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CENTRAL LIMIT THEOREM FOR THE NUMBER OF
CROSSING OF RANDOM PROCESSES

JEAN-MARC AZAIS

1. INTRODUCTION

This course presents the application of the Malevich [15],Cuzick [6] Berman
[4] method for establishing a central limit theorem for non linear functional of
Gaussian processes (see Section 3).These methods have been introduced in the 70’s
for studying zero crossing of stationary processes or the sojourn time of a stochastic
process. We present here mainly its application to the number of roots of random
processes. The basic argument is the approximation of the original process by a m-
dependent process (see Section 3). Section 2 presents a short memento of crossings
of process and the calculation of their moments. Our main tools and results are
presented in Section 3. Section 4 presents generalizations and applications to some
particular processes, in particular random trigonometric polynomials and specular
point in sea-wave modeling.

2. BASIC FACTS ON CROSSINGS OF FUNCTIONS

This section contains preliminary results almost without proofs. They can be
found for example in Azals and Wschebor [3].

For simplicity all the functions f(t) considered are real and of class C1. If I is a
real interval we will define:

Nu(fI) = #{t eI f(t) =u}.

N.(f,I), (N, for short in case of no ambiguity) is the number of crossings of the
level w or the number of roots of the equation f(t) = w in the interval I. In a
similar way, we define the number of up-crossings or down crossings:

Uu(f, 1) = #{t €15 f(t) =u, f(t) >0}
Du(fI)i=#{t €1: f(t)=u, f(t)<0}.

Down-crossings will not be considered in the sequel since the results are strictly
equivalent to those for the up-crossings.

We will say that the real-valued function f defined on the interval I = [t1, 9]
satisfies hypothesis Hy ,, if:

e f is a function of class C';

o fltr) #u, f(t2) # us
o {t:tel, f(t)=u, f'(t)=0}=0.
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Proposition 1 (Kac’s counting formula). If f satisfies Hy ., then

. 1 ’
(1) Nu(f,1) = %%%[l{lf(t)—uké} | (2)] dt.

The Kac counting formula has a weak version that will be useful

Proposition 2 (Banach formula). Assume that f is only absolutely continuous.
Then for any bounded Borel-measurable function g : R — R, one has:
+oo

(2) N (£, 1) glu) du = / FOlg(f(0)) d.

— 00
This formula is a version of the change of variable formula for non one-to-one
functions.
From these formula we deduce by passage to the limit the Rice formula that
gives the factorial moments of the number of (up-) crossings. For simplicity we
limit to the Gaussian case and to the first two moments.

Theorem 3 (Gaussian Rice formula). Let X = {X(¢) : t € I}, I a compact interval
of the real line, be a Gaussian process having C'-paths.

e Suppose that for every point t € I the variance of X (t) does not vanish.
Then

3) B(V) = [ BIXOX0) = s (i

and the expression above is finite.
e Suppose that

(4)  for every s #t € I, the distribution of (X (s), X (t)) does not degenerate .
Then

) BN, = 1) = [ BIXGIXO[X() = X0) = u)pxco.xo (w0
and the expression above may be finite or infinite.

Remarks: We have the same kind of formulas for the up-crossings if we replace
| X' (t)] by the positive part (X'(¢))7.

In case of stationary processes, assuming that the process is centered with vari-
ance 1, (3) takes the simpler form

\/%¢

E(N,) = 2E(U,) = || NG

(u),

where ¢(.) is the standard normal density.

A very important issue is the finiteness of the second (factorial) moment. For
stationary processes a necessary and sufficient condition (in addition to (4)) is given
by the Geman condition: let I'(.) be the covariance of the process and define the
function 6(.) by means of

2
N(r) =EXHX(t+71))=1- AQQT +6(7).
The Geman condition [5]is
0/
(6) / (;—) dr converges at 7 = 07,
T

More precisely we have the bound
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Proposition 4. Let X(t) be a stationary Gaussian process with E(X(t)) = 0,
Var(X (t)) = 1. Let T'(.) be its covariance function, we assume that for every T > 0,
(1) # £1 and the Geman condition. Let U, = U,([0,T]), then

E((U.)(Uu — 1))
T
= 2/0 (T = DE(X(O)|IX"(7)]||X(0) = X(7) = u) X px(0)x(r) (u, u)dT

<2 /T(T Ao
0

T2

Remark that because of the Rolle theorem: N, < 2U, + 1, thus the proposition
above also gives a bound for the variance of the number of crossings.

3. CENTRAL LIMIT THEOREM FOR NON-LINEAR FUNCTIONALS

Our next main tool will be chaos expansion and Hermite polynomials. These
polynomials are orthogonal polynomials for the Gaussian measure ¢(z)dz where ¢
is the standard normal density. The nth Hermite polynomial H,, can be defined by
means of the identity:

exp(te —t2/2) = ZH

We have for example Hy(x) =1, Hy(z) = =, Hg(x) =a2-1.
For F in L?(¢(z) dz), F can be written as

x) = i anH,
n=0

1 o0
an:*'
n:

with
[ Py (i,

and the norm of F in L?(¢p(x)dx) satisfies

o
IFI3 = annl.
n=0

The Hermite rank of F' is defined as the smallest n such that a, # 0. For our
purpose, we can assume that this rank greater or equal than 1.

A useful standard tool to perform computations with Hermite polynomials and
Gaussian variables is Mehler’s formula which we state with an extension (see Leén
and Ortega, [13]).

Lemma 5 (Generalized Mehler’s formula). (a) Let (X,Y) be a centered Gaussian
vector E(X?) = E(Y?) =1 and p = E(XY). Then,
B(H;(X)Hy(Y)) = dj0”.
(b) Let (X1, Xo, X3, X4) be a centered Gaussian vector with variance matriz
1 0 p13 pu
|0 1 ps pu

p13 p23 1 0
pia paa 0 1
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Then, if r1 + 19 =73 4+ 74,

’1"1!7‘2!7“3!7“4! 3
E(H’f‘l (Xl)H""Z(XQ)HT‘S(X3)HT4(X4)) = § d 'd 'd 'd 'piiépiiipg%pii?
1-:d2:043:a4:
(d1,d2,d3,d4)EZ

where Z is the set of d;’s satisfying: d; > 0;
(7) d1—|-d2=’l“1;d3+d4:’l“2;d1+d3=7“3;d2+d4=7"4.

If r1 4+ ro # r3 + 14 the expectation is equal to zero.
Notice that the four equations in (7) are not independent, and that the set Z s
finite and contains, in general, more than one 4-tuple.

Wiener chaos. Let L?(£2, A, P) be the space of square integrable variables gener-
ated by the process X (¢),t € R. This Hilbert space is the orthogonal sum of the
Wiener chaos of order p, p =0,...,n,...: H,. H, is defined as the closed linear
subspace of L*(Q, A, P) generated by the variables H,(X(t)),t € R. In particular
the space H; is simply the Gaussian space associated to X (t). A good reference on
this subject is the Nualart book [16].

3.1. A first central limit theorem. Let X = {X(¢) : t € R} be a centered real-
valued stationary Gaussian process. Without loss of generality, we assume that
Var(X (t)) =1Vt € R. We want to consider functionals having the form:

(8) T, := 1/t/O F(X(s))ds,

where F is some function in L?(¢(x)dx).

Set p := E(F(Z)), Z being a standard normal variable. p is well defined. The
Maruyama Theorem implies that if the spectral measure of the process X (¢) has
no atoms, it is ergodic and T} converges almost surely to . Our aim is to compute
the speed of convergence and establish for it a central limit theorem.

For the statement of the next result, which is not hard to prove, we need the
following additional definition.

Definition 6. Let m be some positive real, the Gaussian process {X(t) : t € R} is
called “m-dependent” if Cov(X (s), X(t)) = 0 whenever |t — s| > m.

An example of such a 1-dependent process is the Slepian process which is sta-
tionary with covariance T'(t) = (1 —¢)™.

Theorem 7 (Hoeffeding and Robins [7]). With the notations and hypotheses above,
if the process X (t) is m dependent, then

¢
ﬂ(l/t/ F(X(s)) — uds) — N(0,0?) in distribution as t — oo,
0

where

1 m
o? = —Var(/ F(X(s))ds).
m 0

The proof is easy by the ”shortening method”: we cut [0, T] into smaller intervals
separated by gaps of size m giving the independence.

Our aim is to extend this result to processes which are not m—dependent. The
proof we present follows Berman [4] with a generalization, due to Kratz and Leén
[10] , to functions F in (8) having an Hermite rank not necessarily equal to 1.
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For € > 0, we will approximate the given process X (t) by a new one X, (t) which
is 1/e-dependent and estimate the error.

As an additional hypothesis, we will assume that the process X (¢) has a spectral
density f(\). It has the following spectral representation:

(9) X(t) = \@/Ooo [cos(EA)\/ F(N)dW1(X) + sin(tX)y/ f(A)dW2(N)],

where W7 and Wy are two independent Wiener processes (Brownian motions).
Indeed, using isometry properties of the stochastic integral, it is easy to see that
the process given by (9) is centered, Gaussian and with the good covariance:

() = E(X ()X (s + 1))

=2 /OO cos(As) cos(A(t + ) f(A)dA + 2 /00 sin(As) sin(A(t + s)) f(A)dA
0 0

—9 /O cos(AE) F(A)dA.

Define now the function ¢(.) as the convolution Tj_y 1y T;_1 1y. This function
is even, non negative, ¥(0) = 1, has support included in [—1, 1] and a non-negative
Fourier transform. Set ¢.(.) := 1¢(c.) and let 9. be its Fourier transform. Define

(10) X<( f/ COS(EN A/ f # e (A) AW (A) + sin(EN)\/ £ * D (A)dWa(N)],

where the convolution must be understood after prolonging f as an even function
on R. The covariance function I'. of X¢(t) satisfies T'c(¢) = I'(¢)1(et). This implies
that the process X¢(t) is %—dependent. We have the following proposition:

Proposition 8. Let X be a centered stationary Gaussian process with spectral
density f(\) and covariance function T with T* € LY(R), ¢ positive integer. Let
Xc(t) be defined by (10). Then

2

(11) lim lim E [\2/0 (Hy(X(s)) — Hy(X%(s)))ds| = 0.

e—0t—o00

Theorem 9. Let X be a Gaussian process satisfying the hypotheses of Proposition
8 and F a function in L*(¢(z)dz) with Hermite rank ¢ > 1. Then, as t — +o0,

VT, = \[/ F(X(s))ds — N(0,02%(F)) in distribution
where
:2Zakk'/ T*(s)ds.
Proof:
M 1 t
Define Fy; = Zaan(x) and TM = ?/ Frp(X(s))ds. Let M = M(§) > ¢
n=>~{ 0

such that

2 i az < 6.

k=M+1
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Using Mehler’s formula, we get

e} t o0 ]
t Var(T, - TM) =2 czk!/ (1 - 2Tk (s)ds < 2 > cik!/ IT|* (s)ds
k=M 0 t k=M 0

<5/ | (s)ds.
0

Since § is arbitrary, we only need to prove the asymptotic normality for 7M. Let
us introduce

1 t
T = / Far(X4(5))ds,
0

where X_(t) has been defined in (10). By Proposition 8 recalling that for k > I, T'*
is in L'(R) since I'* is, we obtain:

lim lim ¢ Var(TM — 1<) = 0.

e—0t—o00
Now Theorem 7 for m- dependent sequences implies that v/% TtM’E is asymptotically
normal. Notice that

M 1
T Mey _ 2 “ 1k
OMe = tlg(r)lo tVar(T;" %) = 2kz_0akk!/0 I'Y(s)ds

and that oy — 0%(F) when € — 0 and M — oo, giving the result. [

3.2. Hermite expansion for crossings of regular processes. Our aim is to ex-
tend the result above to crossings. Let X (¢) be a centered stationary Gaussian pro-
cess. With no loss of generality for our purposes, we assume that I'(0) = —I'(0) = 1
and T'(t) # £1 for t # 0. We also assume Geman’s Condition (6).

A
rt)y=1- t2/2 +6(t) with / 9t(2t) dt converges at 0.

We define the following expansions
(12) vt = apHp(z), o =Y bpHi(x), |z[= ceHi().
k=0 k=0 k=0

We have a1 = 1/2, by = —1/2, ¢; = 0 and using integration by parts for k£ > 2:
_ 1 o rHy(x)p(x)dr = #H (0)
TRy TR ey

The classical properties of Hermite polynomials easily imply that for positive k:

ag

a2k4+1 = bag41 = cap41 =0,
(71)k+1
b2k == )
Vam2kkl(2k — 1)

Co) = 2a2k.

a2k =

We have the following Hermite expansion for the number of up-crossings:
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Theorem 10. Under the conditions above,

SIS T
U= Uu(X,0,T) = 35 d(wyan / H, (X () Hi(X(s))ds a.s.
§=0 k=0 0
where d;(u) = %q&(u)Hj(u) and ay, s defined by (12). We have similar results,
replacing ay, by by or ck, for the number D, ([0,T]) of down-crossings and for the
total number of crossings N, ([0,T7).

Proof : Let g(.) € L?(¢(z)dx) and define the functional

770 = [ o(X ()X )i

The convergence of the Hermite expansion implies that a.s.

(13) T =3 g5 / H, (X (3)) Hi (X (5)) ds,

§=0 k=0

where the g;’s are the coefficients of the Hermite expansion of g. Using that for
each s, X (s) and X'(s) are independent, we get:

19 B[ [ o)) = 3 ga (X)X )] ds]
0 5, k>0:k4+5<Q
< (const)t? Z j!g?k!ai.
7,k>0:k4+5>Q
On the other hand, using the Geman condition
va(u, T) i= B(U, ([0, T (U ([0, T]) — 1)) < +ox.

For every T, vo(u,T) is a bounded continuous function of w and the same holds
true for E(U2). Let us now define

1 T
U,g = %/ ][\X(t)fu|§§Xl+(t)dt
0

In our case, hypotheses of Proposition 1 are a.s. satisfied. The result can be easily
extended to up-crossings, showing that

Ul = U, as. as § — 0.

By Fatou’s Lemma
E((U.)%) < lim inf B((US)?).

To obtain an inequality in the opposite sense, we use the Banach formula (Propo-
sition 2). To do that, notice that this formula remains valid if one replaces in the
left-hand side the total number of crossings by the up-crossings and in the right-
hand side |f/(¢)] by f'T(t). So, on applying it to the random path X(.), we see

that:
U6

u = % s Uagdl'

Using Jensen’s inequality,

u+48
limsup E((U])?) < limsup i/ E((U,)?)dz = E((U.)?)
6—0 6—0 26 u—=0
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So, E((Ug)Q) — E((Uu)Q) and since the random variables involved are non-
negative, a standard argument of passage to the limit based upon Fatou’s Lemma
shows that U’ — U, in L2.

We now apply (13) to U?.

o0

(15) U =Y di(uw)arn,

J,k=0

where d‘;(u) are the Hermite coefficients of the function = ~ %][”x,uugg and

Gk = / H,(X () Hy (X' (5)) ds.

Notice that

1
(16) d}(u) — ﬁ¢(U)Hj (u) = d;(w).
This implies that:
(17) Z akCJk

Theorem 11. Let {X(t) : t € R} be a centered stationary Gaussian process veri-
fying the conditions at the beginning of this subsection. Furthermore, let us assume
that:

+oo +o0 +o00
(18) /0 |F(t)\dt,/0 |F’(t)\dt,/0 T (#)]dt < oo,

Let {gr}r=0,1,2,... a sequence of coefficients which satisfies ) oo k:' < 00. Put:
F = \[ Z g]ak/ H;( Hi(X'(s))ds
k,720

where ay, has been defined in (12). Then
Fy — E(F}) — N(0,0%) in distribution as t — 400

where
oo
0<o®= Zaz(q) < 00,
q=1

and

22 Z akak' Jq—k9q—k’

k=0k'=
+oo
/ B[y (X (0)) Hy (X' (0) Hy (X () Hys (X (5))] ds.

The integrand in the right-hand side of this formula can be computed using Lemma
5. Similar results exist, mutatis mutandis, for the sequences {by} and {ci}.
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A consequence is

Corollary 12. If the process X (t) satisfies the conditions of Theorem 11 then, as

T — 400
1 e~u’/2
7T (Uu([O, T)) - T ) — N(0,0%) in distribution
i
1 efu2/2 )
ﬁ(Nu([O,T]) -T - ) — N(0,03) in distribution,

where 0 and o2 are finite and positive.

Remark The result of Theorem 11 is in fact true under weaker hypotheses
namely

+oo +oo
/ ID()|dt < o, / D72 (8)|dt < o,
0 0

see Theorem 1 of Kratz and Leén [11] or Kratz [9].See also Azais and Leon [1] for
another generalization where the integral fR ['(t)dt is defined only in a generalized
sense. Our stronger hypotheses make it possible to make a shorter proof.

Proof of the theorem:

Since T' is integrable, the process X admits a spectral density. The hypotheses
and the Riemann-Lebesgue lemma imply that:

) -0 i=0,1,2 ast— +oo.
Hence, we can choose T so that for ¢ > Ty
(19) L(t) := sup{[T(®)[, L") [T (#)[} < 1/4.

Step 1. In this step we prove that one can choose @) large enough (and that
doesn’t depend on t) so that F; can be replaced with an arbitrarily small error (in
the L? sense) by its components in the first @ chaos

Q q t
1 .
FR .= — E G} with G} := E gq,kak/ H, (X (s))Hp(X'(s))ds.
Vi =0 =0 0
Let us consider

1 1 s
20 E(GH) =1/t 3 grangywan [ dn
0

k,k'=0

'/OtE(Hqk(X(tl))Hk(X'(tl))Hqk'(X(tz))Hk'(X/(tz))dtz

To give an upper-bound for this quantity we split it into two parts.
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The part corresponding to [t; — ta| > Tp is bounded, using Lemma 5, by

q
(21)  (const) Y |gg—kllarllgg—w|lar|
k=0

o D SR A R eI

dqldo)dsldy!
To (dy dy ds,da) € Z Pt

q
< (const) Z |9q—k|lar!|gq—r||ar|
k,k'=0
e
7 dq1'ds!dsldy! 4

)(q 1)p( )ds,
dy,d2,d3,ds)EZ

where Z is as in Lemma 5, setting ry = q—k, 7o = k,r3=q—k',ry = k'

1 2’c k(g — k)K" (g — k).
Remarking that sgp m S it follows that dldodald,]
is bounded above by 29(k")!(¢—k’)! or 29(k)!(¢—k)! depending on the way we group
terms. As a consequence it is also bounded above by 29./(k')!(q — k')!(k)!(q — k)!
and the right-hand side of (21) is bounded above by

in (21)

(22)

q “+o00
(const) > 1gq-tllarllge—wllar g2~/ (k") (g — K)I(k) (g — k)!/ L (t)dt
k,k/=0 0

< (const) Y |gq—kllarllge—w|lar |/ (K)1(q = k)1 (k) (g — k)!

k,k'=0

where we have used that the number of terms in Z is bounded by gq.

On the other hand, the integration region in (20) corresponding to |t; —t2| < Tp
can be covered by at most [t/Ty] squares of size 2T. Using Jensen’s inequality as
we did for the proof of (14) we obtain:

q
(23) E((GgTo)2) (const)Tg Z k)klg? _paq.
k=0
Finally,
q
((Gq ) (const) Z k)klg? paq,
k=0

which is the general term of a convergent series. This proves also that o2 is finite.
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Step 2. Let us prove that o2 > 0. It is sufficient to prove that o?(2) > 0. Recall
that a; = 0 so that

+oo
<m>ﬁm:ﬁ£A E(Hy (X (0)) Ha(X(s))ds
+o00
*ﬁﬁl B(Hy (X' (0)) Ha (X' (s))ds
+oo
—|—2Cl0926lggo/0v E(HQ(X(O))HQ(X/(S))CZS

Using the Mehler formula

+oo
(25) o?(2) = 2@%93/0 I?(s)ds

—+oo

+oo
+ 2a347 / (I (s))*ds + 4aggaa29o / (I'(s))?ds
0 0

+oo
- / (Xaggs + A*2a0g2a290 + agg®) F2(A)dA

— 00

+oo
= / ()\2a2g0 + a092)2f2()\)d)\ > 0.

—0o0

Step 3. We define ¢(.) = K(][[l/411/4])*4, where the constant K is chosen such
that ¢(0) = 1. Then we define X¢(t) using (10). The new definition of v(.) ensures
now that X¢(t) is differentiable. Define

Q

1
FPf = Vi ZG?Ea

~

q=0

with
G{© = quﬂcak/ Hq*k(XE(S))Hk((Xa)/(s))ds'
k=0 0

In this step, we prove that FtQ can be replaced, with an arbitrarily small error if &
is small enough, by FtQ’E. Since the expression of FtQ involves only a finite number
of terms having the form:

KO oy = % /0 Hy (X () Hi (X'(s)) ds

if € is small enough, one can replace with an arbitrarily small error by

nn = | H X ) () (3)) s
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For that purpose we study
E(Kgsz,k - Kefk,k)Q

=2 [ B [H (X0 H (X (0) Hy (X () Hi (X' (9)|
0

B[ Hy (X7 (0) i (X°) (0)) Hy e (X¥ () Hi ((X°) (5))]

— 2B Hy (X (0)) i (X'(0)) Hy (X7 (5)) Hi (X7 (5)) ] ds.

Consider the computation of terms of the kind

@) [ R H e (A0 H (0) i (V) () s

where the processes Y7(t) and Y3(¢) are chosen among {X(t), X¢(¢)}. It suffices
to prove that all these terms have the same limit, as t — 400 and then ¢ — 0
whatever the choice is.

Applying Lemma 5, the expectation in(26) is equal to

t — S — .2 .2
/0 - X %W)WP'(S)W<fp'(s>)d3<fp"<s>>d4ds,
dy,...,ds€Z

where p(.) is the covariance function between the processes Y7 and Y2 and Z is
defined as in Lemma 5. Again, since the number of terms in Z is finite, it suffices
to prove that

(p() (P ()55 (p" (5)) M ds,

where (dy,...,dy4) is chosen in Z, does not depend on the way to choose Y; and
Y2. p is the Fourier transform of (say) g(A) which is taken among f()); f

D-(N) or /T f *=(A). Define g(A) = irg(A) and G(A) = —A2g(A). Then
(p(s))%(p'(5))%2F43(p"(s))% is the Fourier transform of the function
h(Y) = g7 () # 7= (0) < T ().

The continuity and boundedness of f imply that all the functions above are bounded
and continuous. The Fubini theorem shows that

bty _ g Tl —cosA A
A p(s)d1pl(8)d2+d3 (p//(s))d4d3 = / Th(7)7

t - t

t
. . t—s
lim lim

e—>0t—00 0

As t — 400, the right-hand side converges, using dominated convergence, to

T 1 —cos A
/ ESE 2 h(0)dn

The continuity of f now gives the result, as in Proposition 8.

— 00

Proof of Corollary 12:
Some attention must be payed to the fact that the coefficients

d;(u) = %ab(u)Hj(u)
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do not satisfy Z;ioj!d? (u) < co. They only satisfy the relation
(27) j!d? (u) is bounded

First, considering the bound given by the right-hand side of (22), we can improve
it by reintroducing the factor ¢279 that had been bound by 1. We get that in its
new expression this right-hand side is bounded by

q

(const)q2™® S |y (W)l axldy—r (') ase |/ (R (g — R)IR) g — )Y
k,k'=0

(dg—r(w)) a2 (k)!(q — k)!

M=

< (const)q*271

E
I

0

< (const)q*271> aik! < (const)q*27%.

M=

ES
Il

0

Second we have to replace the bound (23). Since the series in (17) is convergent

E((GgTO)Q) is the term of a convergent series and this in enough to conclude. N

4. APPLICATIONS AND EXTENSIONS

In an unpublished manuscript, Stephane Mourareau has extended the result of
Corollary 12 to the case of moving level urp.
Theorem 13. Let up be a moving level that tends to infinity with T. Suppose that

o The process X (t) is m-dependent
o

E(U;) —» o

TQWG%”*V;MWD:N&ﬁ)

The variance is now simple and explicit and it corresponds to the Poissonian
limit (the variance is equal to the expectation) known as the Vlokonskii- Rozanov
theorem.

Then

Theorem 14. Assume the conditions of Theorem 11 except (18) which is now
replaced by the very weak Berman’s condition

I'(r)log(T) = 0 as T — oo.

Let ur be a movinf level such that E(Uut) = X\ where X\ is some constant. Then U,,
converges to a Poisson distribution with parameter \.

This is a simplified version, the full one establishes a functional convergence of
the point process itself.
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4.1. Random trigonometric polynomials. Let X (t) be the stochastic process
with covariance
sin(t)

r) ==

Since the covariance is not summable in the Lebesgue sense, it does not satisfy
strictly the conditions of Corollary 12. But in fact the integral

/R T(t)dt

can be defined by passage to the limit and it can be checked that the result holds
true.
Let Xy (t) the sequences of random trigonometric polynomials given by

1
X ( =
where the a,,,b,’s are independent standard normal.

it is easy to check that for each N, Xy (t) is a stationary Gaussian process with
covariance:

N
Z ap sinnt + by, cosnt),

|5

(N + 1)7')

2 sin

sin(

) .

o 1
(28) Tx,(7) :=E[Xn(0)Xy Z cosnT = — cos(

0[S [N

We define the process
Yin(t) = Xn(t/N),
with covariance
I'yy (1) =Txy(7/N).
The convergence of the Rieman sum to the intergral implies that
Ty, (1) = I'(7) :=sin(r)/7 as N — +0o0

And the have the same type of control for the derivatives. The main argument of
Azais and Ledn [1] is a construction of the process Xy (t) as well as the limit X (¢)
in the same probability space to get that the Central limit theorem for the crossings
of X (t) pass to those of Xn(t) . It gives a generalization of a paper by Grandville
and Wigman [8]

Theorem 15. With the notation above

(1) le (V25 (1) — BN () :>N(07%u2¢2(u)+203(u)),
1

() = (N (1) =~ BN () = N (0, 5026%(0) + 3 02 (u)

V2N

where = is the convergence in distribution as N — oo and ag(u) 1s the variance of
the part in the qth chaos.
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4.2. Specular points. A different case of central limit theorem is given by the
number of specular points. These are point of the surface of the sea that appear
in bright on a photo. We use a cylinder model: time is fixed; the variation of the
elevation of the sea W(x) as a function of the space variable = is modeled by a
smooth stationary Gaussian process; as a function of the second space variable y
the elevation of the sea is supposed to be constant.

Suppose that a source of light is located at (0, h1) and that an observer is located
at (0, ho) where hy and he are big with respect to W (z) and z. Only the variable x
has to be taken into account and the following approximation, was introduced long
ago by Longuett-Higgins [14]: the point x is a specular point if

1,1 1
W (2) ~ kz, with k := (h1+h2).

This is a non stationary case: there are more specular points underneath the ob-
server. In particular if SP(I) s the number of specular points contained in the
interval I,

(29) N) = [ Gk VA) el )

where Ay, A4 are the spectral moments of order 2 and 4 respectively that are assumed
to be finite; G(u, o) := E(|Z|), Z with distribution N(u,o?).

An easy consequence of that formula is that

. Gk, VM) 221
E(SP):=E(SPR)) = A ~ —
as k tends to 0.

As a consequence the number of specular point is almost surely finite and the
Central Limit Theorem may only happen in the case where £ — 0,i.e. when the
locations of the observer an the source of light are infinitely far from the surface of
the sea.

The central limit theorem is now established using Lyapounov type conditions
for Lindeberg type Central Limit Theorem for triangular arrays.

Theorem 16. Under some conditions (see Azais Ledn and Wschebor (2] for de-
tails), as k — 0,

41

T k

0/k

where 0 is some (complicated ) constant.

= N(0,1), in distribution,
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