

(σ = s, c, u) and the manifold M are orientable (we can achieve this
by considering a finite covering).

Theorem 4.1 ([20], Theorem 4.1). If ∅  Λ ⊂ Γ(f) is an orientable
and transversely orientable f -invariant sub-lamination without com-
pact leaves such that Λ 6= M , then all closed complementary regions
of Λ are I-bundles.

Theorem 4.1 was proved by showing:

Proposition 4.2. Let Λ ⊂ Γ(f) be a nonempty f -invariant sub-
lamination without compact leaves. Then Ec is uniquely integrable in
the closed complementary regions of Λ.

The proof of this proposition is rather technical. The interested
reader may found a proof in [20].

Let us consider V̂ a closed complementary region of Λ, and call
I(V ) the union of all interstitial regions of V and G(V ) the gut of V̂
(see Subsection 2.1), so that

V̂ = I(V ) ∪ G(V ).
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The following statement is rather standard:

Lemma 4.3. Let f : M→M be a partially hyperbolic diffeomorphism.
If U is an open invariant set such that U ⊂ Ω(f), then the closure of
U is su-saturated.

Let us observe that if V̂ is connected then there are only two bound-
ary leaves of V̂ . Indeed, as we mentioned before periodic points are
dense in boundary leaves. This fact jointly with the local product
structure imply, using standard arguments, that the stable and un-
stable leaves of periodic points are dense too. Take a periodic point
p in a boundary leaf and in the intersticial region. There are center
curves joining the points in the local stable manifold of p with other
boundary curve L1 of V̂ (the same property holds for the local unsta-
ble manifold). Invariance of the stable manifold of p and boundary
leaves give that the center curve of any point of the stable manifold
joins the boundary leaf L0 containing p with L1. Denseness of the
stable and unstable manifolds of p implies that the complement of
the set of points such that their center manifold join L0 with L1 is
totally disconnected. Then, it is not difficult to see that L0 and L1

are the unique boundary leaves of V̂ .
Also, since periodic points are dense in the boundary leaves due

to Proposition 2.8, there is an iterate of f that fixes all connected
components of V̂ , so we will assume when proving Theorem 4.1 that
V̂ is connected and has two boundary leaves L0 and L1.

Proof of Theorem 4.1. We will present a sketch of a different ap-
proach to a proof than the one given in [20]. The strategy will be

to show that all center leaves in V̂ meet both L0 and L1. Let p be
a periodic point in L0 ∩ I(V ). As we mentioned before its center
leaf meets L1, and the same happens for all points in its stable and
unstable manifolds. Now stable and unstable manifolds of a periodic
point are dense in each plaque of L0 (Proposition 2.8). So the set
of points in L0 whose center leaf does not reach L1 is contained in a
totally disconnected set.

Let us suppose that x0 is a point in L0 whose center leaf does
not reach L1. Then, since center curves of points of the intersticial
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region clearly reach the boundary, W c(x0) is contained in G(V ). Take
a small rectangle R in L0 around x0 formed by arcs of stable and
unstable manifolds of a periodic point. Moreover, we can assume
that the center curves of the points of R0 reach L1. Of course, the
image is another rectangle R1 formed by stable and unstable arcs.
Then, the center arcs of the points of R0 and the interiors of R0 and
R1 form a 2-sphere S. Since Rosenberg’s theorem [23] remains valid

in this setting and V̂ is foliated byWcs that is Reebless and transverse
to the boundary, we have that V̂ is irreducible. Then, S bounds a
ball B. Now, since W c(x0) does not reach L1 and is contained in B,
it accumulates in B but Novikov’s Theorem implies the existence of
a Reeb component, a contradiction. �

Theorem 4.1 implies that any non trivial invariant sub-lamination
Λ ⊂ Γ(f) without compact leaves can be extended to a foliation of M
without compact leaves. Indeed, any complementary region V is an
I-bundle, and hence it is diffeomorphic to the product of a boundary
leaf times the open interval: L0 × (0, 1). The foliation Ft = L0 × {t}
induces a foliation of V .

This has the following consequence in case the fundamental group
of M is nilpotent:

Proposition 4.4. If M is a compact 3-manifold with nilpotent fun-
damental group, and ∅ ( Λ ( M , is an invariant sub-lamination
of Γ(f), then there exists a leaf of Λ that is a periodic 2-torus with
Anosov dynamics.

Proof. If Λ has a compact leaf, let us consider the set Λc of all compact
leaves of Λ. Λc is in fact an invariant sub-lamination, due to Theorem
2.2. Hence Proposition 2.8 implies that the boundary leaves of Λc are
periodic 2-tori with Anosov dynamics, and we obtain the claim.

If, on the contrary, Λ does not have compact leaves, then due to
Theorem 4.1 above, we can extend Λ to a foliation F of M without
compact leaves. In particular, F is a Reebless foliation. Item (2) of
Theorem 2.1 implies that for all boundary leaves L of Λ, π1(L) injects
in π1(M), and is therefore nilpotent.
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Now, this implies that the boundary leaves can only be planes
or cylinders. Theorem 2.8 implies that stable and unstable leaves
of periodic points are dense in those leaves, which is impossible for
the case of the plane or the cylinder. Therefore, Λ must contain a
compact leaf, and due to what was shown above, it must contain a
periodic 2-torus with Anosov dynamics. �

In fact, Theorem 1.6 implies that periodic 2-tori with Anosov dy-
namics are not possible in 3-manifolds with nilpotent fundamental
group, unless the manifold is T3. Hence the hypotheses of Proposi-
tion 4.4 are not fulfilled, unless the manifold is T3. This will eliminate
case (2) mentioned at the beginning of this section.

5. The trichotomy of Theorem 1.7

In this section we will prove Theorem 1.7. This theorem and the
results in this section are valid for any 3-manifold M , and do not
require that its fundamental group be nilpotent. Moreover, Theo-
rem 3.1 does not even require the existence of a partially hyperbolic
diffeomorphism.

Let T be an embedded 2-torus in M . We shall call T an Anosov
torus if there exists a homeomorphism g : M→M such that T is
g-invariant, and g|T is homotopic to an Anosov diffeomorphism.

Also, let S be a two-sided embedded closed surface of M3 other
than the sphere. S is incompressible if and only if the homomorphism
induced by the inclusion map i# : π1(S) ↪→ π1(M) is injective; or,
equivalently, after the Loop Theorem, if there is no embedded disc
D2 ⊂ M such that D ∩ S = ∂D and ∂D � 0 in S (see, for instance,
[12]).

Recall that Theorem 3.1 says that Anosov tori are incompressible.
We insist that this theorem is general, and does not depend on the
existence of a partially hyperbolic dynamics in the manifold.

We also need the following fact about codimension one laminations.

Theorem 5.1. Let F be a codimension one C0-foliation without com-
pact leaves of a three dimensional compact manifold M . Then, F has
a finite number of minimal sets.
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We are now in position to prove Theorem 1.7 of Page 143:

Proof of Theorem 1.7. If Γ(f) = M then there are no Reeb compo-
nents. Indeed, since f is conservative, if there were a Reeb compo-
nent, then its boundary torus should be periodic. We get a contra-
diction from Theorem 3.1. This gives case (3) except the minimality.

Let us assume that Γ(f) 6= M . If Γ(f) contains a compact leaf then
the set of compact leaves is a sub-lamination Λ of Γ(f) by Theorem
2.2. Proposition 2.8 implies that the boundary leaves of Λ are Anosov
tori, and we obtain case (1) as a consequence of Theorem 1.6.

If Γ(f) 6= M and contains no compact leaves, then Theorem 4.1
and Proposition 2.8 give us case (2).

Finally we show minimality in case (3). On the one hand, if Γ(f) =
M and has a compact leaf we have two possibilities: either all leaves
are compact or not. If not then, the previous argument implies the
existence of an Anosov torus and we are in case (1). If all leaves
are compact, as we mentioned before, the manifold is a torus bundle
and the hyperbolic dynamics on fibers implies that we are again in
case (1). On the other hand, if Γ(f) has no compact leaves and has
a minimal sub-lamination L, we have that L is periodic (recall that
minimal sub-laminations of a codimension one foliation are finite,
Theorem 5.1). Then, we are again in case (2). �

6. Nilmanifolds

This section deals with the proof of Theorem 1.4. Let f : M→M
be a conservative partially hyperbolic diffeomorphism of a compact
orientable three dimensional nilmanifold M 6= T3. As consequence
of Proposition 4.4 and Theorems 1.6 and 1.7 we have that Es ⊕ Eu

integrates to a minimal foliation F su if f does not have the acces-
sibility property. Indeed the only possibilities in the trichotomy of
Theorem 1.7 are (2) and (3) and Proposition 4.4 says that there is an
Anosov torus if we are in case (2). But this last case is impossible for
a nilmanifold M 6= T3. In this section we shall give some arguments
showing that the existence of a minimal foliation tangent to Es⊕Eu

leads us to a contradiction. In [20] the reader can find a different
proof of the same fact. Without loss of generality we may assume,
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by taking a double covering if necessary, that F su is transversely ori-
entable. Observe that the double covering of a nilmanifold is again a
nilmanifold.

The first step is that Parwani [16] proved (following Burago-Ivanov
[3] arguments) that the action induced by f in the first homology
group of M is hyperbolic. By duality the same is true for the first
cohomology group.

The second step is given by Plante results in [17] (see also [13]).
Since F su is a minimal foliation of a manifold whose fundamental
group has non-exponential growth there exists a transverse holonomy
invariant measure µ of full support. This measure is unique up to
multiplication by a constant and represents an element of the first
cohomology group of M . The action of f leaves F su invariant and
induces a new transverse measure ν, an image of former one. The
uniqueness implies that ν = λµ for some λ > 0. Since of the action
of f on H1(M) is hyperbolic, then λ 6= 1. Suppose that λ > 1 (if the
contrary is true take f−1).

The third step is to observe that λ > 1 implies that f is expanding
the µ measure of center curves. Since µ has full support and the
su−bundle is hyperbolic we would obtain that f is conjugated to
Anosov leading to contradiction with the fact that M 6= T3.

7. M = T3

In this section we present the results announced by Hammerlindl
and Ures on Conjecture 1.3, that the nonexistence of nonergodic par-
tially hyperbolic diffeomorphisms homotopic to Anosov in dimension
3. They are able to prove the following result.

Theorem 7.1 ([11]). Let f : T3 → T3 be a C1+α conservative par-
tially hyperbolic diffeomorphism homotopic to a hyperbolic automor-
phism A. Suppose that f is not ergodic. Then,

(1) Es × Eu integrates to a minimal foliation.
(2) f is topologically conjugated to A and the conjugacy sends

strong leaves of f into the corresponding strong leaves of A.
(3) The center Lyapunov exponent is 0 a.e.
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We remark that it is not known if there exists a diffeomorphism
satisfying the conditions of the theorem above.

Now, in order to prove Conjecture 1.3 we have two possibilities:
either we prove that a diffeomorphism satisfying the conditions of
Theorem 7.1 is ergodic or we prove that such a diffeomorphism cannot
exist. Hammerlindl and Ures announced that if f is C2 and the center
stable and center unstable leaves of a periodic point are C2 then, f
is ergodic.
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de investigación, aśı como art́ıculos de tipo survey, anuncios, y otros
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Semisimple Hopf algebras and their representations
SONIA NATALE 123

An example concerning the Theory of Levels for codimension-one
foliations
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