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COALITIONS OF PULSE-INTERACTING DYNAMICAL UNITS

ELEONORA CATSIGERAS

ABSTRACT. We prove that large global systems of interacting (non necessarily
similar) dynamical units that are coupled by cooperative impulses, recurrently
exhibit the so called grand coalition for which all the units arrive to their
respective goals simultaneously. We bound from above the waiting time until
the first grand coalition appears. Finally, we prove that if besides the units
are mutually similar, then the grand coalition is the unique subset of goal-
synchronized units that is recurrently shown by the global dynamics.

1. INTRODUCTION

We study the global dynamics of a network N composed by a large number m of
dynamical units that mutually interact by cooperative (i.e. positive) instantaneous
pulses.

One of the most cited examples of the type of phenomena that we are contribut-
ing to explain mathematically along this work, is the large scale synchronization
of the flashes of the fireflies “Pteroptyx malaccae”: a large number of individuals
flash periodically all together after a waiting time when they meet together on
trees, with neither an external clock nor privileged individuals mastering the global
synchronization [11].

We are motivated on the study of the dynamics of such global systems to ob-
tain abstract and very general mathematical results, that are independent of the
concrete formulae governing the dynamics, and require very few hypothesis. They
prove at once the synchronization phenomena found in many particular cases whose
previous study were based on and used concrete formulae and restrictive hypothesis.
For instance, they are applicable to some models used in Neuroscience for which
numerical formulae were needed to know the individual dynamics of the neurons
(see for instance [2, 12, 14, 18, 24]).

The mathematical study of the global dynamics of abstract and general net-
works composed by mutually interacting units has a large diversity of concrete
applications to other sciences and technology. As said above, they are widely used
in Neuroscience. They have also applications to Engineering, for instance in the
design and construction of some systems used in communications [28, 29]; also in
Physics, for instance to study systems of light controlled oscillators [22, 23], and
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in the research of the evolution of physical lattices of coupled dynamical units of
different nature [8, 27]. They have other important applications to Biology, for
instance in the research of mathematical models of genetic regulatory networks [9];
to Ecology, in the study of the equilibria of some eco-systems evolving on time
[13, 26]; to Economy and other Social Sciences in the research of coupled networks
of different agents, individuals or coalitions of individuals, for instance by means of
evolutive Game Theory [19, 1].

While not interacting with other units of the network, each unit ¢ € {1,2,...,m},
which we also call “cell”, evolves governed by two rules that determine the “free
dynamics of ¢”: the relaxation rule and the update rule, which we will precisely
define in Subsection 2.1. While the units are not interacting, the dynamics of the
network is the product dynamics of its m units, which evolve independently one
from the other. But at certain instants, at least one unit ¢ changes the dynamical
rules that govern the other units j # i. The instants when each unit i acts on
the others are exclusively determined by the state x; of i. The pulsed coupling
hypothesis assumes that any action from ¢ to j # i is a discontinuity jump in the
instantaneous state of the cell j according to the interactions rules which we will
precisely define in Subsection 2.1.

The free dynamics rules and the instantaneous interactions rules, as well as the
mathematical results that we obtain from them, generalize to a wide context the
particular cases that were studied for instance in [20, 3, 7, 15, 6].

The results that we prove along the paper deal with the spontaneous forma-
tion of coalitions (subsets) of dynamical units during the dynamical evolution of
the network, provided that the interactions among the units are all “cooperative”
(i.e. positively signed). Roughly speaking, each coalition is a subset of units that
synchronize certain milestones of their respective individual dynamics, which we
call goals, and do that spontaneously without any external clock or master unit,
infinitely many times in the future. In particular the formation of the so called
grand coalition (i.e. the simultaneous arrival to a certain goal of all the units of the
network) is spontaneously and recurrently exhibited from any initial state (Theo-
rem 2.8). The synchronization of the grand coalition was initially proved in 1992
by Mirollo and Strogatz [20], under restrictive hypothesis requiring that the units
were identical, the interactions were also identical, and that the free dynamics of the
units were one-dimensional oscillators whose evolution were linear on time. Later,
in 1996, Bottani [3] proved the synchronization of the grand coalition requiring that
the units were similar (non necessarily identical), but still one dimensional oscilla-
tors although their evolution were not necessarily linear on time. In Theorem 2.8
we will generalize the result to any network of non necessarily similar units with
cooperative interactions that depend on the pair of interacting cells, with general
free dynamics of each unit 4, on any finite dimension (depending on 7), and such
that the cells do not necessarily behave as oscillators. The price to pay for such a
general result is that the network has to be large enough, and, unless the units were
mutually similar (Theorem 2.10), the grand coalition is not necessarily the unique
coalition that is exhibited recurrently in the future.

Due to the fact that the units may be very different and that the grand coalition
is not necessarily the unique coalition that is exhibited in the future, the word
“synchronization” in Theorem 2.8, if applied, it is not in its classical meaning
([21]). In fact, the orbits of each of the units that recurrently exhibit the grand
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coalition, are not synchronized in the strict sense since they do not show the same
state for all the instants ¢ > 0. The states of two or more units may sensibly differ
one from the others, at some instants between two consecutive formations of the
grand coalition.

On the one hand, the synchronization in the strict or wide sense, for models
of pulsed coupled dynamical units, were up to now proved for particular examples
in which the free dynamics of each cell is governed by a differential equation or a
discrete time mapping with a concrete formulae. For instance, the free dynamics is
governed by affine mapping in [7], by linear differential equations in [22, 23], and by
piecewise contracting maps in [27] [15],[6] or using known results about piecewise
contractions in [4]. In this sense, the novelty of the results here is that their proofs
work independently of the concrete formulation of the free dynamics of the cells.
They have almost no hypothesis about the second term of the differential equation
governing the free dynamics of each of the cells.

On the other hand, the results along this paper hold independently of the di-
mension of the space X; where the state of each unit evolves, and they do not
require the free dynamics of each unit to make it an oscillator. This freedom allows
the results to be applied for instance to multidimensional chaotic free dynamics of
the cells that recurrently shear certain milestones in the global collective dynamics
([16, 17]).

The paper is organized as follows: in Section 2 we state the mathematical defi-
nitions and theorems to be proved. In Section 3 we write the proofs.

2. DEFINITIONS AND STATEMENTS OF THE RESULTS
2.1. Definitions and hypothesis.

The relaxation rule of the free dynamics of i:

The relaxation rule of the free dynamics of the cell i determines the evolution
on time ¢ > 0 of the state ; on a compact finite-dimensional manifold X; (whose
dimension may depend of 7). It is defined as the solution of any differential equation:

(]-) dt - fz(xz)a T; € Xz

satisfying just one condition as follows:
There exists a Lyapunov real function S; : X; — R, which we call the satisfaction
level of i, such that:

where 6, is a positive constant (for each unit ¢) which we call the goal of i. (In
formula (2) 57.5; - f; denotes the inner product in the tangent bundle of the manifold
X;).

In other words, the free dynamics of 7 holds at all the instants for which i is
uncoupled to the network and its state is unchanged by interferences that may
come from outside i. It is described by a finite dimensional variable z; evolving
on time t in such a way that the satisfaction level S;(x;), while it does not reach
the goal value 6;, is strictly increasing with ¢ and its (positive) velocity is bounded
away from zero.
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FIGURE 1. The evolution on time t of the satisfaction variable
S(z(t)) of a dynamical unit while not interacting with the other
units of the network.

The update rule of the free dynamics of i:

The update rule is a discontinuity jump in the state x; of the cell ¢ that is
produced whenever the satisfaction variable S;(x;(t)) reaches (or is larger than)
the goal level #;. This discontinuity jump instantaneously resets the satisfaction
level S;(x;(t)) to a “reset value”, which is strictly smaller than ;. With no loss of
generality, we assume that the reset value is zero (see Figure 1). Precisely:

(3) Si(zi(ty)) >0 = Si(zi(to)) =0,

where S;(z;(ty )) denotes lim, Si(x;(1)).

Note that the alternation between the relaxation and update rules of the free
dynamics of ¢ will occur while no interferences come from outside i forcing its
satisfaction variable to decrease (see Figure 1). Nevertheless, the free evolution
S;(xi(t)) is not necessarily periodic if dim(X;) > 2. In fact, the set S; '({0}) C X;
of states with constant null satisfaction may be for instance a curve: there may
exist infinitely many points in X; for which S; = 0. So, each state x;(¢) obtained
by the reset rule S;(z;(¢)) = 0 from the goal S;(x;(t7)) = 0;, does not necessarily
repeat in the future to make the evolution S;(z;(t)) periodic. On the contrary, if
the set of all the possible reset states z; € S; ' ({0}) were finite (this can occur
even if S;'({0}) is infinite), then the free dynamics of i would be periodic, i.e. an
oscillator.

Definition 2.1. (Spikes) Taking the name from Neuroscience, we call spike of the
cell 7 to the discontinuity jump of its satisfaction state from the goal value 6; (which
in Neuroscience is called “threshold level”) to its reset value (which is assumed to
be zero). Note that the instants when each cell ¢ spikes, while not interacting with
the other units of the network, are defined just by the value of its own satisfaction
variable. There is not a master clock to force the spikes of the many cells of the
network happen simultaneously.
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FiGURE 2. The graph of interactions of a global system of in-
stantaneously coupled units 1,2,...,5. The oriented and nonzero
weighted edges are denoted by A;;.

The interactions rules among the units:

Now, let us define the rules that govern the mutual interactions among the units,
to compose a global dynamical system which we call network N. Consider a system
composed by m > 2 dynamical units with the free dynamics as described above.

Definition 2.2. (Spiking instants and inter-spike intervals) We denote by
{tn}n>0 the sequence of instants 0 < ¢, < t,11 for which at least one cell of the
system spikes. We call t,, the n-th. spiking instant of the global system.

We call (tp41,t,) the n-th. inter-spike interval of the global system.

First, by hypothesis, the interactions among the units of the global system are
produced only at the spiking instants. In other words, during the inter-spike inter-
vals the cells evolve independently one from the others. Hence, the dynamics of the
global system along the inter-spike time intervals is the product dynamics of those
of its units.

Second, at each instant t,, the possible action from a cell i to j # i is weighted
by a real number A;;. The interactions in the network are represented by the edges
of a finite graph, whose vertices are the cells i € {1,...,m} and whose edges (i, j)
are oriented and weighted by A;; respectively (see Figure 2). We call A, ; the
interaction weight. We say that the graph of interactions is complete if A; ; # 0 for
all 1 # j.

Third and finally, the satisfaction value of any cell j, at any spiking instant ¢,
is defined by the following rule:

Silei(t))+ >0 Ay i S;(x; )+ >0 Ay <0,
(4)  Sj(z;(tn)) = i€1(tn), i#] i€1(tn), i#]
0 otherwise,

where I(t,) is the set of neurons that spike at instant t,.
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FiGure 3. Evolution on time ¢ of the satisfaction variable of two
interacting units. One cell is cooperative and the other is antago-
nist.

Definition 2.3. (Coalition) We call the set I(t,) the coalition at the spiking
instant t,. A coalition I is a singleton if #1 = 1. From the definition of the spiking
instant, no coalition is empty.

If the interactions weights A; ; are all positive and large enough, the coalition
I(t,) may be the result of an avalanche process that makes more and more cells
spike at the same instant ¢,, when at least one cell spikes. In fact, we can always
decompose I(t,) as the following union of pairwise disjoint subsets of cells:

I(tn) = U Ip(tn),
p>0
where Io(t,) is the set of cells ¢ such that S;(z;(¢,)) = 6;, and for all p >
1, the set I,(t,) is composed by the cells j ¢ Uz;(l)lk(tn) such that z;(t,) +

k=p—1
k=0 Dicly(tn) Dij = b5

Definition 2.4. (Cooperative and antagonist cells)
A cell 4 is called cooperative if A;; > 0 for all j # 4. It is called antagonist if
Ay; <0 for all j # 4. It is called mized if it is neither cooperative nor antagonist.

In Figure 3 we draw the evolution on time of the satisfaction variables of two
interacting dynamical units: one of the units is cooperative and the other is antag-
onist.

From the rule (4), when a cooperative cells spikes, it helps the other cells to
increase the values of their respective satisfaction variables. So it shortens the time
that the other cells must wait to arrive to their respective goals. On the contrary,
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an antagonist cell diminishes the values of the satisfaction variables of the other
cells, opposing to them and enlarging the time they must wait to arrive to their
goals.

Experimentally in Neuroscience, the nervous system of animals rarely show the
existence of mixed cells. This is a reason why one usually assumes the so called
Dale’s Principle [25, 2]: any cell in the network is either cooperative or antagonist.
In [5] abstract mathematical reasons that support Dale’s principle were proved: it is
a necessary condition for a maximum dynamical richness in the network. Precisely,
the amount of information that the network can exhibit along its temporal evolution
in the future acquires its maximum restricted to a constant number of nonzero
interactions, only if Dale’s principle holds.

Along this work we focus on the global dynamics of networks that are composed
by cooperative cells in a complete graph of interactions.

The global state and the vectorial satisfaction variable
We denote by

x(t) = (x1(t), ..., xm(t) € [ X
i=1
the state of the global system at instant ¢ > 0. We denote by

S(x(t)) = (S1(z1(t)), .- -, Sm(zm(t))) € R™

the vectorial satisfaction variable of the global system at instant ¢. We consider the
cube

Q= []l0,6;) c R™.
i=1
From the hypothesis of the free dynamics of the cells and of the mutual interactions,
if all the cells are cooperative then

S(x(t) €@ Vt>0
provided that
(5) x(0) € S7H(Q).

Along this paper we will assume condition (5). This assumption is not a restriction
for the study of all the orbits of the global autonomous system. In fact, if S(x(0)) ¢
@, then, applying the inequality (2) and the reset rule (3), and taking into account
that the interactions are non negative, we deduce that there exists a minimum
positive instant ¢, such that S(x(tg)) € Q. So, translating the origin of the time axis
to tg, we have reduced the problem to the case for which the vectorial satisfaction
value initially belongs to Q.

Definition 2.5. (Grand coalition) We call I(t,,), defined in 2.3, the grand coali-
tion if all the cells of the system spike at instant ¢,,. Namely, the grand coalition is
exhibited at instant ¢, if I(¢,) = {1,2,...,m}.

Definition 2.6. (Waiting time) If from some initial state of the global system the
grand coalition is exhibited at some spiking instant ¢,, > 0, we call the minimum
such an instant the waiting time until the grand coalition occurs. Note that in
general, if existing, the finite waiting time depends on the initial state.
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Weak interactions: We will not need to assume the following condition (6) as an
hypothesis. So, it is not an assumption in any part of this paper. Nevertheless, we
pose condition (6) just because some of the theorems that we will prove along the
work become more interesting for networks that satisfy it:

(6) max |A;;| < miné;,
i#j i

where < denotes “much smaller than”. For instance, one may be interested in
considering a < b (where 0 < a < b) if a/b < 1073, Condition (6) says that the
interactions weights are relatively very weak.

Definition 2.7. (Large networks)

Let N be a network composed by m cooperative units. We say that N is large
enough in relation to the cooperative interactions if the following inequality holds:
(7) V1 et
MG+ Aij
Note that, inequality (7) implies that the graph of interactions is complete. In fact
A;; > 0 for all 4 # j because the cells are all cooperative, but

Ay #0Yi#]
to make the minimum in formula (7) be nonzero and make this formula hold for a

finite value of m.

2.2. Statements of the results. The purpose of this paper is to prove the fol-
lowing results:
Theorem 2.8. If the network is cooperative and large enough, then from any initial

state the grand coalition is exhibited infinitely many times in the future.

Theorem 2.9. If the network is cooperative and large enough, then from any initial
state in STL(Q) the waiting time t,, before the grand coalition appears for the first
time is upper bounded by:

0;
minziesgl[o,ei] Si(ws) - fi(wi)

tn, < max
K2

Theorem 2.10. If the network is cooperative, large enough and if besides all the
cells are mutually similar, i.e.

mini (Gi/maxxiGS;l[O,Gi] VSZ(-’IJZ) ) fl(xl)) > min#j Aij
max; (9i/minzies;1[o,ei] VSi(w) - filzi)) ~ max; 0;

then, from any initial state and after a waiting time the grand coalition appears at
every spiking instant of the system.

(8)

Inequality (8) is satisfied for instance if the cells have mutually identical free dy-
namics and besides, for each cell ¢, the maximum and minimum velocities 7.5;(x;) -
fi(x;) - according to which the satisfaction variable S; increases - are not very dif-
ferent. Hypothesis (8) also holds if the cells are not identical but their differences
are small enough so the quotient at left in inequality (8) - which is strictly smaller

than 1 - differs from 1 less than L. If besides the interactions weights A; ;

max; 01
are much smaller than 6; - cf. condition (6) -, then the similarity among the cells
must be very notorious to satisfy the hypothesis of Theorem 2.10.
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Roughly speaking, Theorem 2.10 states that if the cells are similar enough then,
after a waiting time which depends on the initial state of the global system, the
spike of one cell makes all the other cells also spike at the same instant. In other
words, the only recurrent coalition is the grand coalition.

3. THE PROOFS

3.1. Proof of Theorem 2.8. Let {t,},>0 the strictly increasing sequence of spik-
ing instants, as defined in 2.2. Let
r:=1+4 int(M),
MG 4 Aij
where int denotes the lower integer part. Since by hypothesis the network is large,
from Definition 2.7 we obtain:
r? <m,

where m is the number of units in the system.

As remarked in assertion (5) of Section 2, it is not restrictive to assume that the
initial state x(0) belongs to the set S™1(Q). In other words S;(z;(0)) € [0,6;) for
any unit .

Assertion (A) During the time interval [0,t,._1] all the units of the system have
spiked at least once.

To prove Assertion (A), let argue by contradiction. Assume that there is a cell,
say j, such that x;(t) < 6; for all ¢ € [0,t,_1]. By the interactions rule (4), and
since at least one cell spikes at instant ¢ for all k =0,...,7 — 1, we have:

8j(j(tr-1)) 2 8;(x;(0)) +r min Ay; > §5(2;(0)) +0; = 05,

contradicting the initial assumption. So Assertion (A) is proved.

Now, we state
Assertion (B) If at some instant t,, at least r cells spike simultaneously, then all
the cells spike simultaneously at t,,.

To prove Assertion (B) we have, by hypothesis, #1(t,) > r. Due to the interac-
tions rule (4), for any cell j & I(t,) we obtain:

Si(w;(tn)) = Sj(x;(t,)) +r H;}DAU > 0,
i#j

contradicting the assumption that j & I(¢,). Therefore, all cells are in I(¢,,) proving
Assertion (B).

Consider the r coalitions I(to), I(t1),...,I(t,—1). Assertion (A) states that each
cell ¢ belongs to at least one of those coalitions. Since the number of different cells
is m > r2, and the number of coalitions in the above list is 7, there exists at least
one of such coalitions, say I(tx) having at least r different cells. In other words,
there exists a spiking instant t; such that at least r cells spike simultaneously at
tr. Applying Assertion (B) we deduce that all the cells spike simultaneously at
ti. We have proved that the grand coalition I(t;) = {1,...,m} is spontaneously
formed at the instant t§ := 5 > 0. Since this assertion holds for any initial state,
we now translate the origin of the time axis to ¢, adopting a new initial state from
which the grand coalition will be formed again at some future instant tJ > ¢;. By
induction on n, the grand coalition will be exhibited recurrently in the future at an
increasing sequence of instants ¢}, ending the proof of Theorem 2.8. O
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3.2. Proof of Theorem 2.9. From the proof of Theorem 2.8, the waiting time ¢§
until the first grand coalition appears is not larger than the instant ¢,._; such that
all the cells have spiked at least once during the time interval [0,¢,_1]. Since all
the interactions are positive, t,_1 is not larger than the time 7} that the slowest
cell, say 7, would take to arrive to its goal 6; if it were not coupled to the network,
i.e. under the free dynamics:

ty <tr_1 < Ti.

From the relaxation rules (1) and (2) we get

=50 = [ oS fw = ( min oS i) T
:67‘,ESi ([0,91])
Thus
th<T; < b < ma b
P> T > X . ’
0 MM, e 5-110,0,] VSi(@i) - fi(zi) ¢ MmN cg-110,0,] VSi(zi) - fi(w:)
ending the proof of Theorem 2.9. ]

3.3. Proof of Theorem 2.10. From Theorem 2.8, there exists a first instant t¢;
such that the grand coalition is exhibited. From the update rule (3, the state x(¢)
of the global system is such that S(x(¢j)) = 0. We now translate the origin of the
time axis to t§. So, the initial state is now x(0) such that S(x(0)) = 0.

Hence, to prove Theorem 2.10 it is enough to show that, if the hypothesis of
inequality (8) holds, then for any initial state x(0) such that S(x(0)) = 0, all the
cells spikes simultaneously at the minimum instant ¢; > 0 such at least one cell,
say i, spikes.

So, let us compute the values of the satisfaction variables of all the cells at the
instant ¢ . Due to the relaxation rules (1) and (2) we have

© 8000 = [ IS O o)z (| _min 08 @)-f) 0

for all 1 < 7 < m. In particular for the spiking cell ¢ we have
(10)

0; = Si(zi(t7)) / VSi(x;(t)) - filz(t))dt < ( max vSi(xi)-fi(xi)) th

2,571 ([0.0:])

Combining inequalities (9) and (10) we deduce:
minxjgsjfl([oﬁj]) VSi(x;) - fi(x;)

aX,e871((0,64)) VSi(xi) - fi(wi

min; (Hi/maxxies 1[0,6,] V(i) - fz(xz))
max; (aj/minmjesjfl[o,ej] vSj(x;) - fi(w;))
Using now the hypothesis of inequality (8), we obtain:

Si(ai(t7)) = 05 (1~

Since at least the cell ¢ spikes at instant ¢; we have

Siwit )+ D Ajj > Sj(zi(ty)) +min Ay > 0.
) L, 1]
1€I(t1)7 £

Sj(x;(ty)) = 6;

Vj#i

=Y

s A
T ) 20, —minAy VA
17]

max; 6‘z
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So, applying the interaction rule (4) we deduce that the cell j spikes at instant ¢;.
This result holds for all the cells j # 7. Thus, all the cells spike when at least one
spikes, ending the proof of Theorem 2.10. a

4. EXAMPLE

To illustrate Theorems 2.9 and 2.10 we consider the following phenomenon de-
scribed and mathematically modeled in [10]: the spontaneous synchronization of
the step of the walkers on the Millennium footbridge over the River Thames of
London, which occurred on June 2000.

On the one hand, in [10] the interaction among the pedestrians was modeled
through the acceleration of the lateral bridge displacement, which was itself pro-
duced by the sum of the actions of the walkers on the bridge. Nevertheless, this
model can be translated to positive interactions that occur directly among the
pedestrians, by considering the composition of the actions of the walkers on the
bridge with the action of the bridge backwards to the walkers.

On the other hand, in [10] the model is non-impulsive but continuous on time: the
mutual interactions are considered as a continuous and differentiable change of the
velocity of each pedestrian, which is itself modeled as a one-dimensional oscillator.
Nevertheless, one can equivalently substitute this continuous-time model by an
integrate-pulsed oscillator. In fact, one can change the state variable artificially to
consider each walker’s equation as follows: First it is governed by a continuous-
time integrator according to its own free dynamics without perturbations. Second,
a pulsed action is added to its instantaneous phase. This pulse should be computed
as the result of integrating separately the continuous change of its velocity during
the prior interval of time.

The results reported by Eckhardt et al. [10] were obtained from the analysis of
their mathematical model, to explain the real phenomenon that occurred during
the opening of the Millennium bridge: once the number of pedestrians exceeded a
critical number and after a waiting time, many started to move in synchronized step.
In Figure 4 Eckhardt et al. show the graphics obtained by computer simulation of
the steps of 80 walkers, under different interaction weights.
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