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1. Introduction

In these lecture notes we provide a brief introduction to John Mather’s varia-
tional approach to the study of convex and superlinear Hamiltonian systems, what
is generally called Aubry-Mather theory. Starting from the observation that invari-
ant Lagrangian graphs can be characterized in terms of their “action-minimizing”
properties, we then describe how analogue features can be traced in a more general
setting, namely the so-called Tonelli Hamiltonian systems. This approach brings
to light a plethora of compact invariant subsets for the system, which, under many
points of view, can be considered as generalization of invariant Lagrangian graphs,
despite not being in general either submanifolds or regular. Besides being very sig-
nificant from a dinamical systems point of view, these objects also appear and play
an important role in many other different contexts: PDEs (e.g., Hamilton-Jacobi
equation and weak KAM theory), Symplectic geometry, etc...
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170 A. SORRENTINO

Since this notes1 are meant to be a short introduction and a guide to this theory,
we will omit most of the proofs. We refer interested readers to [23] for a more
systematic and comprehensive presentation of this and other topics.

Acknowledgement. The author wishes to thank CIMPA and, more specifically,
Ezequiel Maderna and Ludovic Rifford, for the organization of this very interesting
meeting and for their kind invitation. The author also wishes to thank Princeton
University Press for agreeing on the use herein of some of the material from [23].

2. From KAM theory to Aubry-Mather (AM) theory

The celebrated Kolmogorov-Arnol′d -Moser (or KAM) theorem finally settled the
old question concerning the existence of quasi-periodic motions for nearly-integrable
Hamiltonian systems, i.e., Hamiltonian systems that are slight perturbation of an
integrable one. In the integrable case, in fact, the whole phase space is foliated by
invariant Lagrangian submanifolds that are diffeomorphic to tori, and on which the
dynamics is conjugate to a rigid rotation. More specifically, let H : T ∗Tn −→ R be
an integrable Tonelli Hamiltonian in action-angle coordinates, i.e., H(x, p) = h(p)
with the Hamiltonian depending only on the action variables (see [2])2. Let us

denote by φht the associated Hamiltonian flow and identify T ∗Tn with Tn × Rn,
where Tn = Rn/Zn.

The Hamiltonian flow in this case is very easy to study. Hamilton’s equations
are: {

ẋ = ∂h
∂p (p) =: ρ(p)

ṗ = − ∂h∂x (p) = 0,

therefore Φh
t (x0, p0) = (x0 + tρ(p0) modZn, p0). In particular, p is an integral of

motion, that is, it remains constant along the orbits. The phase space T ∗Tn is
hence foliated by invariant tori Λ∗p0 = Tn × {p0} on which the motion is a rigid
rotation with rotation vector ρ(p0) (see figure 1).

On the other hand, it is natural to ask what happens to such a foliation and to
these stable motions once the system is perturbed. In 1954 Kolmogorov [11] — and
later Arnol′d [1] and Moser [21] in different contexts — proved that, in spite of the
generic disappearance of the invariant tori filled by periodic orbits (already pointed
out by Henri Poincaré), for small perturbations of an integrable system it is still
possible to find invariant Lagrangian tori corresponding to certain rotation vectors
(the so-called diophantine rotation vectors). This result is commonly referred to
as KAM theorem, from the initials of the three main pioneers. In addition to
open the way to a new understanding of the nature of Hamiltonian systems and
their stable motions, this result contributed to raise new interesting questions, such
as: what does it happen to the stable motions that are destroyed by effect of
the perturbation? Is it possible to identify something reminiscent of their past
presence? What can be said for systems that not close to an integrable one?

1Portions of this material used with permission from Princeton University Press from “Action-
minimizing Methods in Hamiltonian Dynamics: An Introduction to Aubry-Mather Theory” by
Alfonso Sorrentino, 2015 (see [23]).

2In general these coordinates can be defined only locally. For the sake of simplicity, in this
example we assume — without affecting its main purpose — that they are defined globally.
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Figure 1. The phase space of an integrable system.

Aubry-Mather theory provides answers to these questions. Developed indepen-
dently by Serge Aubry [3] and John Mather [14] in 1980s, this novel approach to the
study of the dynamics of twist diffeomorphisms of the annulus (which correspond
to Poincaré maps of 1-dimensional non-autonomous Hamiltonian systems) pointed
out the existence of many invariant sets, which are obtained by means of variational
methods and that always exist, even after rotational curves are destroyed. Besides
providing a detailed structure theory for these new sets, this powerful approach
yielded to a better understanding of the destiny of invariant rotational curves and
to the construction of interesting chaotic orbits as a result of their destruction
[15, 17].

Motivated by these achievements, John Mather [18, 19] — and later Ricardo
Mañé [13, 12] and Albert Fathi [9] in different ways — developed a generalization of
this theory to higher dimensional systems. Positive definite superlinear Lagrangians
on compact manifolds, also called Tonelli Lagrangians (see Definition 3.1), were the
appropriate setting to work in. Under these conditions, in fact, it is possible to prove
the existence of interesting invariant sets, known as Mather, Aubry and Mañé sets,
which generalize KAM tori and invariant Lagrangian graphs, and which continue
to exist beyond the nearly-integrable case.

In the following we will provide a brief overview of Mather’s theory. We will
first discuss an illustrative example (what happens in the integrable case) and then
show how similar ideas can be extended to a more general setting.

3. Tonelli Lagrangians and Hamiltonians on compact manifolds

Before starting, let us introduce the basic setting that we will consider in the
following. Let M be a compact and connected smooth manifold without boundary.
Denote by TM its tangent bundle and T ∗M the cotangent one. A point of TM will
be denoted by (x, v), where x ∈ M and v ∈ TxM , and a point of T ∗M by (x, p),
where p ∈ T ∗xM is a linear form on the vector space TxM . Let us fix a Riemannian
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metric g on it and denote by d the induced metric on M ; let ‖ · ‖x be the norm
induced by g on TxM ; we will use the same notation for the norm induced on T ∗xM .

We will consider functions L : TM −→ R of class C2, which are called La-
grangians. Associated to each Lagrangian, there is a flow on TM called the Euler-
Lagrange flow, defined as follows. Let us consider the action functional AL from
the space of absolutely continuous curves γ : [a, b]→M , with a ≤ b, defined by:

AL(γ) :=

∫ b

a

L(γ(t), γ̇(t)) dt.

Curves that extremize3 this functional among all curves with the same end-points
(and the same time-length) are solutions of the Euler-Lagrange equation:

d

dt

∂L

∂v
(γ(t), γ̇(t)) =

∂L

∂x
(γ(t), γ̇(t)) ∀ t ∈ [a, b] .

Observe that this equation is equivalent to

∂2L

∂v2
(γ(t), γ̇(t))γ̈(t) =

∂L

∂x
(γ(t), γ̇(t))− ∂2L

∂v∂x
(γ(t), γ̇(t))γ̇(t) ,

therefore, if the second partial vertical derivative ∂2L/∂v2(x, v) is non-degenerate
at all points of TM , we can solve for γ̈(t). This condition

det
∂2L

∂v2
6= 0

is called Legendre condition and allows one to define a vector field XL on TM , such
that the solutions of γ̈(t) = XL(γ(t), γ̇(t)) are precisely the curves satisfying the
Euler-Lagrange equation. This vector field XL is called the Euler-Lagrange vector
field and its flow ΦLt is the Euler-Lagrange flow associated to L. It turns out that
ΦLt is C1 even if L is only C2 (see Remark 3.3).

Definition 3.1 (Tonelli Lagrangian). A function L : TM −→ R is called a
Tonelli Lagrangian if:

i) L ∈ C2(TM);
ii) L is strictly convex in the fibers, in the C2 sense, i.e., the second partial

vertical derivative ∂2L/∂v2(x, v) is positive definite, as a quadratic form,
for all (x, v);

iii) L is superlinear in each fiber, i.e.,

lim
‖v‖x→+∞

L(x, v)

‖v‖x
= +∞.

This condition is equivalent to ask that for each A ∈ R there exists B(A) ∈
R such that

L(x, v) ≥ A‖v‖ −B(A) ∀ (x, v) ∈ TM .

Observe that since the manifold is compact, then condition iii) is independent
of the choice of the Riemannian metric g.

3These extremals are not in general minima. The existence of global minima and the study of
the corresponding motions is the core of Aubry-Mather theory; see section 5.
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Examples of Tonelli Lagrangians.

• Riemannian Lagrangians. Given a Riemannian metric g on TM , the
Riemannian Lagrangian on (M, g) is given by the kinetic energy:

L(x, v) =
1

2
‖v‖2x .

Its Euler-Lagrange equation is the equation of the geodesics of g:

D

dt
ẋ ≡ 0 ,

and its Euler-Lagrange flow coincides with the geodesic flow.
• Mechanical Lagrangians. These Lagrangians play a key-role in the study

of classical mechanics. They are given by the sum of the kinetic energy and
a potential U : M −→ R:

L(x, v) =
1

2
‖v‖2x + U(x) .

The associated Euler-Lagrange equation is given by:

D

dt
ẋ = ∇U(x) .

• Mañé’s Lagrangians. This is a particular class of Tonelli Lagrangians,
introduced by Ricardo Mañé in [12]. If X is a Ck vector field on M , with
k ≥ 2, one can embed its flow ϕXt into the Euler-Lagrange flow associated
to a certain Lagrangian, namely

LX(x, v) =
1

2
‖v −X(x)‖2x .

It is quite easy to check that the integral curves of the vector field X are
solutions of the Euler-Lagrange equation. In particular, the Euler-Lagrange
flow ΦLXt restricted to Graph(X) = {(x,X(x)), x ∈ M} (which is clearly
invariant) is conjugate to the flow of X on M and the conjugacy is given
by π|Graph(X), where π : TM → M is the canonical projection. In other
words, the following diagram commutes:

Graph(X)

π

��

Φ
LX
t // Graph(X)

π

��
M

ϕXt

// M

that is, for every x ∈ M and every t ∈ R, ΦLXt (x,X(x)) = (γXx (t), γ̇Xx (t)),
where γXx (t) = ϕXt (x).

In the study of classical dynamics it turns often very useful to consider the
associated Hamiltonian system, which is defined on the cotangent bundle T ∗M .
Given a Lagrangian L we can define the associated Hamiltonian as its Fenchel
transform (or Legendre-Fenchel transform), see [22]:

H : T ∗M −→ R
(x, p) 7−→ sup

v∈TxM
{〈p, v〉x − L(x, v)}
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where 〈 ·, · 〉x denotes the canonical pairing between the tangent and cotangent
bundles.

If L is a Tonelli Lagrangian, one can easily prove that H is finite everywhere (as
a consequence of the superlinearity of L), superlinear and strictly convex in each
fiber (in the C2 sense). Observe that H is also C2. In fact the Euler-Lagrange
vector field corresponds, under the Legendre transformation, to a vector field on
T ∗M given by Hamilton’s equation; it is easily seen that this vector field is C1 (see
[6, p. 207]). Such a Hamiltonian is called a Tonelli (or optical) Hamiltonian.

Definition 3.2 (Tonelli Hamiltonian). A function H : T ∗M −→ R is called a
Tonelli (or optical) Hamiltonian if:

i) H is of class C2;
ii) H is strictly convex in each fiber in the C2 sense, i.e., the second partial

vertical derivative ∂2H/∂p2(x, p) is positive definite, as a quadratic form,
for any (x, p) ∈ T ∗M ;

iii) H is superlinear in each fiber, i.e.,

lim
‖p‖x→+∞

H(x, p)

‖p‖x
= +∞ .

Examples of Tonelli Hamiltonians.
Let us see what are the Hamiltonians associated to the Tonelli Lagrangians that
we have introduced in the previous examples.

• Riemannian Hamiltonians. If L(x, v) = 1
2‖v‖

2
x is the Riemannian La-

grangian associated to a Riemannian metric g on M , the corresponding
Hamiltonian will be

H(x, p) =
1

2
‖p‖2x,

where ‖ · ‖ represents — in this last expression — the induced norm on the
cotangent bundle T ∗M .
• Mechanical Hamiltonians. If L(x, v) = 1

2‖v‖
2
x + U(x) is a mechanical

Lagrangian, the associated Hamiltonian is:

H(x, p) =
1

2
‖p‖2x − U(x).

It is sometimes referred to as mechanical energy.
• Mañé’s Hamiltonians. If X is a Ck vector field on M , with k ≥ 2, and
LX(x, v) = ‖v −X(x)‖2x is the associated Mañé Lagrangian, one can check
that the corresponding Hamiltonian is given by:

H(x, p) =
1

2
‖p‖2x + 〈p,X(x)〉 .

Given a Hamiltonian one can consider the associated Hamiltonian flow ΦHt on
T ∗M . In local coordinates, this flow can be expressed in terms of the so-called
Hamilton’s equations: {

ẋ(t) = ∂H
∂p (x(t), p(t))

ṗ(t) = −∂H∂x (x(t), p(t)) .
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We will denote by XH(x, p) :=
(
∂H
∂p (x, p),−∂H∂x (x, p)

)
the Hamiltonian vector

field associated to H. This has a more intrinsic (geometric) definition in terms of
the canonical symplectic structure ω on T ∗M , which in local coordinates can be
written as dx∧ dp (see for example [5]). In fact, XH is the unique vector field that
satisfies

ω (XH(x, p), ·) = dxH(·) ∀(x, p) ∈ T ∗M.

For this reason, it is sometime called symplectic gradient of H. It is easy to check
from both definitions that — only in the autonomous case — the Hamiltonian
is a prime integral of the motion, i.e., it is constant along the solutions of these
equations.

Now, we would like to explain what is the relation between the Euler-Lagrange
flow and the Hamiltonian one. It follows easily from the definition of Hamiltonian
(and Legendre-Fenchel transform) that for each (x, v) ∈ TM and (x, p) ∈ T ∗M the
following inequality holds:

〈p, v〉x ≤ L(x, v) +H(x, p) .(1)

This is called Fenchel inequality (or Legendre-Fenchel inequality, see [22]) and it
plays a crucial role in the study of Lagrangian and Hamiltonian dynamics and
in the variational methods that we are going to describe. In particular, equality
holds if and only if p = ∂L/∂v(x, v). One can therefore introduce the following
diffeomorphism between TM and T ∗M , known as Legendre transform:

L : TM −→ T ∗M

(x, v) 7−→
(
x,
∂L

∂v
(x, v)

)
.(2)

Moreover, the following relation with the Hamiltonian holds:

H ◦ L(x, v) =

〈
∂L

∂v
(x, v), v

〉
x

− L(x, v) .

This diffeomorphism L represents a conjugacy between the two flows, namely the
Euler-Lagrange flow on TM and the Hamiltonian flow on T ∗M ; in other words,
the following diagram commutes:

TM

L
��

ΦLt // TM

L
��

T ∗M
ΦHt

// T ∗M

Remark 3.3. Since L and the Hamiltonian flow ΦH are both C1, then it follows
from the commutative diagram above that the Euler-Lagrange flow is also C1.
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4. Action-minimizing properties of integrable systems

Before entering into the details of Mather’s work, we would like to discuss a very
easy case: properties of invariant measures of an integrable system (see section
2). This will provide us with a better understanding of the ideas behind Mather’s
theory and will describe clearer in which sense these action-minimizing sets —
namely, what we will call Mather sets (see section 5) — represent a generalization
of KAM tori.

As we have already discussed in section 2, let H : T ∗Tn −→ R be an integrable
Tonelli Hamiltonian in action-angle coordinates, i.e., H(x, p) = h(p) and let L :
TTn −→ R, L(x, v) = `(v), be the associated Tonelli Lagrangian. We denote by Φh

and Φ` the respective flows, by L the associated Legendre transform, and identify
both T ∗Tn and TTn with Tn × Rn.

We have recalled in section 3 that the Euler-Lagrange flow can be equivalently
defined in terms of a variational principle associated to the Lagrangian action func-
tional A`. We would like to study action-minimizing properties of these invariant
manifolds; for, it is much better to work in the Lagrangian setting. Moreover,
instead of considering properties of single orbits, it would be more convenient to
study “collection” of orbits, in the form of invariant probability measures4 and con-
sider their average action. If µ is an invariant probability measure for Φ` — i.e.,
(Φ`t)

∗µ = µ for all t ∈ R, where (Φ`t)
∗µ denotes the pull-back of the measure —

then we define:

A`(µ) :=

∫
TTn

`(v) dµ.

Let us consider any invariant probability measure µ0 supported on Λ̃p0 :=
L−1(Λp0) and compute its action. Observe that on the support of this measure
`(v) ≡ `(ρ(p0)). Then:

A`(µ0) =

∫
TTn

`(v) dµ0 =

∫
TTn

`(ρ(p0)) dµ0 =

= `(p0) = p0 · ρ(p0)− h(p0),(3)

where in the last step we have used the Legendre-Fenchel duality between h and `.
Let us now consider a general invariant probability measure µ. In this case it

is not true anymore that `(v) is constant on the support of µ. However, using
Legendre-Fenchel inequality (see (1)), we can conclude that `(v) ≥ p0 · v−h(p0) for
each v ∈ Rn. Hence:

A`(µ) =

∫
TTn

`(v) dµ ≥
∫
TTn

(p0 · v − h(p0)) dµ

=

∫
TTn

p0 · v dµ− h(p0) = p0 ·
(∫

TTn
v dµ

)
− h(p0).(4)

We would like to compare expressions (3) and (4). However, in the case of a
general measure, we do not know how to evaluate the term

∫
TTn v dµ. One possible

trick to overcome this problem is the following: instead of considering the action
of `(v), let us consider the action of `(v) − p0 · v. It is easy to see that this new

4Actually, it is also possible study directly orbits. See Remark 5.8
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Lagrangian is also Tonelli (we have subtracted a linear term in v) and that it has
the same Euler-Lagrange flow as `. In this way we obtain from (3) and (4) that:

A`−p0·v(µ0) = −h(p0) and A`−p0·v(µ) ≥ −h(p0),

which are now comparable. Hence, we have just showed the following fact:

Fact 1: Every invariant probability measure supported on Λ̃p0 minimizes the action
A`−p0·v amongst all invariant probability measures of Φ`.

In particular, we can characterize our invariant tori in a different way:

Λ̃p0 =
⋃
{suppµ : µ minimizes A`−p0·v}.

Moreover, there is a relation between the energy (Hamiltonian) of the invariant
torus and the minimal action of its invariant probability measures:

h(p0) = −min{A`−p0·v(µ) : µ is an inv. prob. measure}.

Observe that it is somehow expectable that we need to modify the Lagrangian
in order to obtain information on a specific invariant torus. In fact, in the case of
an integrable system we have a foliation of the space made by these invariant tori
and it would be unrealistic to expect that they could all be obtained as extremals
of the same action functional. In other words, what we did was to add a weighting
term to our Lagrangian, in order to magnify some motions rather than others.

Is it possible to distinguish these motions in a different way? Let us go back to
(3) and (4). The main problem in comparing these two expression was represented
by the term

∫
TTn v dµ. This can be interpreted as a sort of average rotation vector

of orbits in the support of µ. Hence, let us define the average rotation vector of µ
as:

ρ(µ) :=

∫
TTn

v dµ ∈ Rn.

We will give a more precise definition of it (which is also meaningful on manifolds
different from the torus) in section 5.

Let now µ be an invariant probability measure of Φ` with rotation vector ρ(µ) =
ρ(p0). It follows from (4) that:

A`(µ) ≥ p0 ·
(∫

TTn
v dµ

)
− h(p0) = p0 · ρ(µ)− h(p0) =

= p0 · ρ(p0)− h(p0) = `(ρ(p0)).

Therefore, comparing with (3) we obtain another characterization of µ0:

Fact 2: Every invariant probability measure supported on Λ̃p0 minimizes the action
A` amongst all invariant probability measures of Φ` with rotation vector ρ(p0).

In particular:

Λ̃p0 =
⋃

{suppµ : µ minimizes A` amongst measures with rot. vect. ρ(p0)}.

Moreover, there is a relation between the value of the Lagrangian at ρ(p0) and
the minimal action of all invariant probability measures with rotation vector ρ(p0):

`(ρ(p0)) = min{A`(µ) : µ is an inv. prob. meas. with rot. vect. ρ(p0)}.
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Remark 4.1. One could also study directly orbits on these tori and try to show
that their action minimizes a modified Lagrangian action, in the same spirit as we
have just discussed for measures. See [23] and Remark 5.8 for more details.

5. Mather’s theory for Tonelli Lagrangian systems

In this section we describe Mather’s theory for general Tonelli Lagrangians on
compact manifolds. As we have already said before, we refer the reader to [23] for
all the proofs and for a more detailed presentation of this theory.

Let M(L) be the space of probability measures µ on TM that are invariant under
the Euler-Lagrange flow of L and such that

∫
TM
‖v‖ dµ < ∞. We will hereafter

assume that M(L) is endowed with the vague topology, i.e., the weak∗-topology
induced by the space C0

` of continuous functions f : TM −→ R having at most
linear growth:

sup
(x,v)∈TM

|f(x, v)|
1 + ‖v‖

< +∞ .

One can check that M(L) ⊂
(
C0
`

)∗
.

In the case of an autonomous Tonelli Lagrangian, it is easy to see that M(L) is
non-empty (actually it contains infinitely many measures with distinct supports).
In fact, recall that because of the conservation of the energy E(x, v) := H◦L(x, v) =〈
∂L
∂v (x, v), v

〉
x
−L(x, v) along the orbits, each energy level of E is compact (it follows

from the superlinearity condition) and invariant under ΦLt . It is a classical result
in ergodic theory (sometimes called Kryloff-Bogoliouboff theorem) that a flow on a
compact metric space has at least an invariant probability measure, which belongs
indeed to M(L).

To each µ ∈M(L), we may associate its average action:

AL(µ) =

∫
TM

Ldµ .

The action functional AL : M(L) −→ R is lower semicontinuous with the vague
topology on M(L) (this functional might not be necessarily continuous, see [8,
Remark 2-3.4]). In particular, this implies that there exists µ ∈ M(L), which
minimizes AL over M(L).

Definition 5.1. A measure µ ∈ M(L), such that AL(µ) = minM(L)AL, is called
an action-minimizing measure of L.

As we have already seen in section 4, by modifying the Lagrangian (without
changing the Euler-Lagrange flow) one can find many other interesting measures
besides those found by minimizing AL. A similar idea can be implemented for a
general Tonelli Lagrangian. Observe, in fact, that if η is a 1-form on M , we can
interpret it as a function on the tangent bundle (linear on each fiber)

η̂ : TM −→ R
(x, v) 7−→ 〈η(x), v〉x

and consider a new Tonelli Lagrangian Lη := L − η̂. The associated Hamiltonian
will be given by Hη(x, p) = H(x, η(x) + p).
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Observe that:

i) If η is closed, then L and Lη have the same Euler-Lagrange flow on TM .
See [18].

ii) If µ ∈ M(L) and η = df is an exact 1-form, then
∫
d̂fdµ = 0. Thus,

for a fixed L, the minimizing measures will depend only on the de Rham
cohomology class c = [η] ∈ H1(M ;R).

Therefore, instead of studying the action minimizing properties of a single La-
grangian, one can consider a family of such “modified” Lagrangians, parameterized
over H1(M ;R). Hereafter, for any given c ∈ H1(M ;R), we will denote by ηc a
closed 1-form with that cohomology class.

Definition 5.2. Let ηc be a closed 1-form of cohomology class c. Then, if µ ∈M(L)
minimizes ALηc over M(L), we will say that µ is a c-action minimizing measure
(or c-minimal measure, or Mather measure with cohomology c).

Compare with Fact 1 in section 4.

Remark 5.3. Observe that the cohomology class of an action-minimizing invariant
probability measure is not intrinsic in the measure itself nor in the dynamics, but
it depends on the specific choice of the Lagrangian L. Changing the Lagrangian by
a closed 1-form η, i.e., L 7−→ L − η, we will change all the cohomology classes of
its action minimizing measures by −[η] ∈ H1(M ;R). Compare also with Remark
5.5 (ii).

One can consider the following function on H1(M ;R) (the minus sign is intro-
duced for a convention that will probably become clearer later on):

α : H1(M ;R) −→ R
c 7−→ − min

µ∈M(L)
ALηc (µ) .

This function α is well-defined (it does not depend on the choice of the represen-
tatives of the cohomology classes) and it is easy to see that it is convex. This is
generally known as Mather’s α-function. We have seen in section 4 that for an inte-
grable Hamiltonian H(x, p) = h(p), α(c) = h(c). For this and several other reasons
that we will see later on, this function is sometimes called effective Hamiltonian.
In particular, it can be proven that α(c) is related to the energy level containing
such c-action minimizing measures [7].

We will denote by Mc(L) the subset of c-action minimizing measures:

Mc := Mc(L) = {µ ∈M(L) : ALηc (µ) = −α(c)}.
We can now define a first important family of invariant sets: the Mather sets.

Definition 5.4. For a cohomology class c ∈ H1(M ;R), we define the Mather set
of cohomology class c as:

(5) M̃c :=
⋃

µ∈Mc

suppµ ⊂ TM .

The projection on the base manifoldMc = π
(
M̃c

)
⊆M is called projected Mather

set (with cohomology class c).
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Properties of this set:

i) It is non-empty, compact and invariant [18].
ii) It is contained in the energy level corresponding to α(c) [7].

iii) In [18] Mather proved the celebrated graph theorem:

Let π : TM −→ M denote the canonical projection. Then, π|M̃c is an

injective mapping of M̃c into M , and its inverse π−1 : Mc −→ M̃c is
Lipschitz.

Now, we would like to shift our attention to a related problem. As we have
seen in section 4, instead of considering different minimizing problems over M(L),
obtained by modifying the Lagrangian L, one can alternatively try to minimize
the Lagrangian L by putting some constraint, such as, for instance, fixing the
rotation vector of the measures. In order to generalize this to Tonelli Lagrangians
on compact manifolds, we first need to define what we mean by rotation vector of
an invariant measure.

Let µ ∈ M(L). Thanks to the superlinearity of L, the integral
∫
TM

η̂dµ is well
defined and finite for any closed 1-form η on M . Moreover, if η is exact, then this
integral is zero, i.e.,

∫
TM

η̂dµ = 0. Therefore, one can define a linear functional:

H1(M ;R) −→ R

c 7−→
∫
TM

η̂dµ ,

where η is any closed 1-form on M with cohomology class c. By duality, there exists
ρ(µ) ∈ H1(M ;R) such that∫

TM

η̂ dµ = 〈c, ρ(µ)〉 ∀ c ∈ H1(M ;R)

(the bracket on the right-hand side denotes the canonical pairing between cohomol-
ogy and homology). We call ρ(µ) the rotation vector of µ. This rotation vector is
the same as the Schwartzman’s asymptotic cycle of µ (see [24] and [23] for more
details).

Remark 5.5. (i) It is possible to provide a more geometric interpretation of this.
Suppose for the moment that µ is ergodic. Then, it is known that a generic orbit
γ(t) := πΦLt (x, v), where π : TM −→ M denotes the canonical projection, will
return infinitely often close (as close as we like) to its initial point γ(0) = x. We
can therefore consider a sequence of times Tn → +∞ such that d(γ(Tn), x) → 0
as n → +∞, and consider the closed loops σn obtained by closing γ|[0, Tn] with
the shortest geodesic connecting γ(Tn) to x. Denoting by [σn] the homology class

of this loop, one can verify (see [24]) that limn→∞
[σn]
Tn

= ρ(µ), independently of

the chosen sequence {Tn}n. In other words, in the case of ergodic measures, the
rotation vector tells us how on average a generic orbit winds around TM . If µ is
not ergodic, ρ(µ) loses this neat geometric meaning, yet it may be interpreted as
the average of the rotation vectors of its different ergodic components.

(ii) It is clear from the discussion above that the rotation vector of an invariant
measure depends only on the dynamics of the system (i.e., on the Euler-Lagrange
flow) and not on the chosen Lagrangian. Therefore, it does not change when we
modify our Lagrangian by adding a closed one form.
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Using that the action functional AL : M(L) −→ R is lower semicontinuous, one
can prove that the map ρ : M(L) −→ H1(M ;R) is continuous and surjective, i.e.,
for every h ∈ H1(M ;R) there exists µ ∈M(L) with AL(µ) <∞ and ρ(µ) = h (see
[18]).

Following Mather [18], let us consider the minimal value of the average action AL
over the probability measures with rotation vector h. Observe that this minimum
is actually achieved because of the lower semicontinuity of AL and the compactness
of ρ−1(h) (ρ is continuous and L superlinear). Let us define

β : H1(M ;R) −→ R
h 7−→ min

µ∈M(L): ρ(µ)=h
AL(µ) .(6)

This function β is what is generally known as Mather’s β-function and it is im-
mediate to check that it is convex. We have seen in section 4 that if we have
an integrable Tonelli Hamiltonian H(x, p) = h(p) and the associated Lagrangian
L(x, v) = `(v), then β(h) = `(h). For this and several other reasons, this function
is sometime called effective Lagrangian.

We can now define what we mean by action minimizing measure with a given
rotation vector.

Definition 5.6. A measure µ ∈ M(L) realizing the minimum in (6), i.e., such
that AL(µ) = β(ρ(µ)), is called an action minimizing (or minimal, or Mather)
measure with rotation vector ρ(µ).

Compare with Fact 2 in section 4.

We will denote by Mh(L) the subset of action minimizing measures with rotation
vector h:

Mh := Mh(L) = {µ ∈ M(L) : ρ(µ) = h and AL(µ) = β(h)}.

This allows us to define another important familty of invariant sets.

Definition 5.7. For a homology class (or rotation vector) h ∈ H1(M ;R), we define
the Mather set corresponding to a rotation vector h as

(7) M̃h :=
⋃

µ∈Mh

suppµ ⊂ TM ,

and the projected one as Mh = π
(
M̃h

)
⊆M .

Similarly to what we have already seen above, this set satisfies the following
properties:

i) It is non-empty, compact and invariant.
ii) It is contained in a given energy level.

iii) It also satisfies the graph theorem:

let π : TM −→ M denote the canonical projection. Then, π|M̃h is an

injective mapping of M̃h into M , and its inverse π−1 : Mh −→ M̃h is
Lipschitz.
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Remark 5.8. (i) In the above discussion we have only discussed properties of
invariant probability measures associated to the system. Actually, one could study
directly orbits of the systems and look for orbits that globally minimize the action
of a modified Lagrangian (in the same spirit as before). This would lead to the

definition of two other families of invariant compact sets, the Aubry sets Ãc and

the Mañé sets Ñc, which are also parameterized by H1(M ;R) (the parameter which
describes the modification of the Lagrangian, exactly in the same way as before).

For a given c ∈ H1(M ;R), these sets contain the Mather set M̃c, and this inclusion
may be strict. In fact, while the motion on the Mather sets is recurrent (it is the
union of the supports of invariant probability measures), the Aubry and the Mañé
sets may contain non-recurrent orbits as well.
(ii ) Differently from what happens with invariant probability measures, it will not
be always possible to find action-minimizing orbits for any given rotation vector
(not even possible to define a rotation vector for every action minimizing orbit). For
instance, an example due to Hedlund [10] provides the existence of a Riemannian
metric on a three-dimensional torus, for which minimal geodesics exist only in three
directions. The same construction can be extended to any dimension larger than
three.

6. Mather’s α and β-functions

The discussion in section 5 led to two equivalent formulations of the minimality
of an invariant probability measure µ:

• there exists a homology class h ∈ H1(M ;R), namely its rotation vector
ρ(µ), such that µ minimizes AL amongst all measures in M(L) with rotation
vector h, i.e., AL(µ) = β(h).
• There exists a cohomology class c ∈ H1(M ;R), such that µ minimizes ALηc

amongst all probability measures in M(L), i.e., ALηc (µ) = −α(c).

What is the relation between these two different approaches? Are they equivalent,
i.e.,

⋃
h∈H1(M ;R) M

h =
⋃
c∈H1(M ;R) Mc ?

In order to comprehend the relation between these two families of action-min-
imizing measures, we need to understand better the properties of the these two
functions that we have introduced above:

α : H1(M ;R) −→ R and β : H1(M ;R) −→ R.

Let us start with the following trivial remark.

Remark 6.1. As we have previously pointed out, if we have an integrable Tonelli
Hamiltonian H(x, p) = h(p) and the associated Lagrangian L(x, v) = `(v), then
α(c) = h(c) and β(h) = `(h). In this case, the cotangent bundle T ∗Tn is foliated
by invariant tori T ∗c := Tn × {c} and the tangent bundle TTn by invariant tori

T̃ h := Tn × {h}. In particular, we proved that

M̃c = L−1(Tc) = T̃ h = M̃h,

where h and c are such that h = ∇h(c) = ∇α(c) and c = ∇`(h) = ∇β(h).
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We would like to investigate whether a similar relation linking Mather sets of a
certain cohomology class to Mather sets with a certain rotation vector, continues to
exist beyond the specificity of this situation. Of course, one main difficulty is that in
general the effective Hamiltonian α and the effective Lagrangian β, although being
convex and superlinear (see Proposition 6.2), are not necessarily differentiable.

Before stating the main relation between these two functions, let us recall some
definitions and results from classical convex analysis (see [22]). Given a convex
function ϕ : V −→ R ∪ {+∞} on a finite dimensional vector space V , one can
consider a dual (or conjugate) function defined on the dual space V ∗, via the so-
called Fenchel transform: ϕ∗(p) := supv∈V

(
p · v−ϕ(v)

)
. In our case, the following

holds.

Proposition 6.2. α and β are convex conjugate, i.e., α∗ = β and β∗ = α. In
particular, it follows that α and β have superlinear growth.

Next proposition will allow us to clarify the relation (and duality) between the
two minimizing procedures described above. To state it, recall that, like any convex
function on a finite-dimensional space, β admits a subderivative at each point h ∈
H1(M ;R), i.e., we can find c ∈ H1(M ;R) such that

∀h′ ∈ H1(M ;R), β(h′)− β(h) ≥ 〈c, h′ − h〉.
As it is usually done, we will denote by ∂β(h) the set of c ∈ H1(M ;R) that are
subderivatives of β at h, i.e., the set of c’s which satisfy the above inequality.
Similarly, we will denote by ∂α(c) the set of subderivatives of α at c. Actually,
Fenchel’s duality implies an easier characterization of subdifferentials: c ∈ ∂β(h)
if and only if 〈c, h〉 = α(c) + β(h) (similarly for h ∈ ∂α(c)).

We can now state precisely in which sense what observed in Remark 6.1 continues
to hold in the general case

Proposition 6.3. Let µ ∈M(L) be an invariant probability measure. Then:
(i) AL(µ) = β(ρ(µ)) if and only if there exists c ∈ H1(M ;R) such that µ minimizes
ALηc (i.e., ALηc (µ) = −α(c)).

(ii) If µ satisfies AL(µ) = β(ρ(µ)) and c ∈ H1(M ;R), then µ minimizes ALηc if
and only if c ∈ ∂β(ρ(µ)) (or equivalently 〈c, h〉 = α(c) + β(ρ(µ)).

Remark 6.4. (i) It follows from the above proposition that both minimizing pro-
cedures lead to the same sets of invariant probability measures:⋃

h∈H1(M ;R)

Mh =
⋃

c∈H1(M ;R)

Mc .

In other words, minimizing over the set of invariant measures with a fixed rotation
vector or globally minimizing the modified Lagrangian (corresponding to a certain
cohomology class) are dual problems, as the ones that often appears in linear pro-
gramming and optimization. In some sense, modifying the Lagrangian by a closed
1-form is analog to the method of Lagrange multipliers for searching constrained
critical points of a function.

(ii) In particular we have the following inclusions between Mather sets:

c ∈ ∂β(h) ⇐⇒ h ∈ ∂α(c) ⇐⇒ M̃h ⊆ M̃c .
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Figure 2. Plot of the vector field X.

Moreover, for any c ∈ H1(M ;R):

M̃c =
⋃

h∈∂α(c)

M̃h .

Observe that the non-differentiability of α at some c produces the presence in

M̃c of (ergodic) invariant probability measures with different rotation vectors. On
the other hand, the non-differentiability of β at some h implies that there exist

c 6= c′ such that M̃c ∩ M̃c′ 6= ∅ (compare with the integrable case discussed in
section 4, where these phenomena do not appear).

(iii) The minimum of the α-function is sometime called Mañé’s strict critical
value. Observe that if α(c0) = minα(c), then 0 ∈ ∂α(c0) and β(0) = −α(c0).
Therefore, the measures with zero homology are contained in the least possible

energy level containing Mather sets and M̃0 ⊆ M̃c0 . This inclusion might be
strict, unless α is differentiable at c0; in fact, there may be other action minimizing
measures with non-zero rotation vectors corresponding to the other subderivatives
of α at c0.

(iv) Note that measures of trivial homology are not necessarily supported on
orbits with trivial homology or fixed points. For instance, one can consider the
following example. Let M = T2 equipped with the flat metric and consider a vector
field X with norm 1 and such that X has two closed orbits γ1 and γ2 in opposite
(non-trivial) homology classes and any other orbit asymptotically approaches γ1 in
forward time and γ2 in backward time; for example one can consider X(x1, x2) =
(cos(2πx1), sin(2πx1)), where (x1, x2) ∈ T2 = R2/Z2 (see figure 2).
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As we have described in section 3, we can embed this vector field into the Euler-
Lagrange vector field given by the Tonelli Lagrangian LX(x, v) = 1

2‖v − X(x)‖2.
Let us now consider the probability measure µγ1 and µγ2 , uniformly distributed
respectively on (γ1, γ̇1) and (γ2, γ̇2). Since these two curves have opposite ho-
mologies, then ρ(µγ1) = −ρ(µγ2) =: h0 6= 0. Moreover, it is easy to see that
ALX (µγ1) = ALX (µγ2) = 0, since the Lagrangian vanishes on Graph(X). Using the
fact that LX ≥ 0 (in particular it is strictly positive outside of Graph(X)) and that
there are no other invariant ergodic probability measures contained in Graph(X),
we can conclude thatM0 = γ1∪γ2 and α(0) = 0. Moreover, µ0 := 1

2µγ1 + 1
2µγ2 has

zero homology and its support is contained in M̃0. Therefore (see Proposition 6.3

(i)), µ0 is action minimizing with rotation vector 0 and M̃0 ⊆ M̃0; in particular,

M̃0 = M̃0. This also implies that β(0) = 0 and α(0) = minα(c) = 0.
Observe that α is not differentiable at 0. In fact, reasoning as we have done before

for the zero homology class, it is easy to see that for all t ∈ [−1, 1] M̃th0 = M̃0.
It is sufficient to consider the convex combination µλ = λµγ1 + (1− λ)µγ2 for any
λ ∈ [0, 1]. Therefore, ∂α(0) = {th0, t ∈ [−1, 1]} and β(th0) = 0 for all t ∈ [−1, 1].

As we have just seen in item (iv) of Remark 6.4, it may happen that the Mather
sets corresponding to different homology (resp. cohomology) classes coincide or are
included one into the other. This is something that, for instance, cannot happen
in the integrable case: in this situation, in fact, these sets form a foliation and are
disjoint. The problem in the above mentioned example, seems to be related to a
lack of strict convexity of β and α. See also the discussion on the simple pendulum
in section 7: in this case the Mather sets, corresponding to a non-trivial interval of
cohomology classes about 0, coincide.

In the light of this, let us try to understand better what happens when α and β
are not strictly convex, i.e., when we are in the presence of flat pieces.

Let us first fix some notation. If V is a real vector space and v0, v1 ∈ V , we will
denote by σ(v0, v1) the segment joining v0 to v1, that is σ(v0, v1) := {tv0+(1−t)v1 :
t ∈ [0, 1]}. We will say that a function f : V −→ R is affine on σ(v0, v1), if there
exists v∗ ∈ V ∗ (the dual of V ), such that f(v) = f(v0) + 〈v∗, v − v0〉 for each
v ∈ σ(v0, v1). Moreover, we will denote by Int(σ(v0, v1)) the interior of σ(v0, v1),
i.e., Int(σ(v0, v1)) := {tv0 + (1− t)v1 : t ∈ (0, 1)}.

Proposition 6.5. (i) Let h0, h1 ∈ H1(M ;R); β is affine on σ(h0, h1) if and only

if for any h ∈ Int(σ(h0, h1)) we have M̃h ⊇ M̃h0 ∪ M̃h1 .
(ii) Let c0, c1 ∈ H1(M ;R); α is constant on σ(c0, c1) if and only if for any c ∈
Int(σ(c0, c1)) we have M̃c ⊆ M̃c0 ∩ M̃c1 .

Remark 6.6. The inclusion in Proposition 6.5 (i) may not be true at the end points
of σ. For instance, Remark 6.4 (iv) provides an example in which the inclusion in
Proposition 6.5 (i) is not true at the end-points of σ(−h0, h0).

Remark 6.7. It follows from the previous remarks and Proposition 6.5, that, in

general, the action minimizing measures (and consequently the Mather sets M̃c or

M̃h) are not necessarily ergodic. Recall that an invariant probability measure is
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said to be ergodic, if all invariant Borel sets have measure 0 or 1. These measures
play a special role in the study of the dynamics of the system, therefore one could
ask what are the ergodic action-minimizing measures. It is a well-known result from
ergodic theory, that the ergodic measures of a flow correspond to the extremal points
of the set of invariant probability measures, where by extremal point of a convex set,
we mean an element that cannot be obtained as a non-trivial convex combination
of other elements of the set. Since β has superlinear growth, its epigraph {(h, t) ∈
H1(M ;R) × R : t ≥ β(h)} has infinitely many extremal points. Let (h, β(h))
denote one of these extremal points. Then, there exists at least one ergodic action
minimizing measure with rotation vector h. It is in fact sufficient to consider any
extremal point of the set {µ ∈ Mh(L) : AL(µ) = β(h)}: this measure will be an
extremal point of M(L) and hence ergodic. Moreover, as we have already recalled
in Remark 5.5, for such an ergodic measure µ, Birkhoff’s ergodic theorem implies
that for µ-almost every initial datum, the corresponding trajectory has rotation
vector h.

7. An example: the simple pendulum

In this section we would like to describe the Mather sets, the α-function and
the β-function, in a specific example: the simple pendulum. This system can be
described in terms of the Lagrangian:

L : TT −→ R

(x, v) 7−→ 1

2
|v|2 +

(
1− cos(2πx)

)
.

It is easy to check that the Euler-Lagrange equation provides exactly the equation
of the pendulum:

v̇ = 2π sin(2πx) ⇐⇒
{
v = ẋ
ẍ− 2π sin(2πx) = 0.

The associated Hamiltonian (or energy) H : T ∗T −→ R is given by H(x, p) :=
1
2 |p|

2− (1− cos(2πx)). Observe that in this case the Legendre transform is (x, p) =
LL(x, v) = (x, v), therefore we can easily identify the tangent and cotangent bun-
dles. In the following we will consider TT ' T ∗T ' T×R and identify H1(M ;R) '
H1(M ;R) ' R.

First of all, let us study what are the invariant probability measures of this
system.

• Observe that (0, 0) and ( 1
2 , 0) are fixed points for the system (respec-

tively unstable and stable). Therefore, the Dirac measures concentrated on
each of them are invariant probability measures. Hence, we have found
two first invariant measures: δ(0,0) and δ( 1

2 ,0), both with zero rotation

vector: ρ(δ(0,0)) = ρ(δ( 1
2 ,0)) = 0. As far as their energy is concerned

(i.e., the energy levels in which they are contained), it is easy to check
that E(δ(0,0)) = H(0, 0) = 0 and E(δ( 1

2 ,0)) = H( 1
2 , 0) = −2. Observe

that these two energy levels cannot contain any other invariant probability
measure.
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E = 0

E > 0

E = 0

E = −2

−2 < E < 0 

1/2
0 1

E > 0
v

x

Figure 3. The phase space of the simple pendulum.

• If E > 0, then the energy level {H(x, v) = E} consists of two homotopically
non-trivial periodic orbits (rotation motions):

P±E := {(x, v) : v = ±
√

2[(1 + E)− cos(2πx)], ∀x ∈ T}.

The probability measures evenly distributed along these orbits — which we
will denote µ±E — are invariant probability measures of the system. If we
denote by

T (E) :=

∫ 1

0

1√
2[(1 + E)− cos(2πx)]

dx(8)

the period of such orbits, then it is easy to check that ρ(µ±E) = ±1
T (E) (see

Remark 5.5). Observe that this function T : (0,+∞) −→ (0,+∞), which
associates to a positive energy E the period of the corresponding periodic
orbits P±E , is continuous and strictly decreasing. Moreover, T (E) → ∞ as
E → 0 (it is easy to see this, by noticing that motions on the separatrices
take an infinitely long time to connect 0 to 1 ≡ 0 mod Z). Therefore,
ρ(µ±E)→ 0 as E → 0.
• If −2 < E < 0, then the energy level {H(x, v) = E} consists of one

contractible periodic orbit (libration motion):

PE := {(x, v) : v2 = 2(1 + E)− 2 cos(2πx), x ∈ [xE , 1− xE ]},

where xE := 1
2π arccos(1 +E). The probability measure evenly distributed

along this orbit — which we will denote by µE — is an invariant proba-
bility measure of the system. Moreover, since this orbit is contractible, its
rotation vector is zero: ρ(µE) = 0.
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The measures above are the only ergodic invariant probability measures of the
system. Other invariant measures can be easily obtained as a convex combination
of them.

Now we want to understand which of these are action-minimizing for some co-
homology class.

Remark 7.1. (i) Let us start by remarking that for −2 < E < 0 the support of the
measure µE is not a graph over T, therefore it cannot be action-minimizing for any
cohomology class, since otherwise it would violate Mather’s graph theorems (see
section 5). Therefore all action-minimizing measures will be contained in energy
levels corresponding to energy bigger than zero. It follows from what said in sections
5 and 6 that α(c) ≥ 0 for all c ∈ R.

(ii) Another interesting property of the α-function (in this specific case) is that
it is an even function: α(c) = α(−c) for all c ∈ R. This is a consequence of
the particular symmetry of the system, i.e., L(x, v) = L(x,−v). In fact, let us
denote τ : T × R −→ T × R, (x, v) 7−→ (x,−v) and observe that if µ is an in-
variant probability measure, then also τ∗µ is still an invariant probability measure.
Moreover, τ∗M(L) = M(L), where M(L) denotes the set of all invariant prob-
ability measures of L. It is now sufficient to notice that for each µ ∈ M(L),∫

(L− c · v) dµ =
∫

(L+ c · v)dτ∗µ, and hence conclude that

α(c) = − inf
M(L)

∫
(L− c · v) dµ = − inf

M(L)

∫
(L+ c · v)dτ∗µ = α(−c) .

(iii) It follows from the above symmetry and the convexity of α, that

min
R
α(c) = α(0) .

Let us now start by studying the 0-action minimizing measures, i.e., invariant
probability measures that minimize the action of L without any modification. Since
L(x, v) ≥ 0 for each (x, v) ∈ T×R, then AL(µ) ≥ 0 for all µ ∈M(L). In particular,
AL(δ(0,0)) = 0, therefore δ(0,0) is a 0-action minimizing measure and α(0) = 0.
Since there are not other invariant probability measures supported in the energy
level {H(x, v) = 0} (i.e., on the separatrices), then we can conclude that:

M̃0 = {(0, 0)} .

Moreover, since α′(0) = 0 (see Remark 7.1 (iii)), then it follows from Remark 6.4
that:

M̃0 = M̃0 = {(0, 0)} .
On the other hand, this could be also deduced from the fact that the only other
measures with rotation vector 0, cannot be action minimizing since they do not
satisfy the graph theorem (Remark 7.1).

Now let us investigate what happens with other cohomology classes. A näıve
observation is that since the α-function is superlinear and continuous, all energy
levels for E ≥ 0 must contain some Mather set; in other words, all energy levels
E ≥ 0 must be obtained as α(c), for some c.

Let E > 0 and consider the periodic orbit P+
E and the invariant probability

measure µ+
E evenly distributed on it. The graph of this orbit can be seen as the
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graph of a closed 1-form η+
E :=

√
2[(1 + E)− cos(2πx)] dx, whose cohomology class

is

c+(E) := [η+
E ] =

∫ 1

0

√
2[(1 + E)− cos(2πx)] dx,(9)

which can be interpreted as the (signed) area between the curve and the positive
x-semiaxis. This value is clearly continuous and strictly increasing with respect to
E (for E > 0) and as E → 0+:

c+(E) −→
∫ 1

0

√
2[1− cos(2πx)] dx =

4

π
.

Therefore, it defines an invertible function c+ : (0,+∞) −→ ( 4
π ,+∞).

We want to prove that µ+
E is c+(E)-action minimizing. The proof will be an

imitation of what already seen for KAM tori in section 4.
Let us consider the Lagrangian Lη+E

(x, v) := L(x, v) − η+
E(x) · v. Then, using

Legendre-Fenchel inequality (1) (on the support of µ+
E , because of our choice of η+

E ,
this is indeed an equality):∫

Lη+E
(x, v)dµ+

E =

∫ (
L(x, v)− η+

E(x) · v
)
dµ+

E =

=

∫
−H(x, η+

E(x))dµ+
E = −E .

Now, let ν be any other invariant probability measure and apply again the same pro-
cedure as above (warning: this time Legendre-Fenchel inequality is not an equality
anymore!): ∫

Lη+E
(x, v)dν =

∫ (
L(x, v)− η+

E(x) · v
)
dν ≥

≥
∫
−H(x, η+

E(x))dν = −E .

Therefore, we can conclude that µ+
E is c+(E)-action minimizing. Since it already

projects over the whole T, it follows from the graph theorem that it is the only one:

M̃c+(E) = P+
E = {(x, v) : v =

√
2[(1 + E)− cos(2πx)], ∀x ∈ T}.

Furthermore, since ρ(µ+
E) = 1

T (E) , then:

M̃
1

T (E) = M̃c+(E) = P+
E .

Similarly, one can consider the periodic orbit P−E and the invariant probabil-

ity measure µ−E evenly distributed on it. The graph of this orbit can be seen as

the graph of a closed 1-form η−E := −
√

2[(1 + E)− cos(2πx)] dx = −η+
E , whose

cohomolgy class is c−(E) = −c+(E). Then (see also Remark 7.1 (ii)):

M̃c−(E) = P−E = {(x, v) : v = −
√

2[(1 + E)− cos(2πx)], ∀x ∈ T},

and

M̃−
1

T (E) = M̃c−(E) = P−E .
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Note that this completes the study of the Mather sets for any given rotation
vector, since

ρ(µ±E) = ± 1

T (E)

E→+∞−→ ±∞ and ρ(µ±E) = ± 1

T (E)

E→0+

−→ 0 .

What remains to study is what happens for non-zero cohomology classes in [− 4
π ,

4
π ].

The situation turns out to be quite easy. Observe that α(c±(E)) = E. Thefore,
from the continuity of α it follows that (take the limit as E → 0): α(± 4

π ) = 0.

Moreover, since α is convex and minα(c) = α(0) = 0, then: α(c) ≡ 0 on [− 4
π ,

4
π ].

Therefore, the corresponding Mather sets will lie in the zero energy level. From
the above discussion, it follows that in this energy level there is a unique invariant
probability measure, namely δ(0,0), and consequently:

M̃c = {(0, 0)} for all − 4

π
≤ c ≤ 4

π
.

Let us summarize what we have found so far. Recall that in (8) and (9) we have
introduced these two functions: T : (0,+∞) −→ (0,+∞) and c+ : (0,+∞) −→
( 4
π ,+∞) representing respectively the period and the cohomology (area below the

curve) of the upper periodic orbit of energy E. These functions (for which we have
an explicit formula in terms of E) are continuous and strictly monotone (respec-
tively, decreasing and increasing). Therefore, we can define their inverses which
provide the energy of the periodic orbit with period T (for all positive periods) or
the energy of the periodic orbit with cohomology class c (for |c| > 4

π ). We will
denote them E(T ) and E(c) (observe that this last quantity is exactly −α(c)).
Then:

M̃c =


{(0, 0)} if − 4

π ≤ c ≤
4
π

P+
E(c) if c > 4

π

P−E(−c) if c < − 4
π

and

M̃h =


{(0, 0)} if h = 0
P+
E( 1

h )
if h > 0

P−
E(− 1

h )
if h < 0 .

We can provide an expression for these functions in terms of the quantities
introduced above:

α(c) =

{
0 if − 4

π ≤ c ≤
4
π

E(|c|) if |c| > 4
π

and

β(h) =

{
0 if h = 0
c(E( 1

|h| ))|h| − E( 1
|h| ) if h 6= 0 .

Observe that the α-function is C1. In fact, the only problem might be at c = ± 4
π ,

but also there it is differentiable, with derivative 0. If it were not differentiable,

then there would exist a subderivative h 6= 0 and consequently M̃h ⊆ M̃± 4
π

, which

is absurd since the set on the right-hand side consists of a single point. However,
α is not strictly convex, since there is a flat piece on which it is zero.

As far as β is concerned, it is strictly convex (as a consequence of α being C1),
but it is differentiable everywhere except at the origin. At the origin, in fact, there
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0c

α(c)
β(h)

4/π

h

4/π

4/π−4/π

Figure 4. Sketch of the graphs of the α and β-functions of the
simple pendulum.

is a corner and the set of subderivatives (i.e., the slopes of tangent lines) is given
by ∂β(0) = [− 4

π ,
4
π ] (this is related to the fact that α has a flat on this interval).
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