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WAGNER AND PETERSEN ARE UNIFORMLY
MOST-RELIABLE GRAPHS

PABLO ROMERO

Abstract. If we are given n nodes and m links, what is the most reliable
network topology? Partial answers are offered in the literature. Here, we show
that Wagner and Petersen graphs are uniformly most-reliable graphs, and a
conjecture on the existence of new such graphs is provided.

1. Motivation

Extremal graph theory is inspirational for network design [9]. In the second book
ever written in graph theory, Berge challenges the readers to find the graph with
maximum connectivity among all graphs with a fixed number of nodes and links.
Frank Harary provided not only a full answer, but also found connected graphs with
minimum and maximum diameter [16]. Gustav Kirchhoff solved linear time-invariant
resistive circuits, and as corollary he introduced the Matrix-Tree theorem, where he
counts the number of spanning trees of a graph (i.e., the tree-number) using the
determinant of a matrix [18]. This breakthrough in electrical systems launched the
theory of trees, which provides the building blocks in communication design [16].
However, the corresponding extremal problem is not well understood: find the graph
with a fixed number of nodes and links that maximizes the tree-number [24].

The previous problems are deterministic. In network reliability analysis, the goal
is to determine the probability of correct operation of a system [15, 4]. In its most
elementary setting, we are given a simple graph G with perfect nodes but random
link failures with identical and independent probability ρ.

Even though network reliability is probabilistic in nature, there is a strong
interplay with the previous deterministic problems. The motivation of this paper is
to have a better understanding of the interplay between network reliability analysis
and deterministic problems. The main contributions are the following:

(1) The interplay between uniformly most-reliable graphs and easy graphs is
considered.

(2) Optimal augmentations of a cycle are produced, which lead us to Möbius
graphs and Wagner graph in a special case.

(3) Wagner and Petersen graphs are formally proved to be uniformly most-
reliable.

(4) A conjecture on uniformly most reliable graphs is here posed, inspired by
Wagner graph and related works on the field.
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This paper is organized as follows. Section 2 presents a formal definition of
reliability polynomial, easy graphs and uniformly most-reliable graphs. Section 3
covers the body of related works on uniformly most-reliable graphs.

The practical value and potential application of uniformly most-reliable graphs in
communication systems is discussed in Section 4. Augmentations arise as a natural
approach once the network is already deployed. Assuming that most communication
systems are 2-node connected, the analysis is focused on iterative augmentations of
a cycle.

The result of these augmentations is Möbius graphsMn. In Section 5 it is formally
proved that Wagner graph M4 is uniformly most-reliable. However, M5 does not
belong in the category, since Petersen graph is uniformly most-reliable.

Inspired by prior works in the field, it is conjectured that (n, n+ 4) uniformly
most-reliable graphs are obtained by successive elementary subdivisions of Wagner
graph. Finally, Section 6 presents concluding remarks and trends for future work.

2. Uniformly Most-Reliable Graphs

We are given a simple graph G = (V,E), with perfect nodes and unreliable
links with failure probability ρ. The all-terminal reliability RG(ρ) measures the
probability that the resulting random graph remains connected, and it is a polynomial
in ρ ∈ [0, 1]. For convenience, in this paper we work with the unreliability polynomial
UG(ρ) = 1 − RG(ρ). Let us denote p = |V | and q = |E| the respective order and
size of the graph G. Further, denote by mk(G), or simply mk, the number of
link-disconnecting sets with cardinality k, this is, the number of subsets E′ ⊆ E
such that |E′| = k and G′ = G− E′ is disconnected. By sum-rule, the unreliability
polynomial can be expressed as follows:

(1) UG(ρ) =

q∑
k=0

mkρ
k(1− ρ)q−k.

Let us denote (p, q)-graph to the family of graphs with p nodes and q links. Clearly,
if we consider a fixed ρ, there is at least one graph H that attains the minimum
unreliability, i.e., UH(ρ) ≤ UG(ρ) for all (p, q) graph G. Further, if the previous
condition holds for all ρ ∈ [0, 1] and all (p, q)-graphs G, the graph H is uniformly
most-reliable.

The determination of the unreliability polynomial is equivalent to finding the
coefficients mk for all k. Ball and Provan showed that this problem belongs to the
NP-Hard class [1]. However, they also proved that the determination of mλ is
feasible in polynomial time. On the other hand, Kirchhoff found the tree-number
τ(G) efficiently, so the number mq−p+1 =

(
q

q−p+1

)
− τ(G) can be obtained in

polynomial time [18]. Observe that mk = 0 whenever k < λ, and mk =
(
q
k

)
if

k > q − p + 1. Under these considerations, the unreliability polynomial can be
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rewritten [25]:

UG(ρ) = mλρ
λ(1− ρ)q−λ +

q−p∑
k=λ+1

mkρ
k(1− ρ)q−k

+ (

(
q

q − p+ 1

)
− τ(G))ρq−p+1(1− ρ)p−1(2)

+

q∑
k=q−p+2

(
q

k

)
ρk(1− ρ)q−k.

Expression (2) holds whenever λ+ 1 ≤ q − p. Observe that in the remaining cases
all the coefficients mk are fully known beforehand, and the unreliability polynomial
accepts a straightforward calculation [12].

Definition 1 (Level of difficulty). The level of difficulty of a graph G, denoted by
d(G), is the number of unknown coefficients from the unreliability polynomial:

(3) d(G) = (q − p)− (λ+ 1) + 1 = (q − p+ 1)− λ− 1.

If we are given a connected (p, q)-graph, then q − p+ 1 represents the difference
between its size and the size of a spanning tree. The number s = q − p+ 1 is called
the co-rank of a graph for algebraic reasons [5].

The invariant d(G) measures how difficult is the problem of finding the unrelia-
bility polynomial. A valuable case occurs when d(G) ≤ 0:

Definition 2 (Easy graph). A graph G is easy if d(G) ≤ 0.

The following result is just a corollary of the definition of easy graphs:

Corollary 1. The coefficients mk are fully known finding only τ(G) and mλ, if
and only if G is an easy graph.

If we delete more than s = q−p+1 edges of a (p, q)-graph, the resulting subgraph
is not connected. Therefore, λ ≤ s+ 1. However, the reader can observe that the
equality is achieved in trees and elementary cycles. In [12], it is proved that they
are the only graphs where the equality λ = s+ 1 holds. In other terms, they belong
to the class of easy graphs with the lowest level of difficulty d = −2.

Corollary 2. All (n, n+ i) uniformly most-reliable graphs with i < n/2 have level
of difficulty d = i− 2.

Proof. The maximum connectivity among (n, n+ i)-graphs is λmax = b2 + 2i
n c = 2.

The co-rank is s = (n+ i)− n+ 1 = i+ 1. Therefore, the level of difficulty of all
(n, n+ i) uniformly most-reliable graphs with i < n is d = (i+1)− 2− 1 = i− 2. �

A full characterization of easy graphs is already presented [12]. An exhaustive
search among easy graphs reveals a simple way to prove that trees, cycles, Monma
graphs and elementary subdivisions of K4 and K(3,3) are uniformly most-reliable
graphs for i ∈ {−1, 0, 1, 2, 3} respectively.

3. Related Work

From inspection of Expression (1), we can see that if there exists some (p, q)-
graph H such that mk(H) ≤ mk(G) for all k and all (p, q)-graph G, then H is
uniformly most-reliable. The level of difficulty is a natural way of understanding
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the coefficient-based approach of uniformly most-reliable graphs. Curiously enough,
this sufficient criterion is not known to be necessary. However, to the best of our
knowledge, the search of uniformly most-reliable graphs rests on the minimization
of all the coefficients mk. This approach is promoted by the following result, which
can be proved using elementary calculus [2]:

Proposition 1.
(i) If there exists some integer k such that mi(H) = mi(G) for all i < k but

mk(H) < mk(G), then there exists ρ0 > 0 such that UH(ρ) < UG(ρ) for all
ρ ∈ (0, ρ0).

(ii) If there exists some integer k such that mi(H) = mi(G) for all i > k but
mk(H) < mk(G), then there exists ρ1 < 1 such that UH(ρ) < UG(ρ) for all
ρ ∈ (ρ1, 1).

By definition, there are no disconnecting sets with lower cardinality than the link
connectivity. Therefore, mi(G) = 0 for all i < λ, and by Proposition 1-(i) uniformly
most-reliably graphs must have the maximum link-connectivity λ. Furthermore,
the number of disconnecting sets mλ must be minimized. On the other hand,
mi(G) =

(
q
i

)
for all i > q− p+1, since trees are minimally connected with q = p− 1

links. The number of connected sets with q− p+1 links is precisely the tree-number
τ(G), so mq−p+1(G) =

(
q

q−p+1

)
− τ(G). Using Proposition 1-(ii), the tree-number

should be maximized. Prior observations directly connect this network design
problem with extremal graph theory:

Corollary 3. A uniformly most-reliable (p, q)-graph H must have the maximum
tree-number τ(H), maximum connectivity λ(H), and the minimum number of dis-
connecting sets mλ(H) among all (p, q)-graphs with maximum connectivity.

For convenience we say that a (p, q)-graph, H, is t-optimal if τ(H) ≥ τ(G) for
every (p, q) graph G. Briefly, Corollary 3 claims that uniformly most-reliable graphs
must be t-optimal and max-λ min-mλ, where λ denotes the edge connectivity.

Frank Harary found the maximum connectivity of a (p, q) graph. By handshaking,
the average-degree of every (p, q)-graph is 2q

p . If we denote δ(G) and λ(G) the
minimum degree and link-connectivity respectively, we immediately get that λ(G) ≤
δ(G) ≤ b 2qp c. The candidate connectivity is λmax = b 2qp c. It suffices to find a
(p, q)-graph with connectivity λmax whenever p ≥ q − 1 (otherwise, the graph is not
connected). The evidence is the following family of graphs [16]:

Definition 3 (Harary Graphs H(n,k)). Let n and k be positive integers. Harary
graph H(n,k) consists of n nodes {v0, . . . , vn−1} equally spaced around a circle, and
the following links:

• If k is even, each vertex is adjacent to the k/2 nearest nodes in each direction.
• If k is odd and n is even, H(n,k) is H(n,k−1) with additional links {vi, vi+n

2
}

for each i = 0, . . . , n2 .
• If k and n are both odd, H(n,k) is H(n,k−1) with additional links {vi, vi+n−1

2
}

for each i = 0, . . . , n− 1.

We immediately check that Harary graphs have maximum connectivity λmax =
b 2qp c, so, they are max-λ. The number of disconnecting sets should be minimized as
well; max-λ graphs that minimize the disconnecting sets with λ nodes are called
max-λ min-mλ graphs. Prior works from Bauer et. al. fully characterize max-λ
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min-mλ graphs [3]. A key idea is to observe that in max-λ graph, the number of
disconnecting sets mλ is at least the number of nodes with degree λ. If this bound
is achieved, a max-λ min-mλ graph is retrieved. For that purpose, they define
generalized Harary graphs, which are just an augmentation of the original Harary
graphs with random matchings (this is, edges with non-adjacent nodes). In that
way, the number of nodes with degree λ is minimized, and the authors show that no
other disconnecting sets with that size exists.

By Corollary 3, Bauer et. al. provide a family of graphs that contain all uniformly
most-reliable graphs. Later works try to find uniformly (p, p+i)-most-reliable graphs
for i small, by a simultaneous minimization of all the coefficients mk. The cases
i = −1 and i = 0 are trivial. Indeed, when q = p − 1 all the trees have the same
reliability polynomial ρq, so they are uniformly most-reliable (the reliability is zero
if the graph is not connected). When i = 0 we have q = p, and the elementary cycle
Cp is t-optimal. All the other graphs with p = q are not 2-connected, and by direct
inspection we can see that Cp achieves the minimum coefficients mk.

Perhaps the first non-trivial uniformly most-reliable graphs were found by Boesch
et. al. in 1991 [7]. A new reading of Bauer et. al. construction lead them to find
that Monma graphs are (n, n + 1) uniformly most-reliable graphs, whenever the
number of nodes in each path differ by at most one. Interestingly enough, Clyde
Monma et. al. used these graphs for the design of minimum cost two-node connected
metric networks [22]. Figure 1 depicts Monma graphs. The reader is invited to find
a combinatorial proof of Monma’s t-optimality when the length of the paths differ
by at most one in [13].

u v

1 2 l1

1 2 l2

1 2 l3

Figure 1. Monma graph M(l1+1,l2+1,l3+1).

A more challenging problem is to find (n, n+ 2) uniformly most-reliable graphs.
Boesch et. al. minimize the four effective terms m0, m1, m2 and m3 from Expres-
sion (1). An (n, n+2) max-λ min-mλ graph already minimizes the first three terms.
If in addition the tree-number is minimized all the coefficients are simultaneously
minimized, and the result must be a uniformly most-reliable graph. The merit of
the paper [7] is to adequately select the feasible graphs from Bauer et. al. that
minimizes the tree-number. Observe that K4 can be partitioned into three perfect
matchings, PM1, PM2 and PM3. The result is that we should insert n− 4 points
in the six links of K4 in such a way that:

i the number of inserted nodes in all the links differ by at most one, and
ii if we insert the same number of nodes in two different matchings PMi 6=
PMj , then the number of nodes in the four links from PMi ∪ PMj are
identical.

The resulting (n, n + 2)-graph defines, for every n ≥ 4, a single graph up to
isomorphism. The authors formally prove that the resulting graph is uniformly
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most-reliable (n, n + 2)-graph. Furthermore, inspired by a previous research on
t-optimality in multipartite graphs authored by Cheng [14], they conjecture that
the shape of uniformly most-reliable (n, n+ 3)-graphs are elementary subdivisions
of K(3,3). This conjecture is correct, and it was proved by Wang [26]. To the best
of our knowledge, a full characterization of (n, n+ 4)-graphs is still open.

It is worth to remark that there are (p, q)-pairs where a uniformly most-reliable
graphs does not exist [23]. The reader can consult [8] for a valuable survey on
uniformly most-reliable graphs.

A full determination of t-optimal graphs for every (p, q)-pair is a related open
problem. Indeed, a historical result credited by Leggett and Bedrosian asserts
that t-optimal graphs must be almost regular, this is, the degrees do not differ by
most than one [20]. Even though closed formulas are available for the tree-number
of specific graphs, the progress on t-optimality is effective on special regularity
conditions [14], almost-complete graphs or other special graphs with few links [24].

4. Practice and Augmentation

In this section we highlight potential application of uniformly most-reliable
graphs, as an inspirational design tool. Real-life fiber-optics communication is
already deployed in most countries, and a cost-effective solution is to add a single
link in order to maximize the reliability. This is an augmentation problem: given a
simple graph G, add a single link e such that the unreliability UG∪e(ρ) is minimized.

We know from previous result on uniformly most-reliable graphs that an unrelia-
bility minimization over the whole compact set p ∈ [0, 1] is not always feasible for all
graphs. Since fiber-optics are highly-reliable systems the elementary unreliability ρ
is small, and by Proposition 1, the unreliability is UG(ρ) ≈ mλρ

λ(1−ρ)q−λ, where λ
is the link-connectivity. Furthermore, we know that real-life physical implementation
of fiber-optics are 2-node connected, so, every pair of nodes are included in a ring.

As a point of departure, we assume we are given a ring G = Cn with n even,
and we study the augmentation problem in a step-by-step fashion. Specifically,
we want to find the sequence of graphs {G(i)}i=0,...,bn2 c with G

(0) = Cn, such that
the graph G(i+1) = G(i) ∪ {ei+1} represents the best augmentation. In words, we
consider iterative augmentations of the cycle. In network planning, this means that
the operator decides to add a single link greedily, for instance, at different dates. In
the following paragraphs we find the sequence {G(i)}i=0,...,bn2 c.

By Handshaking Lemma, 3-regular graphs with n nodes must have m = 3n/2
links. Thus, if we add less than bn2 c links to the cycle Cn there is at least one node
vi with degree deg(vi) = 2, and λ(G(i)) = 2 for all i < bn2 c. This means that we
should minimize the coefficient m2 in a step-by-step fashion.

The key is to observe that a selected class of disconnecting sets is subsequently
partitioned into two classes, whenever we iteratively add a single link to the cycle.
Specifically, sort the nodes of the ring {0, 1, . . . , 2k − 1} in clockwise. Without
loss of generality, we choose G(1) = Cn ∪ e1, where e1 = (0, x) for some node
x : 2 ≤ x ≤ 2k − 2. The minimally disconnecting sets are divided into two
classes: pair of links that belong either to the elementary path P1 = 0, 1, . . . , x or
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P2 = x, x + 1, . . . , 0. Since Cn is already 2-node connected, there is no hope to
delete some of extra links ei and obtain a minimally disconnecting set during the
process for some graph G(i).

Mathematically, the number of minimally disconnecting sets in G(1) = Cn ∪
{(0, x)} is:

(4) m2(x) =

(
x

2

)
+

(
n− x
2

)
= x2 − nx+

n2 − n
2

The expression form2(x) is minimized when x = n
2 . The result is Monma graph Cn+

(0, n2 ) =M(n
2 ,

n
2 ,1)

. This is not uniformly most-reliable, since the three elementary
paths are not balanced. However, it represents the best single augmentation to the
ring. The following steps are straightforward, using the fact that each additional
link divides the classes of the minimally disconnecting sets. The first class is two
pair of links from the elementary path P1 = 0, 1, . . . , y1, where y1 is the first node
adjacent to some of the additional links ei. The following class is P2 = y1, . . . , y2
is the following node adjacent to some ei, and so on. We define the sequence G(i)

using an analogy of fair cake-cutting.

Suppose that you have a cake, but the number of guests is unknown. You are
the host, and guests come before midnight. Guests only require to have one piece of
cake, and the only rule you have at hand is to cut the cake as minimum as possible.
A cut is a division of the cake by the diameter, and it must be performed whenever
a guest has no piece of cake. As soon as the first guest arrives, the cake should be
cut into two identical parts (this is the first link addition). When guest number 2
arrives, the following cut is performed such that we get four identical pieces of cake
(one is yours). If guest number 3 arrives, he/she already has a piece of cake, and
no cut is needed. At midnight, you and your guests eat their corresponding pieces
of cake. In the analogy, every cut is a link addition (that connects the farthest
nodes), and the process is finite. By the previous combinatorial argument, we get
the following

Theorem 1 (Fair Cake-Cutting). The best iterative augmentation of the cycle Cn
must be performed choosing the links ei as in a finite fair cake-cutting process.

Observe that the Cake-Cutting process is finished after n
2 steps, and the result is

a special cubic graph:

Definition 4. For every even natural n, Möbius graph Mn is constructed from the
cycle C2n adding n new links joining every pair of opposite nodes.

Corollary 4. Fare Cake-Cutting builds Mn/2.

5. Finding Uniformly Most-Reliable Graphs

In this section we give two additional steps, studying (n, n+i)-graphs for i ∈ {4, 5}.
Clearly, K5 − e is the only (n, n+ 4)-graph with 5 nodes, so it is uniformly most-
reliable. The cases n ∈ {6, 7} can be studied using exhaustive search [21]. By
Proposition 1, if there exists a uniformly most-reliable graph it must be cubic (three-
regular and connected). There are precisely 5 cubic graphs with 8 nodes [11]; see
Figs 2-6. They were classified in [11] and systematically generated in [10]. Among
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Figure 2. Wagner Graph M4

(8, 12)-graphs, the cubic graph with the highest tree-number is precisely a special
Harary graph H8,3, named Wagner graph M4 in the memory of the author for his
research on Möbius ladders. Furthermore, since t-optimal graphs must be almost
regular, in this case all nodes must have the same degree; so Wagner is t-optimal.

5.1. Wagner graph. The tree-number of Möbius graphs is [5]:

(5) τ(Mn) =
n

2
[(2 +

√
3)n + (2−

√
3)n + 2]

The tree-number in (8, 12)-graphs is maximized in τ(M4) = 392. Therefore, the
only candidate of uniformly most-reliable graph with 8 nodes is Wagner graph M4

depicted in Figure 2. Incidentally, this graph is the product of Fair Cake-Cutting
process after four augmentations. The following result can be obtained by an
exhaustive search of disconnecting sets. Here we choose a combinatorial argument,
since it is preparatory for the main theorem.

Lemma 1. Wagner graph M4 is minimizer of the coefficient m4 among all cubic
(8, 12)-graphs.

Proof. After the removal of 4 links, the minimum degree of the resulting graph must
be δ ∈ {0, 1, 2}. Let us denote ui to the number of those disconnected subgraphs
whose minimum degree is δ = i. Therefore m4 = u0 + u1 + u2. Let us count and
sum the three disjoint cases in order:

(1) Type-0: three links incident to a fixed node and another link, u0 = 8×9 = 72
cases (δ = 0).

(2) Type-1: if we remove the four links adjacent to a fixed link we disconnect
the graph. Thus, u1 ≥ 12.

(3) Type-2: the resulting graph is 2-regular. Therefore, u2 counts all discon-
necting perfect matchings.

By inspection we see that u1(M4) = 12 and u2(M4) = 2, so m4(M4) = 72+12+2 =
86. Recall that u0 = 72 and u1 ≥ 12 = u1(M4) in all (8, 12)-cubic graphs. In the
cube u2(Q3) = 3 > 2, so m4 is greater than in Wagner graph.

Graphs G1, G2 and G3 present disconnecting sets of three non-adjacent links.
There are 9 ways to pick another link. At most one of them is type-2, and clearly
no-one is type-0. Therefore u1(Gi) ≥ 12 + 8 = 20, so m4(Gi) ≥ 92 ≥ m4(M4), for
i ∈ {1, 2, 3}. �
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Figure 3. Cubic Graph G1
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Figure 4. Cubic graph G2
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Figure 5. Cubic graph G3

Theorem 2. Wagner graph is uniformly most-reliable.

Proof. Wagner graph is t-optimal and max-λ, with λ = 3. By inspection it is
super-λ, so mλ = m3 = 8 is minimum. Using Expression (5) we get that m5 =(
12
5

)
−τ(M4) = 792−392 = 400 is also minimum. The level of difficulty is d(M4) = 1.

Using Lemma 1, we know that m4(M4) = 86. It suffices to prove that m4(H) ≥ 86
for all (8, 12)-graphs H.
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Figure 6. Cube Q3

We will study disjoint cases and use combinatorial arguments. If H has a bridge
m4(H) ≥

(
11
3

)
> 86. We consider bridgeless connected graphs, so in the following,

δ(H) ≥ 2. If δ(H) = 2 and we assume that deg(v1) = deg(v2) = 2 for two different
nodes in H, there are two disjoint cases:

(i) v1 and v2 are adjacent.
(ii) v1 and v2 are not adjacent.

If (i), we know that U = {(v1, v2), (v1, x), (v2, y)} ⊆ E(H) for some nodes x and
y. If we pick two links from U and two from E(H)− U , we get disconnecting sets.
Therefore, m4(H) ≥

(
3
2

)
×
(
9
2

)
> 86.

If (ii), U = {(v1, x1), (v1, y1), (v2, x2), (v2, y2)} ⊆ E(H) for some x, y ∈ V (H).
We can pick (v1, x1), (v1, y1) and two other links from E(H)− U :

(
8
2

)
= 28 cases;

(v2, x2), (v2, y2) and two other links from E(H)− U :
(
8
2

)
= 28 cases; or three links

from U and one from E(H)−U : 8×4 = 32 cases. Thus m4(H) ≥ 28+28+32 > 86.
The remaining cases are δ(H) = 2 with a single node with degree 2, or δ(H) ≥ 3,

which must be cubic graphs. By handshaking, in the first case the degree sequence
must be (4, 3, 3, 3, 3, 3, 3, 2). By Erdos-Gallai characterization theorem, this sequence
is graphic. We consider two disjoint disconnecting sets:

(1) The incident links of v and two additional links:
(
10
2

)
= 45 cases;

(2) Three incident links of a degree-3 node and another link: 6× 9 = 54 cases.
Therefore, all feasible graphs with degree-sequence (4, 3, 3, 3, 3, 3, 3, 2) have at least
m4(H) ≥ 45 + 54 > 86 disconnecting sets with 4 links. The result for cubic graphs
holds by Lemma 1. �

5.2. Conjecture. The following classes of graphs are uniformly most reliable:
• Trees among (n, n− 1)-graphs.
• Cycles among (n, n)-graphs.
• Monma with balanced paths among (n, n+ 1)-graphs.
• K4 and special subdivisions among (n, n+ 2)-graphs [7].
• K(3,3) and special subdivisions among (n, n+ 3)-graphs [26].
• Wagner graph M4 (Theorem 3).

Trees, cycles and Monma graphs are easy graphs. They are all uniformly most-
reliable graphs, and the analysis is elementary. The rationale behind the elementary
subdivisions of K4 and K(3,3) is identical. Indeed, the authors in both papers
consider a partition into three disjoint perfect matchings, and introduce elementary
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subdivisions to them. All Möbius graphs accept a partition into three disjoint perfect
matchings. Furthermore, M2 = K4, M3 = K(3,3) and M4 is Wagner graph. Recall
that all (n, n+2) and (n, n+3) uniformly most-reliable graphs are obtained adding
links in a balanced manner to the three disjoint perfect matchings. This promotes a
conjecture:

Conjecture 1. All uniformly most-reliable (n, n + 4) graphs with n ≥ 8 are ele-
mentary subdivisions of Wagner graph.

An optimistic prediction from Conjecture 1 is that all Möbius ladders and
special subdivisions are uniformly most-reliable (n, n + i) graphs. However, this
generalization is false, since Petersen graph is t-optimal [17]. Curiously enough, this
reinforces Donald Knuth’s statement that Petersen graph serves as a counterexample
to several optimistic predictions in graph theory [19].

5.3. Petersen Graph is Uniformly Most-Reliable. Petersen graph is the com-
plement of the line-graph of K5 (the reader can find alternative definitions in the
book [17]). By Sachs theorem [6], its eigenvalues are 3 (simple), 1 (multiplicity 5) and
−2 (multiplicity 4). Therefore, its tree-number is τ(P ) = 1

10×(3−1)
5×(3−(−2))4 =

2000. By prior works in the literature it is known that Petersen is t-optimal. There-
fore, Petersen graph is the only candidate to be uniformly most-reliable (10, 15)-
graph. It is clearly super-λ with connectivity λ = 3, so m3 = 10 is minimum among
(10, 15)-graphs. From inspection we find that all the disconnecting sets with 4 links
are either incident to a fixed node or fixed link, so m4 = 10×

(
3
3

)(
12
1

)
+ 15 = 135.

Furthermore, all cubic (10, 15)-graphs possess the previous disconnecting sets. In
order to count m5 we observe that such disconnecting sets isolate nodes, links,
2-paths or 5-cycles, so, m5 = (10 ×

(
12
2

)
− 15) + 15 × 10 + (

(
10
2

)
− 15) + 6 = 831.

From now on, we will assume that the ground graph-set is always (10, 15)-graphs.
The following two lemmas are preparatory for the main result, and their proofs only
use combinatorial arguments:

1

2

34

5

6

7

89

10

Figure 7. Petersen graph

Lemma 2. The coefficient m4 is minimized in Petersen graph.

Proof. The result is trivial for cubic graphs. Consider an arbitrary (10, 15)-graph H,
and denote m4 = 135 the number of disconnecting sets in Petersen graph. If H has
a bridge, then m4(H) ≥

(
13
3

)
≥ m4. It suffices to prove the result when δ(H) = 2.

If there exists non-adjacent nodes v1 and v2 such that deg(v1) = deg(v2) = 2, then
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m4(H) ≥ 2×
(
13
2

)
−1 > m4. If v1 and v2 are adjacent nodes thenm4(H) ≥

(
3
2

)(
12
2

)
>

m4. Finally, if there is a single node v such that deg(v) = 2, by Handshaking Lemma
the degree-sequence must be (4, 3, 3, 3, 3, 3, 3, 3, 3, 2). In this case, counting the ways
to disconnect a node we know that m4(H) ≥

(
4
4

)
+ 8×

(
3
3

)(
12
1

)
+
(
2
2

)(
13
2

)
> m4. �

Lemma 3. The coefficient m5 is minimized in Petersen graph among all cubic
(10, 15)-graphs.

Proof. �

The following result is analogous to Lemma 2:

Lemma 4. The coefficient m5 is minimized in Petersen graph.

Proof. By Lemma 3 we know that the result holds for in cubic graphs. We know
that m5 = 831 in Petersen graph. In the following, we remark that only trivial
disconnecting sets are considered for counting, unless specified otherwise. If H has a
bridge, then m5(H) ≥

(
14
4

)
≥ m5. It suffices to prove the result when δ(H) = 2. If

deg(v1) = deg(v2) = deg(v3) = 2 for three different nodes, we consider three disjoint
and exhaustive cases:

(i) They are connected in a 2-path: m5(H) ≥
(
4
2

)(
11
3

)
+
(
4
3

)(
11
2

)
+
(
4
4

)(
11
1

)
>> m5

(ii) There are exactly two adjacent nodes: m5(H) ≥
(
13
3

)
+
(
3
2

)(
12
3

)
+
(
3
3

)(
12
2

)
−

31 ≥ m5;
(iii) Non-adjacent nodes: m5(H) ≥ 3×

(
13
3

)
− 3× 11 = 825. Observe that there

exists at least one node v4 with degree 3. Adding trivial disconnecting sets
related to v4 we find

(
12
2

)
−3 = 63 more sets. Therefore m5(H) ≥ 825+63 =

888 > m5.
Assume that there are precisely two different nodes v1 6= v2 such that deg(v1) =
deg(v2) = 2. We know that deg(vi) = 3 + δi for i = 3, . . . , 10. By Handshaking
Lemma we know that 30 =

∑
i deg(vi), so

∑10
i=3 δi = 2. Therefore, the only graphic

degree-sequences with two degree-two nodes are D1 = (4, 4, 3, 3, 3, 3, 3, 3, 2, 2) and
D2 = (5, 3, 3, 3, 3, 3, 3, 3, 2, 2). We consider four cases: D1 or D2 with adjacent or
non-adjacent (A-NA) nodes v1 and v2:

(i) D1 and A: m5(H) ≥ 2×
(
4
4

)(
11
1

)
+ 6×

(
3
3

)(
12
2

)
+
(
3
2

)(
12
3

)
+
(
3
3

)(
12
2

)
− 6× 3 =

1126 > m5;
(ii) D1 and NA: m5(H) ≥ 2×

(
4
4

)(
11
1

)
+6×

(
3
3

)(
12
2

)
+2×

(
2
2

)(
13
3

)
− 2× 5− 11 =

969 > m5;
(iii) D2 and A: m5(H) ≥

(
5
5

)
+ 7×

(
3
3

)(
12
2

)
+
(
3
2

)(
12
3

)
+
(
3
3

)(
12
2

)
− 7× 3 > m5;

(iv) D2 and NA: m5(H) ≥
(
5
5

)
+7×

(
3
3

)(
12
2

)
+2×

(
2
2

)(
13
3

)
−2×7−11 = 1010 > m5.

Finally, we consider the case where there exists only one degree-2 node. In this case,
the degree-sequence must be (4, 3, 3, 3, 3, 3, 3, 3, 3, 2). Counting trivial disconnecting
sets we get that m5(H) ≥

(
4
4

)(
11
1

)
+ 8 ×

(
3
3

)(
12
2

)
+
(
2
2

)(
13
3

)
− 8 = 825. However, it

does not suffice to close the proof. We must find at least 6 non-trivial disconnecting
sets. Observe that there exists at least 11 links whose extremes are nodes with
degree 2 or 3, so m5(H) ≥ 825 + 11 = 836 > m5. �

Theorem 3. Petersen is uniformly most-reliable.

Proof. Recall that Petersen is super-λ, so m3 is minimized. Clearly, mi = 0 for
i ∈ {0, 1, 2}, and mi =

(
15
i

)
for all (10, 15)-graphs, when i ≥ 7. Petersen is t-optimal,



WAGNER AND PETERSEN ARE UNIFORMLY MOST-RELIABLE GRAPHS 243

thus, it minimized the coefficient m6. Combining Lemmas 2 and 4 we know that
Petersen graph minimizes simultaneously all the coefficients mi. �

6. Conclusions and Trends for Future Work

Uniformly most-reliable graphs represent a synthesis in network reliability analysis.
Finding them is a hard task not well understood. Prior works in the field try to
globally minimize the coefficients of disconnecting sets. This methodology provides
uniformly most-reliable (n, n + i) graphs for every i ∈ {−1, 0, 1, 2, 3}. Here, we
show the interplay between easy graphs and uniformly most-reliable graphs. We
observe that Wagner graph M4 is uniformly most-reliable. The result is suggested
by an iterative augmentation of a cycle, here called Fair Cake-Cutting theorem. The
paper is closed with the conjecture that (n, n+ 4) uniformly most-reliable graphs
are elementary subdivisions of Wagner graph.

There are several trends for future work. A powerful methodology to find
uniformly most-reliable graphs is not known. A full characterization of t-optimal
graphs is an open problem. Conjecture 1 could be studied with a parallel reasoning
of Boesch [7] and Wang [26].
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