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HOLOMORPHIC CURVES AND CELESTIAL MECHANICS

UMBERTO L. HRYNIEWICZ

Abstract. This expository article has two purposes. The first is to explain
the connection between Poincaré’s work on Celestial Mechanics and the Arnold
Conjecture on the minimal number of fixed points of Hamiltonian diffeomor-
phisms. The second is to outline how holomorphic curve methods can be used
to study Hamiltonian dynamics.

1. From Celestial Mechanics to Arnold Conjecture

In order to reach the origins of the problems that motivated Floer Theory we
need to revisit the end of the XIX century. During this time Celestial Mechanics
served as stage for Poincaré to implement some of the revolutionary ideas that laid
the foundations of the field of Dynamical Systems. Poincaré was led to make a
fundamental statement, known today as the Poincaré-Birkhoff Theorem [32], proved
by Birkhoff [5] in 1913. It is a fixed point theorem for certain area-preserving
annulus homeomorphisms, the precise statement will be recalled below. For decades
mathematicians looked for a better understanding of the theorem, for generalizations
to higher dimensions and to other phase spaces. We had to wait until the 1960’s when
ideas of Arnold finally allowed for proper understanding and generalization. The
main purpose of this introduction is to provide more details about this remarkable
chain of events.

Poincaré investigated a simplification of the 3-body problem: the planar circular
restricted 3-body problem (PCR3BP). Two massive particles evolve in a relatively
circular trajectory of the 2-body problem. A third particle (satellite) moves in the
same plane of the first two, under their influence according to Newton’s Law of
Gravitation. However, the satellite is assumed not to disturb the movement of
the massive particles. It turns out that in a rotating coordinate system, where
the massive particles remain fixed, the satellite’s movement is described by an
autonomous Hamiltonian; see Section 4 for precise formulas.

Low energy levels (below lowest critical level) have three connected components,
they project onto three so-called Hill regions of the configuration plane: two of which
are bounded neighborhoods of the massive particles while the third is a neighborhood
of infinity. We choose one bounded Hill region. The mass ratio µ ∈ (0, 1) is defined
as the ratio between the mass of the particle outside the chosen Hill region and
the total mass. The Hamiltonian turns out to have a smooth limit as µ→ 0. The
limiting Hamiltonian models the rotating Kepler problem, which is just the Kepler
problem viewed in a rotating coordinate system.

The rotating Kepler problem is integrable, the integrals being the energy and
the angular momentum. The Hill region around the light particle degenerates as
µ→ 0, while the boundaries of the other Hill regions converge to circles around the
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limiting position of the heavy particle, which we call center. Using integrability it is
not difficult to find circular orbits of the rotating Kepler problem. There are three
of them: two inside the bounded Hill region, and a third one inside the unbounded
Hill region. One of the two circular orbits in the bounded Hill region is retrograde
while the other is direct, according to which they rotate around the center in the
opposite or in the same sense of the relative position of the massive particles.

Poincaré was able to find continuations of the circular orbits when µ > 0 is small
enough. For this he devised a method, called the continuation method, which we
now briefly describe. Choose a transverse section at a point of one of the orbits
(recall that energy levels are three-dimensional). There is a well-defined local return
map, and the orbit corresponds to a fixed point. The transverse section remains, of
course, transverse as we slightly perturb µ. If the derivative of the return map at
this fixed point is non-singular for µ = 0 then the fixed point is isolated, and the
implicit function theorem gives isolated fixed points of the local return map for all
µ > 0 small enough. These correspond to continued periodic orbits. They retain
the geometric properties of the unperturbed orbits, namely one is retrograde and
the other is direct.

Now, using a method introduced by Levi-Civita [31] which we shall illustrate
in Section 4, collisions with the massive particle can be regularized to obtain an
energy level diffeomorphic to S3. The movement evolves smoothly there. In doing
so, an ambiguity in the representation of states is introduced: the energy level is
antipodal symmetric, each state being represented twice as a pair of antipodal points.
We ignore this problem for now, keep the ambiguity and say that the regularized
dynamics is a two-to-one lift of the unregularized dynamics. The same regularization
process applies of course to the rotating Kepler problem. The direct and retrograde
orbits lift under this process to a pair of periodic orbits forming a Hopf link. When
µ = 0 Poincaré uses the angular momentum to show that these two lifted orbits
bound a very special embedded annulus, a so-called global surface of section (GSS).

Definition 1.1. Let φt be a smooth flow on a smooth closed 3-manifold M . A
global surface of section for φt is an embedded compact surface S ↪→M such that

(i) The boundary ∂S consists of periodic orbits, and the interior S \ ∂S is
transverse to φt.

(ii) For every p ∈M \ ∂S there exist t− < 0 < t+ such that φt±(p) ∈ S.

In the presence of a global surface of section the dynamical properties of the flow
φt get encoded in the first return map

(1) ψ : S \ ∂S → S \ ∂S ψ(p) = φτ(p)(p)

where the first return time τ : S \ ∂S → (0,+∞) is defined as

(2) τ(p) = inf{t > 0 | φt(p) ∈ S}.

Poincaré showed that the annular global surface of section for µ = 0 could be
continued for µ > 0 small enough. In fact, the continuation method applies to
continue its boundary, as explained above. Using a C∞-small isotopy, one continues
the annulus “by hand”. The task is now to show that the continued annulus is again
a global surface of section. By transversality, the return map is well-defined on
compact subsets of the interior, and globally encodes the dynamics on arbitrarily
large compact subsets of the complement of the boundary orbits. The situation
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near the boundary is more delicate, but it can be nicely controlled by the robust
positivity of the transverse rotation numbers of the boundary orbits.

A more detailed discussion about global surfaces of section is found in Section 3,
where the connection to holomorphic curves will be made.

Why is it nice to have a global surface of section? Because it allows for two-
dimensional methods to come into play and shed light onto the three-dimensional
flow. This is precisely what Poincaré did, and in doing so he was able to leave the
seed for Symplectic Topology and Floer Theory. Let us explain this point, which is
main goal of this introduction.

Using the linearized dynamics of the direct and retrograde orbits, one can smoothly
extend the first return map up to boundary. Each boundary component is mapped
onto itself. The symplectic nature of the flow allows us to find a smooth 2-form on
the annulus which is preserved by the extended return map. This 2-form defines an
area form in the interior, but vanishes on the boundary. It turns out that there is a
homeomorphism between Poincaré’s annulus and R/Z× [0, 1] that is smooth in the
interior and pulls the 2-form back to the standard area element. Such a conjugating
homeomorphism is not differentiable on the boundary.

Thus, Poincaré was led to the problem of studying qualitative properties of area-
and orientation-preserving homeomorphisms of the closed annulus that preserve
boundary components. Consider such a homeomorphism f on R/Z× [0, 1]. It can
be lifted to a homeomorphism F of R × [0, 1]. If we denote its components by
F (x, y) = (X(x, y), Y (x, y)) then

(3) f(x+ Z, y) = (X(x, y) + Z, Y (x, y)) ∀(x, y) ∈ R× [0, 1].

Of course, there are infinitely many choices of F , and they all differ by translation
by an integer. It follows that

(4) X(x+ 1, y) = X(x, y) + 1 Y (x+ 1, y) = Y (x, y)

holds for every (x, y) ∈ R× [0, 1].
Poincaré’s seminal contribution to Symplectic Dynamics and Topology was the

formulation of the following statement.

Theorem 1.2 (Poincaré’s last geometric theorem [32]). Suppose that

x 7→ X(x, 1)− x and x 7→ X(x, 0)− x

are non-vanishing functions with opposite signs. Then F has at least two fixed points
which are not integer translations of each other. In particular, they project onto
distinct fixed points of f .

This is a truly remarkable statement. Note that X(x, 1)− x and X(x, 0)− x are
1-periodic functions of x in view of (4). The assumption that they have definite and
opposite signs means that f moves boundary components in opposite directions, i.e.
f “twists the annulus”.

Theorem 1.2 can be strengthened as follows. Let

πR : R× [0, 1]→ R (x, y) 7→ x

denote the projection onto the first component, and consider rotation numbers

(5) ρ0 = lim
n→+∞

πR ◦ Fn(x, 0)

n
ρ1 = lim

n→+∞

πR ◦ Fn(x, 1)

n
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of F restricted to boundary components. The twist condition asks that

(6) ρ0 6= ρ1.

A different choice of F will change ρ0, ρ1 by addition of a common integer, hence (6)
is really a condition on f . The assumptions of Theorem 1.2 force ρ0 and ρ1 to have
opposite signs, in particular (6) holds.

Theorem 1.3 (Poincaré-Birkhoff). If ρ0 6= ρ1 then for every p/q between ρ0 and
ρ1 there exist P, P ′ ∈ R× [0, 1] satisfying

F q(P ) = P + (p, 0) F q(P ′) = P ′ + (p, 0)

Moreover, the orbits of these points project to distinct periodic orbits of the map f .
In particular, f admits infinitely many periodic points.

The above form of the theorem forces existence of infinitely many periodic orbits
in the PCR3BP when µ > 0 is small enough and the energy is low. This amounts
for one of the fist major victories of Poincaré’s ideas.

Birkhoff’s proof [5] did not shed light onto generalizations to higher dimensions or
to different phase spaces. However, Poincaré was already able to prove Theorem 1.2
in special cases, and his arguments did lend to such generalizations. This was
remarked by V. I. Arnold in the 1960’s; the following discussion is based on [3,
appendix 9]. Arnold realized that, in the smooth case, Theorem 1.2 would be
consequence of a certain fixed point theorem for a special class of diffeomorphisms
of the torus. Arnold’s statement can be generalized to all symplectic manifolds.
This was, in fact, only one of many statements that came to be known as Arnold
Conjectures. These conjectures led Floer [10, 11, 12] to develop what is nowadays
known as Floer theory.

Arnold considered certain diffeomorphisms of the 2n-dimensional torus R2n/Z2n.
The space R2n carries a standard symplectic form

ω0 =

n∑
j=1

dxj ∧ dyj

where coordinates are denoted by (x1, . . . , xn, y1, . . . , yn). Since ω0 is invariant
by translations, it descends to a symplectic form on R2n/Z2n again denoted by
ω0. Arnold considers diffeomorphisms Ψ : R2n/Z2n → R2n/Z2n with the following
properties:
(H1) Ψ is isotopic to the identity.
(H2) Ψ is symplectic: Ψ∗ω0 = ω0.
(H3) Ψ is exact: it admits a lift to R2n whose center of gravity vanishes.

Let us explain these in more detail. By (H1) the map Ψ lifts via the projection
R2n → R2n/Z2n to a symplectic diffeomorphism Ψ̃ of (R2n, ω0) satisfying

(7) Ψ̃(z + k) = Ψ̃(z) + k ∀z ∈ R2n, ∀k ∈ Z2n.

Hence we can write Ψ̃(z) = z + ∆(z) for some Z2n-periodic function ∆. The center
of mass of Ψ̃ is defined by the integral

(8)
∫
[0,1]2n

∆(z)

There are of course infinitely many lifts and they all differ by translation by a vector
in Z2n. In particular, the same holds for their centers of mass. Hence condition
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(H3) is equivalent to saying that the center of mass of any lift of Ψ belongs to Z2n.
We may simply refer to Ψ as an exact symplectic diffeomorphism of (R2n/Z2n, ω0).

Arnold Conjecture (Particular case): Exact symplectic diffeomorphisms of the stan-
dard symplectic torus (R2n/Z2n, ω0) must have at least 2n+1 fixed points. Morevoer,
if all fixed points are non-degenerate then there must be at least 22n fixed points.

To illustrate the ideas we prove the conjecture in case the exact symplectic
diffeomorphism is C1-close to the identity. Let Ψ̃ be the unique lift to R2n that is
C1-close to the identity. Identifying R2n = Rnx × Rny , we can write in components

Ψ̃(x, y) = (X(x, y), Y (x, y)).

The identity Ψ̃∗ω0 = ω0 is equivalent to saying that

η =

n∑
j=1

(yj − Yj)dxj + (Xj − xj)dYj

is a closed 1-form. C1-closeness to the identity ensures that the map (x, y) 7→ (x, Y )
is a diffeomorphism of R2n. Hence we may view η in (x, Y )-space and find a
real-valued function F (x, Y ) such that dF = η. In other words

(9)
X − x = D2F (x, Y )

y − Y = D1F (x, Y )

holds, and defines the map implicitly. Finally we make use of the vanishing of the
center of mass to conclude that F is Z2n-periodic. Hence, by Morse theory, the
function on R2n/Z2n induced by F has at least 2n+ 1 critical points. By (9) this
means that Ψ has at least 2n + 1 fixed points. The non-degenerate case follows
similarly by the well-known estimates on the number of critical points of a Morse
function in terms of sum of Betti numbers. The proof is complete.

The Arnold conjecture for standard symplectic tori was confirmed by a celebrated
result due to Conley and Zehnder [8]. Their arguments make use of degree theory
in infinite dimensions in order to take advantage of the fact that the classical action
functional is a compact perturbation of a quadratic form of infinite index and
co-index.

The generalization to arbitrary symplectic manifolds requires the notion of
Hamiltonian diffeomorphism. Let (W,ω) be a symplectic manifold and let {ψt}t∈[0,1]
be a smooth isotopy of W starting at the identity ψ0 = id, consisting of symplectic
diffeomorphisms. Let Xt be the vector field generating ψt, i.e. d

dtψ
t = Xt ◦ ψt.

Differentiating we obtain

(10) 0 =
d

dt
(ψt)∗ω = (ψt)∗LXt

ω = (ψt)∗diXt
ω

from where we see that iXt
ω is closed, for every t. A diffeomorphism φ of W isotopic

to the identity is a Hamiltonian diffeomorphism of (W,ω) if it can be written as
φ = ψ1 for some isotopy ψt as above such that iXtω is exact for every t. The set of
Hamiltonian diffeomorphisms of (W,ω) will be denoted by Ham(W,ω).

Arnold Conjecture: Let (W,ω) be a closed symplectic manifold and let φ ∈ Ham(W,ω).
Then

#Fix(φ) ≥ inf{#Crit(f) | f ∈ C∞(W,R)}
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and, moreover, if all fixed points of φ are non-degenerate then

#Fix(φ) ≥
∑
i

bi(W )

where bi(W ) denotes the rank of Hi(W,Z).

The connection with the previously stated conjecture is that the set of exact sym-
plectic diffeomorphisms of (R2n/Z2n, ω0) coincides precisely with Ham(R2n/Z2n, ω0).

To close the circle of ideas and conclude this introduction we need to explain
why Arnold’s conjecture on (R2/Z2, ω0) implies Theorem 1.2 (in the smooth case).
Consider an area and orientation preserving diffeomorphism f of R/Z× [0, 1] that
preserves boundary components. We make a simplifying assumption for the sake of
exposition:

(∗) f is a rotation near the boundary.

If this assumption is dropped then the discussion below can be modified but the
details would draw our attention to unimportant technical issues.

By the assumptions of Theorem 1.2 and by hypothesis (∗), there is a lift F (x, y) =
(X,Y ) of f to R× [0, 1] satisfying

(11)
F (x, y) = (x+ α0, y) if y ∼ 0

F (x, y) = (x+ α1, y) if y ∼ 1

where α0α1 < 0.
Consider d1, d2 > 0 to be fixed a posteriori, and set d := d1 + d2. On the thicker

strip R× [0, 2 + d] consider the map Ψ defined by:

• If y ∈ [0, 1] then Ψ(x, y) = F (x, y),
• If y ∈ [1, 1 + d1] then Ψ(x, y) = (x+ α1, y),
• If y ∈ [1 + d1, 2 + d1] then

Ψ(x, y) = (X(x, 2 + d1 − y), 2 + d1 − Y (x, 2 + d1 − y)),

• If y ∈ [2 + d1, 2 + d] then Ψ(x, y) = (x+ α0, y).

It follows that Ψ is a diffeomorphism of R× [0, 2 + d] which agrees with the map
(x, y) 7→ (x+ α0, y) near the boundary.

We extend Ψ to a map Ψ : R2 → R2 in a (2+d)-periodic fashion in the y-variable.
Then the extended Ψ is an area and orientation preserving diffeomorphism of R2

that commutes with the additive action of the lattice Γ = Z× (2 + d)Z. As such, it
descends to a diffeomorphism on the torus R2/Γ.

If we write Ψ(x, y) = (x+ g(x, y), y + h(x, y)) then the center of mass of Ψ is(∫
[0,1]×[0,2+d]

g(x, y),

∫
[0,1]×[0,2+d]

h(x, y)

)

Now we wish to show that if d1, d2 are suitably chosen then the center of mass
of Ψ vanishes. To see this we first note that the second coordinate vanishes: on
[0, 1]× ([1, 1 + d1] ∪ [2 + d1, 2 + d]) the function h(x, y) vanishes, and by the change
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of variables formula∫
[0,1]×[1+d1,2+d1]

h(x, y)

=

∫
[0,1]×[1+d1,2+d1]

2 + d1 − Y (x, 2 + d1 − y)− y

=

∫
[0,1]×[1+d1,2+d1]

−(Y (x, 2 + d1 − y)− (2 + d1 − y))

=

∫
[0,1]×[1+d1,2+d1]

−h(x, 2 + d1 − y) = −
∫
[0,1]2

h(x, y).

As for the first coordinate, note that∫
[0,1]×[1+d1,2+d1]

g(x, y) =

∫
[0,1]2

g(x, y)

from where we get∫
[0,1]×[0,2+d]

g(x, y) = α1d1 + α0d2 + 2

∫
[0,1]2

g(x, y)

Since α0α1 < 0 we can choose d1, d2 positive in such a way that

α1d1 + α0d2 = −2

∫
[0,1]2

g(x, y)

forcing the first coordinate of the center of mass to vanish, as desired.
Hence, the validity of Arnold’s conjecture on the 2-torus will force Ψ to have at

least three fixed points. By symmetry, F has at least two fixed points, as claimed
by Theorem 1.2.

2. Hamiltonian Dynamics and PDEs

An important tool for understanding Hamiltonian dynamics is the underlying
variational structure, which incarnates in many forms. This section is devoted to
explaining the origins of the PDE methods used by Floer to explore the variational
structure and attack the Arnold Conjecture. These methods are, of course, based
on the seminal work of Gromov [19] where holomorphic curves were first introduced
as a tool to study symplectic geometry.

We start with a quick revision of the basics on symplectic geometry. Phase spaces
of Hamiltonian systems are symplectic manifolds. These are pairs (W,ω) consisting
of a smooth manifold W and a closed 2-form ω which is non-degenerate: at every
point, kerω is the trivial vector space. Such forms are called symplectic forms.

Symplectic manifolds are necessarily even dimensional, but in fact more is true:
locally they are just copies of open subsets of the standard symplectic vector space
(R2n, ω0) where

(12) ω0 =

n∑
j=1

dxj ∧ dyj .

Here the coordinates on R2n are denoted by (x1, . . . , xn, y1, . . . , yn). This is the
content of Darboux’s theorem.

Corrections to the discussion on Floer’s chain complex and a misuse of the expression “center
of mass” have been added as erratum at the end of the volume.
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Hamiltonian systems on (W,ω) are determined by (possibly time dependent) func-
tions Ht : W → R as follows. The symplectic gradient, also called the Hamiltonian
vector field, of Ht is the non-autonomous vector field XHt defined by

ω(XHt
, ·) = dHt

for each t. The function Ht is called the Hamiltonian. In symplectic coordinates
provided by Darboux theorem, the ODE

(13) ẋ(t) = XHt
(x(t))

is nothing but Hamilton’s equations of motion. The dynamics on (W,ω) induced by
this ODE is Hamiltonian dynamics.

When the Hamiltonian H is time independent then its values are preserved by
the flow of XH since dH(XH) = ω(XH , XH) = 0. Then H can be thought of as
energy, and the system is conservative.

The non-autonomous case. Let us assume that Ht is periodic in time, say of
period 1. This imposes no loss of generality, as it turns out. Consider the loop space
L of W , defined as a space of maps R/Z→W (regularity is not specified as this is
an informal discussion). If ω is exact then one considers on L the action functional
from classical mechanics

c 7→
∫
R/Z

c∗λ+

∫ 1

0

Ht(c(t)) dt

where λ is a primitive of ω. Since ω might not be exact – and it will never be when
W is closed – we need to make additional assumptions.

Assume that (W,ω) is aespherical in the sense that ω and c1(TW,ω) vanish on
π2(M). Here c1(TW,ω) denotes the first Chern class of the symplectic vector bundle
(TW,ω). For the reader not familiar with Chern classes, note that its vanishing
on π2(M) is equivalent to the following condition: for every map f : S2 → W
the symplectic vector bundle f∗(TW,ω) over S2 is trivial. Let L0 ⊂ L be the
connected component consisting of contractible loops. We define

AH : L0 → R c 7→
∫
D
v∗ω +

∫
R/Z

Ht(c(t))dt

where v : D → W is a smooth map satisfying v(ei2πt) = c(t). The aesphericity
assumption guarantees that AH(c) does not depend on the choice of v. The Euler-
Lagrange equations are precisely Hamilton’s equations of motion. Hence, finding
(contractible) periodic motions amounts to finding critical points of AH .

Deep results in Symplectic Topology have been established by exploiting this
variational structure. Sometimes one can define so-called symplectic capacities as
special critical values of AH . These invariants shed new light onto the theory of
Hamiltonian systems. In Gromov’s seminal work [19] one finds the first symplectic
capacity, so-called Gromov width, although the appropriate formalism was introduced
later by Ekeland and Hofer who also defined many new symplectic capacities.

There are major difficulties in the analysis of AH . Critical points have infinite
index and co-index, in any reasonable sense. Moreover, AH is unbounded from above
and below. If one follows any kind of anti-gradient flow of AH then critical points
and values are expected to be missed, and sublevel sets do not change topology as
we pass critical levels.
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Floer’s idea is to look at the L2 anti-gradient flow equation, even knowing that it
does not define a flow. To be more concrete, consider ω-compatible and 1-periodic
almost complex structures Jt on W . These are 1-parameter families of fields of
endomorphisms Jt of TW such that for every t there holds Jt+1 = Jt, J2

t = −I and
ω(·, Jt·) is a Riemannian metric. Then

〈X,Y 〉L2 =

∫
R/Z

ω(c(t))(X(t), Jt(c(t))Y (t)) dt

defines an inner-product on vector fields along c (thought of as tangent vectors of
the loop space, based at c). The L2 anti-gradient of AH at c is the vector field

−Jt(c(t))[ċ(t)−XHt
(c(t))]

along c. If u = u(s, t) is a map R× R/Z→W , thought of as a path of loops, then
the anti-gradient flow equation is Floer’s equation

(14) us + Jt(u)[ut −XHt(u)] = 0.

It is a non-linear elliptic equation, a compact perturbation of the Cauchy-Riemann
equation associated to J . Its analytical properties suffice to define some kind of
Morse homology of AH , called Floer homology. Note that if u(s, t) solves (14) then
u(s+ s0, t) is also a soluation, for every s0, but they will be declared equivalent for
the purpose of counting solutions.

Let us pause and describe a simple instance of Floer’s construction. By the
aesphericity condition every contractible 1-periodic solution x : R/Z→W of (13)
has a well-defined Conley-Zehnder index CZ(x) ∈ Z. We shall not describe the
Conley-Zehnder index, referring to [4] for details; we shall only say that it is related
to winding properties of the linearization of the ODE (13).

Floer assumes that contractible 1-periodic solutions of (13) are non-degenerate
in the sense that 1 is not an eigenvalue of the corresponding linearized flow. This
is like saying that the action functional is Morse. He considers the vector space
CF∗(H) over Z/2Z freely generated by the contractible 1-periodic solutions of (13),
graded by the Conley-Zehnder index. It turns out that when Jt is generic – in
some precise sense that we will not explain here – the following holds: if x, y are
generators of CF(H) satisfying CZ(x)− CZ(y) = 1 then the number of equivalence
classes of solutions u(s, t) of Floer’s equation (14) satisfying

lim
s→−∞

u(s, t) = x(t) lim
s→+∞

u(s, t) = y(t)

is finite. Denote the number of such equivalence classes of solutions by n(x, y). Floer
defines a degree −1 differential

(15) δH,J(x) =
∑

CZ(y)=CZ(x)−1

(n(x, y) mod 2) y

on CF(H). It turns out that the homology of the chain complex (CF∗(H), δH,J)
is independent of the pair (H,J) and is canonically isomorphic to the singular
homology H∗(W,Z/2Z). This explains why the sum of Betti numbers is a lower
bound on the number of contractible 1-periodic solutions of (13), at least in the
non-degenerate case.

This homology theory carries a richer structure: a filtration by action values.
This fact is used to define special critical values, which in turn are used to construct
invariants. Hence the variational structure of AH sheds light onto the geometry of
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the phase space. But we are also very much interested in the reverse direction: the
properties of (W,ω) might force AH to have special critical points. These periodic
orbits can be used to study global properties of the underlying Hamiltonian system.
For the basics in Floer homology we refer to the book [4] by Audin and Damian,
and the notes [33] by Salamon.

The autonomous case. This story has a beautiful analogue for autonomous
systems, which is related to contact geometry and is due to Hofer [20]. Assume H is
time-independent and look at a regular level M ⊂W . There is no loss of regularity
to suppose that M = H−1(0) since we may add a constant to H without altering
the dynamics.

Assume that ω has a primitive λ. From now on we also write λ to denote the pull-
back of this primitive toM by the inclusion mapM ↪→W , with no fear of ambiguity.
The crucial assumption to be made is that λ defines a contact form on M , i.e. ω is
pointwise non-degenerate on the associated contact structure ξ := kerλ ⊂ TM .

The action functional on loops in M is now just
∫
λ. Hofer considered the

so-called symplectization. It is defined as R×M equipped with the symplectic form
d(eaλ), where a denotes the R-component and we see λ as an R-invariant 1-form on
R×M (with respect to the action of (R,+) on the first component).

We don’t insist in parametrizing the dynamics on M by XH . Instead, we
parametrize it by the unique non-vanishing multiple Xλ of XH satisfying λ(Xλ) = 1.
It is called the Reeb vector field associated to λ.

In [20] Hofer considered R-invariant almost complex structures J̃ on R ×M
that send ∂

∂a 7→ Xλ, and have the property that ω(·, J̃ ·) is an inner-product on ξ.
As before, we see here Xλ and ξ as R-invariant objects on R ×M . Such a J̃ is
compatible with d(eaλ) in the sense explained before.

The L2 gradient flow equation is now written as the Cauchy-Riemann equation
∂̄J̃ = 0 associated to J̃ . Its solutions are holomorphic curves, but here the situation
differs drastically from the one dealt by Gromov in [19]: domains necessarily need to
be punctured Riemann surfaces. The behavior of these curves near their ends, under
a certain finite-energy condition introduced by Hofer, allowed for Morse-homological
constructions, giving rise to Contact Homology and Symplectic Field Theory [9].

3. Global surfaces of section

As explained in the introduction, Poincaré constructed annulus-like global surfaces
of section in the context of the PCR3BP. Another early and powerful existence
result is the following.

Theorem 3.1 (Birkhoff [6]). The geodesic flow on the unit tangent bundle of any
positively curved Riemannian metric on S2 admits a global surface of section.

In fact, we can be more precise. Consider an embedded closed geodesic γ(t) of
length L in a positively curved Riemannian 2-sphere, parametrized with unit speed.
Choose an ambient orientation and for each t ∈ R/LZ let n(t) be the unit vector at
γ(t) such that {γ̇(t), n(t)} is a positive orthonormal frame. The Birkhoff annulus
associated to γ is

(16) Aγ = {cos θ γ̇(t) + sin θ n(t) | t ∈ R/LZ, θ ∈ [0, π]}.
This is an embedded annulus in the unit sphere bundle, and Birkhoff showed that it
is a global surface of section whenever the Gaussian curvature is positive everywhere.
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Birkhoff’s proof is very specific to geodesic flows and does not shed much light into
the general existence problem.

A very general theory of global surfaces of section exists, for arbitrary flows on
3-manifolds. It is the outcome of the work of many mathematicians during the
XX century, including Schwartzman [34], Fried [16], Ghys [18] and Sullivan [35].
However, most of the statements make use of dynamical hypotheses which are very
hard to be checked. This in contrast to Theorem 3.1.

Here we focus on existence statements based on the theory developed by Hofer,
Wysocki and Zehnder (HWZ) since they resonate with Birkhoff’s statement in the
sense that their hypotheses are quite concrete and geometric.

Consider R4 with coordinates (x1, y1, x2, y2) and its standard symplectic form
ω0 = dx1 ∧ dy1 + dx2 ∧ dy2. Let C ⊂ R4 be a compact convex set with strictly
convex smooth boundary M = ∂C: this means that the boundary is smooth and
has positive sectional curvatures everywhere. Note that any Hamiltonian having M
as a regular level will define a smooth flow on M without stationary points, and
another choice of such Hamiltonian will change this flow only by reparametrizing it.
Hence, one can talk about Hamiltonian dynamics on M up to time-parametrization.

The first and main result is the following remarkable statement.

Theorem 3.2 (HWZ [24]). Hamiltonian dynamics on strictly convex hypersurfaces
inside (R4, ω0) always admit disk-like global surfaces of section.

Theorem 3.2 is proved using holomorphic curves. Consider M = ∂C the strictly
convex smooth boundary of the convex body C, and the 1-form

λ0 =
1

2

2∑
j=1

xjdyj − yjdxj

which is a primitive of ω0. We denote α = ι∗λ0 where ι : M ↪→ R4 is the inclusion.
We parametrize Hamiltonian dynamics on M by the unique vector field X satisfying

dα(X, ·) = 0 α(X) = 1

which is called the Reeb vector field.
The kernel ξ = kerα is a contact structure. We represent the symplectization

of (M, ξ) as the symplectic manifold (R ×M,d(eaα)) where the R-coordinate is
denoted by a. We view α, X and ξ as R-invariant objects in the symplectization.
One checks that dα turns ξ into a symplectic vector bundle.

Choose a complex structure J : ξ → ξ such that dα(·, J ·) > 0. Hofer considers
the almost complex structure J̃ on R×M defined by

J̃ : ∂a 7→ X, J̃ |ξ = J.

The proof in [24] is based on the construction of finite-energy holomorphic planes in
(R×M, J̃). These are smooth maps

ũ = (a, u) : (C, i)→ (R×M, J̃)

satisfying

(17) ∂̄(ũ) =
1

2
(dũ+ J̃(ũ) ◦ dũ ◦ i) = 0.
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and a finite-energy condition introduced by Hofer [20]. HWZ construct such a plane
asymptotic to a periodic trajectory x : R/TZ→M of X in the sense that

lim
s→+∞

u(e2π(s+it)) = x(Tt) in C∞(R/Z,M).

The trajectory x has very special properties from dynamical and contact topological
points of view: its Conley-Zehnder index is equal to 3 and its self-linking number is
equal to −1. Using this information, results from [22] tell us that the M -component
u : C→ M is an embedding transverse to X. The elliptic nature of (17) and the
asymptotic behavior established in [21] allow for a Fredholm theory [23], which
is used by HWZ to view such a plane as one leaf of a local foliation in M \ x(R).
Finally, one needs compactness results for punctured holomorphic curves to obtain
a foliation on the whole of M \ x(R) by planes transverse to X. This transversality
and the positivity of the linearized dynamics at x are the reason why each leaf in
this foliation will be the interior of a disk-like global surface of section.

The reader might wonder where is the strict convexity of M used in HWZ’s
argument. The answer is: both in the construction of the first holomorphic plane
and in the passage from local to global foliations. The idea is that when one of
these steps fail, the compactness results will produce other holomorphic curves
which are asymptotic to periodic trajectories with Conley-Zehnder index less than 3.
However, HWZ show that strict convexity forces the periodic Reeb trajectories to
have Conley-Zehnder index at least equal to 3, a property called dynamical convexity
by HWZ.

At this point HWZ were able to obtain the following remarkable corollary.

Theorem 3.3 (HWZ [24]). Strictly convex energy levels in (R4, ω0) admit either
two or infinitely many periodic trajectories.

To prove this, note that the return map to the disk provided by Theorem 3.2
preserves an area form with finite total area. Brouwer’s translation theorem gives a
fixed point, corresponding to a second periodic trajectory. Once this fixed point is
removed from the disk, we are left with a return map on an open annulus. Frank’s
results [13, 14] imply that there are either none or infinitely many periodic points.

In the search of finer global structures of the flow, one might ask if there are
more global surfaces of section on strictly convex energy levels. One might also ask
if non-convex levels admit global sections. The statements below were proved using
the methods of HWZ.

Theorem 3.4 ([27, 28]). A periodic orbit on a strictly convex energy level bounds a
disk-like global surface of section if, and only if, it is unknotted and has self-linking
number −1.

Theorem 3.5 ([29, 30]). A periodic orbit on a star-shaped energy level bounds
a disk-like global surface of section if it is unknotted, its self-linking number is
−1, its Conley-Zehnder index is at least 3, and it is linked to all periodic orbits
with transverse rotation number equal to 1. Conversely, these assumptions are
C∞-generically necessary.

Excellent introductions to pseudo-holomorphic curve theory in symplectizations
and symplectic cobordisms can be found in the book [1] by Abbas and the book [36]
by Wendl.
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4. Quick introduction to the PCR3BP

We end this note by giving some details on this which is a central problem in
Celestial Mechanics. This also serves as an excuse to point towards a different proof
of a result from [7]; see Theorem 4.2. An excellent introduction to the PCR3BP
are the books [15] by Frauenfelder and van Koert, and [17] by Geiges. The book
of Frauenfelder and van Koert also serves as an introduction to holomorphic curve
methods and their use in Celestial Mechanics.

At first one considers three massive bodies, their positions and masses being
denoted by z1, z2, z3 and m1,m2,m3 respectively. According to Newton’s Law of
Gravitation, motion is described by the following system of second order ODEs

z̈1 = m2
z2 − z1
|z2 − z1|3

+m3
z3 − z1
|z3 − z1|3

(18)

z̈2 = m1
z1 − z2
|z1 − z2|3

+m3
z3 − z2
|z3 − z2|3

(19)

z̈3 = m1
z1 − z3
|z1 − z3|3

+m2
z2 − z3
|z2 − z3|3

(20)

in suitably normalized units. Setting m3 = 0 in (18)-(19) one obtains the restricted
three-body problem: the first two particles (primaries) move independently of the
third particle according to the two-body problem, and the third particle (massless
satellite) moves according to (20). Requiring that all particles move on a plane one
obtains the planar problem; we make this assumption here, and from now on the zk
belong to the complex plane C. The relative position of the primaries ζ = z2 − z1
solves Kepler’s equation ζ̈ = −(m1 +m2)ζ/|ζ|3 and the adjective circular refers to
the case when ζ describes a circle. The PCR3BP is then the problem of describing
the movement of the satellite.

One can see (20) as a non-autonomous non-linear second order differential equation
for z3(t), which may lead the reader to think that it is intractable. However, a well-
known miracle happens: in a certain non-inertial coordinate system the equations
of motion not only retain their Hamiltonian form, but the Hamiltonian function
turns out to be time-independent!

More precisely, consider a inertial coordinate system where the center of mass
rests at the origin. Since ζ describes circular motion, we find ω 6= 0 such that

(21) z1(t) = r1e
iωt z2(t) = −r2eiωt

for some constants r1, r2 > 0. The condition on the center of mass reads m1r1 −
m2r2 = 0, and from Kepler’s equation we extract the identity

(r1 + r2)3ω2 = m1 +m2.

There is no loss of generality to assume that the angular velocity ω is positive. In
the rotating coordinate system with angular velocity ω, the position q(t) of the
satellite relative to the second primary is defined by

z3(t) = (q(t)− r2)eiωt

from where it follows, together with (20) and (21), that q(t) solves

(22) q̈ + 2iωq̇ − ω2(q − r2) = −m1
q − r1 − r2
|q − r1 − r2|3

−m2
q

|q|3
.
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The first primary rests at the point r1 + r2 and the second primary rests at the
origin.

It is convenient to introduce the mass ratio

µ =
m1

m1 +m2
∈ [0, 1]

because if ω and m1 + m2 > 0 are fixed once and for all, then all constants
m1,m2, r1, r2 become functions of µ. Finally we set

p = q̇ + iω(q − r2)

and consider the Hamiltonian

(23) Hµ(q, p) =
1

2
|p|2 + ω 〈q − r2, ip〉 −

m1

|q − r1 − r2|
− m2

|q|
where 〈·, ·〉 denotes the euclidean inner-product. The miracle that materializes in
front of our eyes is that (22) is equivalent to Hamilton equations

q̇ = ∇pHµ ṗ = −∇qHµ

where the surprising fact is that this is an autonomous Hamiltonian system. As is
well known, the value of Hµ is preserved along trajectories:

d

dt
Hµ = 〈∇qHµ, q̇〉+ 〈∇pHµ, ṗ〉 = 〈∇qHµ,∇pHµ〉 − 〈∇pHµ,∇qHµ〉 = 0.

This is one reason why Hµ may be called energy, and we can say that energy is
preserved. The value of c defined by the identity

(24) − 1

2
c = Hµ

is historically called the Jacobi constant.
Let us understand a bit the geometry behind some of the energy levels of Hµ.

The function Hµ is unbounded from above and below. Completing the squares
in (23) we get

Hµ(q, p) =
1

2
|q̇|2 − Uµ(q)

where

(25) Uµ(q) =
1

2
|ω(q − r2)|2 +

m1

|q − r1 − r2|
+
m2

|q|
is the effective potential. The projection to configuration space, i.e. to the q-plane,
of the sublevel set {Hµ ≤ −c/2} coincides with the superlevel set {Uµ ≥ c/2}.

If c ∼ +∞ then {Uµ ≥ c/2} has three connected components: two disk-like
regions around the positions 0 and r1 + r2 of the primaries, and an unbounded
component given as the complement of a large disk-like region. These are the Hill’s
regions. Their boundaries are called ovals of zero velocity for the following reason:
if the energy of a satellite inside a bounded Hill region in {Uµ ≥ c/2} is constrained
by Hµ ≤ −c/2 then the satellite can not leave this region, and can only touch its
boundary with zero velocity q̇ = 0 and only if its energy is precisely −c/2. In other
words, the satellite does not have enough energy to “escape” the influence of the
corresponding primary.

This is the situation when the Jacobi constant −c/2 increases from −∞ until
c/2 reaches the highest critical critical value c1/2 of Uµ. The only critical point of
Uµ at this level lies strictly between the primaries, and we see the two bounded
Hill regions getting “glued” together. For energy −c/2 = −c1/2 + ε slightly higher
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than −c1/2 the satellite may get arbitrarily close to both primaries, i.e. now there
is enough energy to escape. If the Jacobi constant decreases to −∞ then c/2 will
cross three more critical values of Uµ corresponding to further modification of the
topology of the Hill regions.

Throughout the remaining of this section we stick to values c > c1 and focus on the
Hill region around the origin. We make normalization assumptions ω = m1+m2 = 1,
without loss of generality. It follows that m1 = r2 = µ, m2 = r1 = 1− µ and Hµ is
written as

Hµ =
|p|2

2
+ 〈ip, q − µ〉 − µ

|q − 1|
− 1− µ
|q|

the unique parameter being µ. Simple calculations show that c1 → 3 both when
µ→ 0+ and when µ→ 1−.

The method of Levi-Civita [31], which we shall now describe, regularizes collisions
with the primary at the origin. We introduce new complex coordinates u, v by

q = 2v2 p = −u
v̄
.

This amounts to a two-to-one transformation of 4-space which is symplectic up to a
constant factor. In fact,

dq1 ∧ dp1 + dq2 ∧ dp2 = Re [dq ∧ dp̄]

= −2 Re
[
d(v2) ∧ d

( ū
v

)]
= −2 Re

[
2vdv ∧

(
vdū− ūdv

v2

)]
= −4 Re [dv ∧ dū]

= 4 (du1 ∧ dv1 + du2 ∧ dv2) .

It follows that Hamiltonian flows on (q, p)-space correspond to Hamiltonian flows
on (u, v)-space up to a constant time-reparametrization.

We then reparametrize the Hamiltonian flow of Hµ on the level {Hµ = − c
2} as

the Hamiltonian flow of Kµ,c = 1
2 |q|(Hµ+ c

2 ) = |v|2(Hµ+ c
2 ) on the level {Kµ,c = 0}.

Writing Kµ,c in terms of u, v we get

(26) Kµ,c(u, v) =
1

2
|u|2 + 2|v|2 〈u, iv〉 − µ Im[uv]− 1− µ

2
− µ |v|2

|2v2 − 1|
+
c

2
|v|2

The upshot here is that |q−1| = |2v2−1| > 0 as long as c > c1, hence the component
Σµ,c of {Kµ,c = 0} corresponding to our chosen Hill region is a smooth hypersurface
of R4 where the Hamiltonian flow is smooth. At this point it is worth pointing out
the following nice statement.

Theorem 4.1 (Albers, Fish, Frauenfelder, Hofer and van Koert [2]). For every
c > 3 there exists µ0(c) ∈ (0, 1) such that if µ > µ0(c) then Σµ,c is strictly convex, in
the sense that its sectional derivatives are strictly positive. In particular Theorem 3.2
applies to give disk-like global surfaces of section.

Consider a new set of coordinates

û = u v̂ =
√
c v
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which are again symplectic up to a constant factor, and write

(27) Kµ,c(û, v̂) =
1

2
|û|2 + 2

|v̂|2 〈û, iv̂〉
c
√
c

− µ Im[ûv̂]√
c
− 1− µ

2
− µ |v̂|2

c| 2c v̂2 − 1|
+

1

2
|v̂|2

in terms of these variables. If c→ +∞ then Kµ,c(û, v̂) converges in C∞ to
1

2
|û|2 +

1

2
|v̂|2 − 1− µ

2

which is the Hamiltonian of two uncoupled harmonic oscillators with equal frequen-
cies. In particular, the flow converges to a periodic flow whose trajectories are the
Hopf fibers in the sphere of radius

√
1− µ. In fact, the C∞-converge is uniform

when µ ranges on a compact subset of [0, 1). This simple observation and standard
arguments can be used to prove

Theorem 4.2 (Conley [7]). If µ ∈ (0, 1) is fixed and the Jacobi constant is large
enough then there are annulus-like global surfaces of section for the Hamiltonian
flow on the component of the energy level {Kµ,c = 0} corresponding to the Hill
region around the origin. The return map to these annuli satisfy the twist condition
of the Poincaré-Birkhoff Theorem, in particular there are infinitely many periodic
orbits for the PCR3BP in these situations.
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