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PREFACE

In the mid 80’s, several mathematicians, who had been prevented from working in
Uruguay by the civic-military putsch of June 1973, met with a group of young students
who had already started their training there. This created much enthusiasm in both
sides, the former having met a group of talented students, and the latter having studied
without any contact with a proper researcher up to then. One of these mathematicians
was Jorge Lewowicz. When he came back to Uruguay, he started giving a few basic
courses on Dynamical Systems as well as developing the eagerness for research. Soon, a
study group on that topic was created. Several students completed their initial training
and then started their graduate studies, most of them abroad. It should be stressed thas
such a development would not have been possible without the unshakeable and faith-
ful support of the IMPA-Rio de Janeiro, and in particular of Jacob Palis and Ricardo
Mañé. Already at the end of the 80’s, much collaboration existed between researchers
and students of the Universidad de la República. They would belong to the Instituto
de Matemática de la Facultad de Ingenieŕıa and the Departamento de Matemática de
la Facultad de Humanidades y Ciencias. They developed their own and original style
of doing maths, organizing courses and seminars under Lewowicz’s general guidance.
After 25 years of continuous activity, a School of Dynamical Systems has consolidated
as the main maths research area in Uruguay. The recognition of its different subteams
is due to the many international conferences they have been invited to, the numerous
foreign professors they have welcomed, as well as the courses they have themselves given
abroad. This way a large number of students was trained, and to this day, every week a
seminar brings together researchers and students. At present the School has multiplied
its international links and extended its ambitions. The sum of its members’ interests
now covers a large spectrum of Mathematics. A final aspect of this to be highlighted,
more than for its subjective implication, but because it supports the progress of research
quality, is the awareness of the common roots of all members of the School, as well as
its members’ subteam identities.

And here we are now, with this special issue of the Publicaciones Matemáticas del
Uruguay, dedicated to to the International Congress on Dynamical Systems held in Mon-
tevideo, Uruguay, from August 13th to August 17th, 2012 and the Doctor Honoris Causa
to Jorge Lewowicz. The Congress was a satellite conference of the 4th Latin American
Congress of Mathematicians (CLAM, organized by the UMALCA) which took place in
Córdoba, Argentina. It was Organized by Grupo de Sistemas Dinámicos IMERL-CMAT
- CSIC 618/2010- Universidad de la República - Uruguay. In parallel the Universidad
de la República titled Dr. Jorge Lewowicz, Doctor Honoris Causa on Wednesday 15th.
August, 2012. Most articles of this volume are related to topics in Dynamical Systems to
which Lewowicz contributed. We are indebted to CSIC, PEDECIBA-Matemática, and
to IMERL-Facultad de Ingenieŕıa and CMAT-Facultad de Ciencias from Universidad de
la República, for partially supporting the edition of this volume. Last but not least, we
counted on the generous collaboration of the authors and the referees, without whom
this volume would not have been possible. We wish to express our gratitude to all of
them.
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Photo taken at the end of the ceremony of the appointment of Jorge Lewowicz
as Doctor Honoris Causa of the Universidad de la República with part of the

Dynamical System group at Uruguay.
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LAUDATIO HONORIS CAUSA JORGE LEWOWICZ

MARTÍN SAMBARINO

Hoy es la ceremonia de entrega del t́ıtulo de Dr. Honoris Causa al Prof. Jorge
Lewowicz y he sido designado para hacer la Laudatio; es un honor y un placer decir
estas palabras en este homenaje a mi Profesor, colega y amigo Jorge.

Esta tarde, en el Congreso de Sistemas Dinámicos hemos escuchado dos conferencias,
una por Rafael Potrie y otra por Rafael Ruggiero sobre los trabajos cient́ıficos de Jorge
Lewowicz, su influencia y posterior desarrollo de su obra cient́ıfica. Me voy a referir a
su legado cient́ıfico, pero de forma mucho menos técnica, y también a otro aspecto de
la obra del Prof. Lewowicz, que no es independiente de lo anterior: la continuación de
la escuela matemática uruguaya originada por Massera y Laguardia y la conformación
de un grupo numeroso y destacado de investigadores en Sistemas Dinámicos.

Jorge Lewowicz comenzó sus estudios de Ingenieŕıa a mediados de la década del 50
e ingresa como ayudante del Instituto de Matemática y Estad́ıstica en el año 58. Bajo
la orientación del Prof. Jose Luis Massera inició sus estudios sobre Ecuaciones Diferen-
ciales y en 1961 publica su primer trabajo cient́ıfico: Sobre un teorema de Szmydtowna.
Posteriormente, mediante una beca Fullbright, viaja a Estados Unidos en 1964 y en 1966
obtiene su t́ıtulo de PhD en Matemática en Brown University.

Desde sus inicios Lewowicz se interesa por cuestiones de estabilidad y de dinámica
topológica, temas que ha desarrollado y plasmado en más de una treintena de art́ıculos
cient́ıficos. Pero por sobre todas las cosas, es mayormente reconocido por su desarrollo
de la teoŕıa de sistemas expansivos, temas en los cuales Lewowicz hizo escuela. En
el área de Sistemas Dinámicos, el Uruguay fue ampliamente reconocido por tener un
grupo muy fuerte en dinámica de expansivos. Entre los reconocimientos académicos
como cient́ıfico, Lewowicz fue designado miembro de la Academia de Ciencias del Tercer
Mundo, miembro de la Academia de Ciencias de Uruguay y miembro correspondiente
de la Academia de Ciencias de Argentina.

No voy a hacer aqúı una lista ni enumeración de sus trabajos. Śı voy a decir que todos
sus trabajos comparten las siguientes caracteŕısticas: originalidad (y con originalidad
me refiero además a una linea propia de investigación, a su búsqueda ı́ntima de la
armońıa de la Matemática), la interrelación entre diversos métodos e ideas profundas
en la Matemática, y que además son de una gran elegancia y belleza.

De todas formas, voy a referirme a tres trabajos fundamentales de su obra en par-
ticular. Primero, a su art́ıculo Lyapunov functions and topological stability publicado
en Journal of Differential Equations en 1980. En este trabajo, Lewowicz introduce la
noción de funciones de Lyapunov para sistemas dinámicos, y demuestra un teorema de
estabilidad topológica bajo las condiciones de existencia de una función de Lyapunov no
degenerada. Esto dió lugar a nuevos ejemplos, fuera del mundo hiperbólico, de sistemas

CMAT, Facultad de Ciencias, Universidad de la República, Uruguay. email: samba@cmat.edu.uy.
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LAUDATIO HONORIS CAUSA JORGE LEWOWICZ 3

topológicamente estables. Además, este resultado representa una analoǵıa notable, e
insospechada a priori, con el resultado de estabilidad asintótica de puntos de equilibrio
para ecuaciones diferenciales. En el mismo trabajo también se caracterizan los difeomor-
fismos de Anosov o conjuntos hiperbólicos mediante una forma cuadrática no degenerada
que crece a lo largo de las trayectorias. Esta caracterización y forma de pensar, ha sido
usada y desarrollada después por Roberto Markarian para el estudio de billares.

El segundo trabajo al que me voy a referir es Persistence in Expansive Systems,
publicado en Ergodic Theory and Dynamical Systems en 1983. La expansividad es
una propiedad que aparece naturalmente en difeomorfismos de Anosov y en conjuntos
hiperbólicos y es el concepto básico de lo que hoy se conoce como caos o impredictibil-
idad. Su definición es extremadamente sencilla y general en su contexto. En este tra-
bajo, Lewowicz comienza con el estudio sistemático de sistemas expansivos y prueba
una propiedad esencial de estos: no hay puntos Lyapunov estables. También introduce
la noción de persistencia, y prueba, bajo ciertas condiciones que no voy a explicar aqúı,
que los sistemas expansivos son persistentes.

Y en tercer lugar, quiero referirme a su art́ıculo Expansive Homeormorphisms of Sur-
faces, publicado en 1989. Este es su principal contribución y es uno de los trabajos más
importantes y célebres del área, en particular en dinámica topológica. En este trabajo
no solo resuelve un viejo problema abierto (sobre la no existencia de homeomorfismos
expansivos en la esfera), sino que hace una clasificación completa de los homeomorfis-
mos expansivos en superficies. En este trabajo Lewowicz exhibe de manera notable la
dialéctica entre la topoloǵıa y la dinámica. Pero más allá de la importancia del resul-
tado y su profundidad, tanto el enunciado, el resultado en śı, es de una gran belleza
como lo es su demostración: a partir de una simple definición y a través de argumentos
simples pero profundos se va tejiendo la relación entre la dinámica y la topoloǵıa hasta
llegar a una descripción de las propiedades de los sistemas expansivos que permiten su
clasificación.... es como si fuera una sinfońıa que comienza con un solo intrumento y
este, a través de su melod́ıa y armońıa, va despertando y contagiando a toda la orquesta
para el Grande Finale.

Como dije al principio, quiero referirme ahora a otro aspecto del legado académico
de Lewowicz: su carácter como formador. Fiel a la tradiciones de la escuela matemática
uruguaya, la formación y el est́ımulo a los jóvenes y a la iniciación de la investigación
es y ha sido una de sus preocupaciones centrales. Fiel al rigor académico, estimuló
con generosidad la salida de muchos estudiantes a realizar el doctorado en lugares de
excelencia. Ha dirigido 6 tesis de Doctorado (2 en Brasil, 4 en Uruguay), 15 tesis de
Maestŕıa (8 en Venezuela, 7 en Uruguay) y una decena de monograf́ıas de Licenciatura.
Pero más allá de sus alumnos directos, Lewowicz ha influenciado el desarrollo como
matemáticos e investigadores de otros tantos que no fueron sus doctorandos, ya sea en
el Uruguay como en el exilio. Hoy nuestra Universidad cuenta con 17 investigadores en
sistemas dinámicos y la conformación de este grupo se debe en gran o total medida a
Jorge Lewowicz.

Lewowicz trasmitió a lo largo de estos años, tanto en sus clases como en las célebres
caminatas por el pasillo del IMERL y en diversas reuniones, valores fundamentales
de la escuela matemática uruguaya: la investigación temprana, la calidad y rigurosi-
dad cient́ıfica, el desarrollo de un ámbito propicio para la discusión, la trasmisión y
creación de conocimiento, el compromiso social e institucional. Pero no solo dentro de
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la matemática, sino en la Facultad de Ingenieŕıa y en la Universidad, estimuló, inspiró
e influenció el quehacer cient́ıfico de muchos jóvenes y no tan jóvenes, generación tras
generación. Defendió y abogó por la calidad académica con estándares internacionales,
tanto en la Facultad de Ingenieŕıa como en nuestra Universidad, en particular desde la
CSIC. La Facultad de Ingenieŕıa es lo que es hoy en parte gracias a la semilla del Insti-
tuto de Matematica y Estad́ıstica Prof. Rafael Laguardia, y de alguna forma el papel
que jugaron Massera y Laguardia antes de la dictadura en la Facultad, lo desempeñó
Jorge después de ésta.

Quiero contar una anécdota, que muy pocos conocen pero que ilustra las cosas que
genera Jorge en su entorno. José Vieitez fue alumno de Jorge y el primer Doctor en
Matemática por la Universidad de la República-PEDECIBA. Una tarde, llegando Jorge
a su casa, abre el buzón de correspondencia y se encuentra con una copia del t́ıtulo de
Dr de José Vieitez que hab́ıa sido expedido ese d́ıa y con una dedicatoria en el reverso:
Al Maestro con Cariño.

Cuando uno entraba en una clase de Lewowicz inmediatamente se sorprend́ıa. Se
sorprend́ıa por la pasión, amor y placer que teńıa con la Matemática. Se sorprend́ıa por
la profundidad y la trascendencia filosófica que le daba al objeto de estudio del curso.
Y se sorprend́ıa también por la importancia que le daba a los alumnos: parećıa que no
hab́ıa cosa más importante en el mundo que las dudas e inquietudes que podŕıan tener
estos y dejaba bien en claro que estaba a entera disposición en cualquier momento o
lugar; hasta nos daba el número de teléfono de su casa (que claro, muchas veces después
no atend́ıa!). Y se sorprend́ıa también, si aún no lo conoćıa, por su singular personalidad,
agudeza y sentido del humor.

Aquellos que tuvimos el privilegio de estar en una clase con Lewowicz, la disfrutamos
minuto a minuto, incluso cuando luego de enunciar un resultado nos dećıa: Señoras y
señores, tienen 3 minutos para pensar la demostración... se haćıa un silencio total y
Jorge caminaba de lado a lado del salón. Y si alguien esbozaba alguna idea para la
demostración, entonces Jorge la segúıa, sin importar si hab́ıa una camino más corto o
más fácil: lo más importante era respetar la libertad y los caminos de pensamiento de
cada uno.

Y como dećıa anteriormente, defend́ıa la investigación temprana: uno no teńıa que
ser erudito para ser creativo, más aún, lo que hab́ıa que estimular era la creatividad y
en todo caso, la erudición veńıa de la mano de la necesidad de resolver y plasmar las
ideas. Y aśı, les daba a los alumnos problemas abiertos o simplificaciones de estos, o
incluso bajaba a tierra diversos problemas técnicos de sus investigaciones para que los
alumnos los pudieran atacar. Y cuando alguien, fulano de tal, le haćıa una pregunta de
Matemática que Lewowicz entend́ıa que el mismo la pod́ıa responder, dećıa, no exento
de picard́ıa: esa es una pregunta que debe responder fulano de tal.

Hablar de Matemática con Jorge ha sido, y es, iluminador y un placer, aún para los
más jóvenes, bien en el Instituto, bien en una reunión o bien en las visitas que recibe
ahora en su casa. Y no solo de Matemática, sino de lo que han sido sus preocupaciones
durante toda su vida: la Ciencia, la Educación, la Universidad, el Páıs, el Ser Humano. Y
también, como hicieron otros matemáticos que volvieron del exilio, a través de anécdotas
e historias, nos fue pincelando la figuras de Laguardia y Massera y de la vida del Instituto
previa a la dictadura del 73, de forma que las generaciones más jóvenes aprendimos a
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respetar y querer entrañablemente, a sentirnos parte de una Historia y a generar el
compromiso de continuarla...

La Universidad debe reconocer, para śı misma y para la sociedad, quienes son sus
hombres de vaĺıa, y tú Jorge, vaya que śı lo sos. ¡Muchas gracias!

Muchas gracias.





ON THE WORK OF JORGE LEWOWICZ ON EXPANSIVE

SYSTEMS

RAFAEL POTRIE

Abstract. We will try to give an overview of one of the landmark results of Jorge
Lewowicz: his classification of expansive homeomorphisms of surfaces. The goal
will be to present the main ideas with the hope of giving evidence of the deep
and beautiful contributions he made to dynamical systems. We will avoid being
technical and try to concentrate on the tools introduced by Lewowicz to obtain
these classification results such as Lyapunov functions and the concept of persistence
for dynamical systems. The main contribution that we will try to focus on is his

conceptual framework and approach to mathematics reflected by the previously
mentioned tools and fundamentally by the delicate interaction between topology
and dynamics of expansive homeomorphisms of surfaces he discovered in order to
establish his result.

The value of a person resides in his major contribution
Arab proverb freely translated1.

1. Introduction

Among the contributions of Lewowicz to mathematics, it is hard to ignore what I
believe to be his major one: The creation of a school of dynamical systems in Montevideo.
This school is also highly influenced by his way of looking at mathematics which I hope
will be illustrated in this brief note. The main point is that it is not only the people
who work in expansive systems that has been influenced by him. I recommend reading
[Sam] for a global panorama of Lewowicz’s contributions. The goal of this note is not
to describe this aspect of Lewowicz contributions, it is devoted to describe some of his
mathematical contributions.

As a disclaimer, I mention that I am by far not the best qualified to write about
Lewowicz’s work and that this note does not pretend to be a summary of all of his
contributions to mathematics. However, as a member of the above mentioned school,
and having been strongly influenced by him, I happily accepted this task and will try
to give a panorama of the results of Lewowicz concerning expansive homeomorphisms.

Let us start with a simple and elementary definition:

Definition (Expansive homeomorphism). Let f : M → M be a homeomorphism of a
compact metric space M . We say that f is expansive if there exists α > 0 such that
given x 6= y ∈ M there exists n ∈ Z such that d(fn(x), fn(y)) ≥ α. The largest possible
constant α is called the expansivity constant of f for the metric d.

♦

Expanded version of a talk given by the author in the conference Dynamical Systems in Montevideo
held at Montevideo from 13 to 17 of August 2012. The author was partially supported by CSIC group
618/2010.

1Translated from a phrase in the entrance of the Institut du Monde Arab in Paris , France.
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8 R. POTRIE

It is important to remark that although the definition depends on the metric, the
notion of expansivity is purely topological and can be stated for general topological
spaces by demanding that points outside the diagonal ∆ ⊂ M ×M escape by iteration
of f × f from a fixed neighborhood2 of ∆.

There are many well known examples of expansive homeomorphisms: subshifts of
finite type (as well as hyperbolic sets of Smale’s theory) are expansive; and the dynamics
restricted to the minimal set of a Denjoy counter-example is also expansive. We will
focus mainly on other kind of examples, those whose phase space is a manifold.

Quoting Lewowicz himself in [L3]

(...)expansivity means, from the topological point of view, that any point
of the space M has a distinctive dynamical behavior. Therefore, a
stronger interaction between the topology of M and the dynamics could
be expected.

Examples of expansive homeomorphisms on manifolds are given by Anosov and quasi-
Anosov diffeomorphisms (see [Fr, FR]) as well as the well known pseudo-Anosov maps
introduced by Thurston ([Th]). Of course, products of expansive homeomorphisms are
expansive. In [OR] it is proved that every surface of positive genus admits an expansive
homeomorphism.

We are now ready to state a landmark result of the work of Lewowicz ([L3]):

Theorem. There are no expansive homeomorphisms on the two-dimensional sphere S2.

This theorem is highly non-trivial, yet, its statement is completely simple. Let us
remark that there is an independent proof of this result and the rest of the results in
[L3] by Hiraide ([H]).

The concrete purpose of this note is to explain the main ideas behind this result as
well as the classification theorem of expansive homeomorphisms on surfaces obtained
by Lewowicz in [L3]. Other contributions will be covered by Ruggiero, specially those
concerning geodesic flows and quotient dynamics (see also [Ru]), of course, both presen-
tations will have substantial overlap.

It would not be fare to write about Lewowicz’s work without giving motivations for
the study of expansive homeomorphisms. We will start by introducing some motivations
in the first sections by reviewing some of Lewowicz’s previous work. Other motivations
can be found along the literature, in particular [L4] has a chapter devoted to that.

2. Lyapunov functions and topological stability

We start with a quotation from the introduction of [L1] “This paper contains some
results on topological stability (see [2,3]) that generalize those obtained in [2] much in
the same way as Lyapunov’s direct theorem generalizes the asymptotic stability results
of the hyperbolic case: if at a critical point, the linear part of a vector field has proper
values with negative real parts, the point is asymptotically stable and the vector field
has a quadratic Lyapunov function; however, asymptotic stability may also be proved for
vector fields with non-hyperbolic linear approximations, provided they have a Lyapunov
function. In a way this is what we do here, letting Anosov diffeomorphisms play the
role of the hyperbolic critical point and replacing stability by topological stability; we get
this time a class of topological stable diffeomorphisms wider than the class of Anosov
diffeomorphisms.”

2In more technical wording, that ∆ is a locally maximal set for f × f .
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Lyapunov functions, introduced by Lewowicz in [L1] play the role of a metric, which
in the case of expansive homeomorphisms is a type of adapted metric which allows to
distinguish the stable and unstable parts of the points which are nearby a given orbit.
Other kinds of adapted metrics have been then proposed (see [Re, Fa]) but we will focus
on Lyapunov functions that are present transversally in much of Lewowicz’s work (and
also in some of his students, see [V2, Gr1, Gr2]).

One important tool introduced in order to construct Lyapunov functions is that of
quadratic forms (or infinitesimal Lyapunov functions) which have had a strong impact
in different directions well beyond expansive systems as we will explain below.

Definition (Lyapunov function). A continuous function V : U → R from a neighborhood
U of the diagonal in M ×M is said to be a Lyapunov function for f : M → M iff:

- V (x, x) = 0 for every x ∈ M .
- V (f(x), f(y))− V (x, y) > 0 for every x 6= y.

♦

It can be seen as a function which “sees” the expansivity in one step. It is proved
in [L3] (Theorem 1.3) that these functions characterize expansive homeomorphisms (see
[Fa] for a different approach):

Theorem 2.1. A homeomorphism of a compact metric space is expansive if and only
if it admits a Lyapunov function.

Lyapunov functions also provide a way of establishing topological stability of diffeo-
morphisms (see [Wa] for the Anosov case) which may not be Anosov.

We recall the definition of topological stability. We say that a homeomorphism f :
M → M of a compact manifold M is topologically stable if there exists ε > 0 such that
for every homeomorphism g : M → M which is at C0-distance smaller than ε of g there
exists a continuous surjective map h : M → M which semiconjugates f and g, that is:

f ◦ h = h ◦ g
Thurston’s pseudo-Anosov maps (see [OR, Th]) do admit Lyapunov functions (see

[L2] Lemma 3.4 or apply the previous theorem3), however, they are not topologically
stable: One can make perturbations of a pseudo-Anosov map making that some points
have their orbit going “across” the singularities and which will not be shadowed by an
orbit of the pseudo-Anosov map. See [L2] or look at the figures in [L4] (Figure 2 in page
11) or [LC1] (Figure 3).

Therefore, the existence of Lyapunov functions alone is not enough to get topological
stability. One must add a new hypothesis which can be thought of as a weak topological
version of hyperbolicity (see [L1] Section 5 for a more general and precise definition):

Definition. We say that a Lyapunov function V : U → R is non-degenerate if for every
x ∈ M there exists a splitting TxM = Sx⊕Ux such that if CS(x) (resp. CU (x)) is a cone

around Sx (resp. Ux) then V (·, x) is positive (resp. negative) in ĈS(x) (resp. ĈU (x)),
the projection of CS(x) (resp. CU (x)) by the exponential map in a small neighborhood.

♦

3In fact Lewowicz uses his construction of a Lyapunov function to obtain an alternative proof of
expansiveness of pseudo-Anosov maps.
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Figure 1. Positive and negative regions of V (·, x) when V is non-degenerate
in dimension 2.

In a nutshell, the requirement is that the positive and negative regions of the Lya-
punov function in a neighborhood of a point resemble topologically to the positive and
negative part of a quadratic function (see 4 Figure 1). This is exactly what forbids
pseudo-Anosov maps to have non-degenerate Lyapunov functions in neighborhood of
their singularities.

The following theorem is the main theorem of [L1]:

Theorem 2.2. Let f be a C1-diffeomorphism with a non-degenerate Lyapunov function,
then f is topologically stable.

In [L1] a characterization of Anosov diffeomorphisms in terms of quadratic forms is
also given. With this approach Lewowicz is able to recover classical results on structural
stability of Anosov and characterization of Anosov systems in terms of cone-families.
Quadratic forms turn out to be, in some applications, better suited for the study of the
tangent map dynamics than cone-fields as we will try to explain in the next subsection.

2.1. Quadratic forms, Lyapunov functions and Pesin’s theory. In [L1] the fol-
lowing example of diffeomorphism of T2 which is not Anosov and yet admits a non-
degenerate Lyapunov function is proposed:

Fc(x, y) =
(
2x− c

2π
sin(2πx) + y, x− c

2π
sin(2πx) + y

)

For c < 1 the diffeomorphism is Anosov (being linear for c = 0). On the other hand,
for c = 1 there is no invariant splitting by the differential in the tangent space of the
fixed point (0, 0). However, it can be proved that F1 admits a non-degenerate Lyapunov
function, it is volume preserving and also ergodic.

In [CE] it is proven that F1 as well as many other examples in the boundary of
Anosov diffeomorphisms of T2 are ergodic and non-uniformly hyperbolic. The proof
of non-uniform hyperbolicity relies on the existence of certain quadratic forms which
instead of verifying that their first difference is everywhere positive, they verify this
almost-everywhere extending the results of [L1]. The following result was stated without
a complete proof in [LL] and the proof was completed in the appendix of [Mar1]:

4The lines in my drawings are all crooked on purpose in order to show the topological nature of the
objects, :).
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Theorem 2.3. Let f be a volume preserving diffeomorphism admitting a continuous
quadratic form B : TM → R such that the quadratic form f ♯(B)−B is definitely positive
almost everywhere. Then, f is non-uniformly hyperbolic, i.e. Lyapunov exponents are
almost-everywhere non-vanishing.

Here, we denote f ♯(B)x(v) = Bf(x)(Dxfv).
This Theorem was later extended in [Mar2, K] and is quite related to a cone-criterium

([Wo]) but works better in some situations (see [Mar1, K] and references therein). We
will not enter into details about these important results, but we refer the reader to [CM]
for further developments and applications to billiard systems. Let us just mention that
in the spirit of Lewowicz phrase in the introduction of [L1] and quoted above, the work
of [Mar2] proves a reciprocal statement to the quadratic form criterium, completing the
parallelism with Lyapunov method and Massera’s theorem (an important mentor for
Lewowicz), see [Mas].

Let us close this section by mentioning a problem which Lewowicz has always insisted
on:

Question (Problem 10.3 of [LC2]). For c > 1 does the Pesin region of Fc has positive
measure?

The latter is a typical coexistence question which has always interested many math-
ematicians. The maps Fc proposed by Lewowicz are similar to those of [Pry] (see also
[Li]). See also the work of Pesin ([Pes]) on the coexistence problem which is one of the
central problems in dynamics.

3. Persistence

3.1. Persistence vs Topological stability. The concept of persistence was intro-
duced by Lewowicz in [L2] in order to study some robust properties of certain expansive
homeomorphisms under perturbations. In a certain way, it is a property which can be
thought of as a dual property to shadowing.

If an expansive homeomorphism has the shadowing property then it is topologically
stable (see [L4]); nevertheless, not every expansive homeomorphism is topologically sta-
ble as we have already seen. All known expansive homeomorphisms do verify though
this weaker notion of stability which is called persistence (or semi-persistence) a term
coined by Lewowicz in [L2] (see also [L5]).

Definition (Persistence). We say that f : M → M is persistent if for every ε > 0 there
exists a C0-neighborhood U of f such that for every g ∈ U and x ∈ M there exists
y ∈ M such that

d(fn(x), gn(y)) ≤ ε ∀n ∈ Z
♦

In Lewowicz words ([L2]):

“(...)roughly, the dynamics of f may be found in each g close to f in
the C0-topology; however, these g may present dynamical features with
no counterpart in f .”

In his paper [L2] Lewowicz proves some results concerning persistence such as persis-
tence for pseudo-Anosov maps and more generally, for those expansive diffeomorphisms
having a dense set of hyperbolic periodic points with codimension one. Those results
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can be thought of as the germ of further developments in higher dimensions such as
[V1, V2, V3, ABP].

In particular, he shows that a small C1-perturbation of a pseudo-Anosov map pre-
serving the singularities must be conjugated to the original map; a kind of structural
stability result for pseudo-Anosov maps. See also [Ha] for further developments.

Before we continue with the results of [L2] and some of the consequences found by
Lewowicz and coauthors, we are tempted to add another quote of [L2]:

“We believe that, apart from such applications, there is another reason
for studying these persistence properties: it seems plausible to think that
if a theory of asymptotic behavior is possible, then semi-persistence (i.e.
persistence of positive or negative semi-trajectories) should hold on big
subsets of M for large classes of dynamical systems”.

See [L5] for advances in that hope. He posed a precise question about this problem:

Question (Problem 10.2 of [LC2]). For an expansive homeomorphism is every semitra-
jectory persistent in the future (in the past)?

Another question which is motivated by this persistency property can be stated as
follows:

Question. Does an expansive homeomorphism minimize the entropy in its isotopy
class?

This is true for every known example, and it is true after Lewowicz classification
result for surface homeomorphisms (see also [Ha]). If every expansive homeomorphism
is persistent, then nearby homeomorphisms should have at least the same topological
entropy. However, it seems that the answer of this fundamental question is at present
far out of reach.

3.2. Expansive systems and stable points. Probably the first interaction found by
Lewowicz between the topology of the phase space and expansive dynamics is the fact
that a non-trivial compact connected and locally connected set admitting an expansive
homeomorphism cannot have Lyapunov stable points. If connectedness is not required,
this is clearly false as can be seen by considering an heteroclinic orbit between two fixed
points. A more delicate example, where the phase space is connected but not locally
connected can be found in [RR].

As a way to pave the way of some results in low dimensions which required hyperbolic
periodic points to have codimension one in dimensions 2 and 3, Lewowicz proved in [L2]
the following result:

Theorem 3.1 (No Stable Points). Let f : M → M be an expansive homeomorphism
of a non-trivial compact connected and locally connected metric space, then f has no
Lyapunov stable points.

Recall that a point x is Lyapunov stable if for every ε > 0 there exists δ > 0 such
that if d(x, y) < δ then d(fn(x), fn(y)) < ε for every n ≥ 0.

We give here a sketch of the proof of this important result:

Sketch Let α > 0 be the expansivity constant of f . The proof is divided into 3 steps:

Step 1: For ε < α, if

Sε(x) = {y : d(fn(x), fn(y)) ≤ ε n ≥ 0}
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then we have that the diameter of fn(Sε(x)) converges to zero uniformly on x and n.

Step 2: If x is a Lyapunov stable point, and ε > 0, there exists σ > 0 such that for
n ≥ 0 we have that f−n(Sε(x)) contains the ball of radius σ of f−n(x).

Step 3: The previous step implies that every point in the α-limit of x is Lyapunov
stable. One can prove using this fact and the first step that the α-limit set must
consist of periodic attractors which are only α-limit points of their own orbit. This
gives a contradiction, since it implies that the whole space is a periodic orbit, and being
connected a unique point (contradicting that the space was non-trivial).

The hardest step is Step 2 and it is where local connectedness is used in an essential
way. Roughly, using local connectedness, if the uniform ball cannot be obtained, one
finds a sequence of points xn, yn such that they are at distance larger than δ and remain
at distance less than ε for all future iterates and for arbitrarily large number of iterates
in the past. Taking limits, one contradicts expansivity.

Let us explain briefly how to find such pair of points: If when iterating backwards the
δ-ball of x there is no uniform ball, given n > 0 one can choose an arc γ (or a connected
set) with length smaller than 1/n and containing f−kn(x) (where kn must necessarily
tend to +∞ as n → +∞) such that fkn(γ) is not contained in Bδ(x). By connectedness
there exist a point yn and a backward iterate xn = f−mn(x) at distance larger than δ
and such that d(f j(xn), f

j(yn)) ≤ ε for every j ≥ −kn +mn.
Since the points xn and yn are at distance larger than δ and its kn −mn backward

iterate sends them at distance less than 1/n we get that kn − mn also goes to +∞
as n → ∞. Taking convergent subsequences of xn and yn one obtains different points
whose orbits remain at less than ε for all iterates contradicting expansivity.

✷

3.3. Analytic models of pseudo-Anosov maps. In his paper [LL] with E. Lima de
Sa, they provide a new construction of analytic models of pseudo-Anosov maps that had
been obtained by Gerber ([Ge]) based on previous work by Gerber with Katok ([GeK]).

The idea is to replace their conditional stability results by the structural stability
theorem of Lewowicz ([L2]) for pseudo-Anosov maps involving the concept of persistence.

It is important to remark that constructing analytic (even smooth) models of pseudo-
Anosov maps is not easy since by a change of coordinates which is C1 out of a neighbor-
hood of the singularities one cannot obtain a smooth model (this was shown in [GeK]),
so a more global modification must be made.

The idea involves “slowing down” in a neighborhood of the singularities (much as one
does if one wants to smooth the parametrization of a curve having a corner in its image
without altering the image) and then approximating by analytic maps which preserve
the singularities as well as some r-jets of the derivative of the map in the singularity.
This allows to use the mentioned Lewowicz’s results on persistence ([L2]).

To show how this creation of models is far from being trivial, let me state an open
problem which we are far from understanding. This question was strongly motivated by
discussions with Jorge Lewowicz and his constant insistence on the lack of understanding
we have of the role of the dynamics of the tangent map (see also the next subsection for
related problems):

Question. Let f : M → M be a topological Anosov (i.e. A homeomorphism of M
which preserves two topologically transverse foliations one of which contracts distances
uniformly and the other one contracts them for backward iterations). Does there exist
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a smooth model for f? And analytic?. Assuming the previous questions have positive
answers, can these models be made Anosov?.

♦

The question admits a positive answer both in the codimension one case and in the
case where M is a nilmanifold due to the fact that the classification results of Newhouse-
Franks-Manning only use the fact that the map is a topological Anosov. However, the
question is completely independent a priori of the classification of Anosov systems, and
a proof in dimension 2 without using the global classification theory would already be
interesting.

One of the main contributions of [LL], though lateral to the paper has already been
explained in this note, and has to do to the way they prove that the resulting approxi-
mation maps is still Bernoulli with respect to Lebesgue measure (which can be thought
of as the counterpart of the second part of the question above). To do this, they use
quadratic forms and that is the germ of further results on non-uniform hyperbolicity as
we have already mentioned.

3.4. The C0-boundary of Anosov diffeomorphisms. In this section we state a
result obtain by Lewowicz in colaboration with J. Tolosa about the C0-boundary of
codimension one Anosov diffeomorphisms (see [LT]).

They prove:

Theorem 3.2. Let f be an expansive homeomorphism in the C0-boundary of Anosov
diffeomorphisms of codimension one in Td. Then, f is conjugated to an Anosov.

With his classification result for expansive homeomorphisms of the torus, this can be
further improved to get:

Theorem 3.3. Let f : T2 → T2 be an expansive homeomorphism. Then f is contained
in the C0-closure of the set of Anosov diffeomorphisms of T2.

Proof. Consider h : T2 → T2 a homeomorphism isotopic to the identity such that
f = h ◦A ◦ h−1 where A is a linear Anosov automorphism. The existence of such an h
is given by Theorem 4.1 below.

Then there exists a sequence of diffeomorphisms hn converging to h in the C0-topology
and such that h−1

n also converges to h−1. Since conjugating an Anosov diffeomorphism
by a diffeomorphism gives an Anosov diffeomorphism we get that f is approximated in
the C0-topology by Anosov diffeomorphisms.

✷

An important open question that is motivated by this result is the following:

Question (Problem 10.1 of [LC2]). Does the C1-closure of Anosov diffeomorphisms
contains all expansive diffeomorphisms of T2?

Notice also that Mañé has proved that the C1-interior of expansive diffeomorphisms
consists of Quasi-Anosov ones5, in particular in T2 of Anosov ones ([Ma1]).

Notice that the set of Anosov diffeomorphisms in an given isotopy class of T2 forms
a connected set (see [FG]).

5Is in this paper that Mañé introduces the concept of dominated splitting.
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4. Classification theorem in surfaces

It can be shown easily that the only closed one dimensional manifold, namely the
circle, admits no expansive homeomorphisms. This can be proved using the Poincare’s
classification of homeomorphisms of the circle by discussing depending on the rotation
number. Other than that, some examples and some results on the non-existence of
expansive homeomorphisms of other one dimensional continua, nothing was known about
the existence or structure of expansive homeomorphisms. It is to be remarked that Mañé
proved ([Ma2]) that if a compact metric space admits an expansive homeomorphism,
then it must have finite topological dimension.

Examples in every orientable surface different from the sphere were already known
([OR]), but there was no clue for example on which isotopy classes admitted them. The
classification of expansive homeomorphisms of surfaces was thus meant to be started
from scratch and that was what Lewowicz did ([L3]): He gained an impressive under-
standing of their dynamics and their relation with the topology of the phase space and
one of the most striking aspects of his study is that he relied only on some well known
and almost elementary properties of plane topology. Of course, once he got a classi-
fication of expansive homeomorphisms in terms of their dynamics and local behavior,
the final form of the result, giving conjugation to already known models, used some less
elementary techniques ([Fr, Th]).

The starting point was the non existence of stable points proved by him in [L2] and
reviewed in the previous section. In this section we will give an overview of the classi-
fication results for expansive homeomorphisms of surfaces and the main ideas involved
in the proof. We recall that as we said in the introduction, these results were obtained
independently by Hiraide [H].

What we will provide is far from a complete proof of this classification result, but we
hope that the outline here can be used as a guide to read the original paper [L3] and to
obtain some insight on the proof.

4.1. Statement of the result. Along this section, S will denote an orientable closed
(compact, connected, without boundary) surface. It is well known that these surfaces
are well characterized by their Euler characteristic, and consist of the sphere S2, the
torus T2 and the higher genus surfaces Sg with g ≥ 2.

The main result of [L3] is the following:

Theorem 4.1 (Classification of expansive homeomorphisms of surfaces). Let f : S → S
an expansive homeomorphism. Then, S 6= S2 and:

- If S = T2 then f is conjugate to a linear Anosov automorphism.
- If S = Sg then f is conjugate to a pseudo-Anosov map ([Th]).

As we mentioned, Lewowicz result has two parts, first, he gives a complete dynamical
classification of expansive homeomorphisms by a detailed study of the stable and unsta-
ble sets of all the points in S, obtaining for them a local product structure outside some
finite set of “singularities” which have a local behavior much like those of pseudo-Anosov
maps. Then, by using global arguments and shadowing results he obtains the desired
conjugacy.

Lewowicz result can be though of in a now very fashionable way called rigidity:
Rigidity results (or non-existence results) are those which give strong restrictions from
a priori very weak ones. In the words of Frederic Le Roux in [Ler]: “(...)a simple
dynamical property can imply a strong rigidity. The most striking result here is probably
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Hiraide-Lewowicz theorem that an expansive homeomorphism on a compact surface is
conjugate to a pseudoAnosov homeomorphism”.

4.2. Stable and unstable sets. This and the next will be the more technical sections
of this note. However, we will try to first give a statement which will be proved in these
two sections which will allow the reader to continue. Then, we will enter in some details.

Let f : S → S be an expansive homeomorphism with expansivity constant equal to
α. Consider the following sets:

Sε(x) = {y ∈ S : d(fn(x), fn(y)) ≤ ε n ≥ 0}

Uε(x) = {y ∈ S : d(f−n(x), f−n(y)) ≤ ε n ≥ 0}
Expansivity can be reformulated as Sα(x) ∩ Uα(x) = {x} for every x ∈ S. We call

Sε(x) (resp. Uε(x)) the ε-stable set of x (resp. ε-unstable set of x).
As we mentioned in the previous section, it can be easily proved that the diameter of

fn(Sε(x)) converges to zero uniformly independently of x if ε < α. The key technical
result in the classification of expansive homeomorphisms of surfaces can be stated in
terms of these sets:

Theorem 4.2 (Classification Theorem Local Version). Let f : S → S be an expansive
homeomorphism. Then, there exists a finite set F (possibly empty) such that for every
x ∈ S\F we have that there exists ε > 0 such that Sε(x) is a continuous arc having
x in its interior. Moreover, there exists a neighborhood U of x having local product
structure. For x ∈ F we have that the sets Sε(x)\{x} and Uε(x)\{x} are both a finite
number (≥ 3) of arcs which are alternated and in each angle they form, there is also
local product structure.

We must explain some of the terminology appearing in the statement (see also Figure
2 for a visual explanation).

Local product structure means the following: We say that in an open set U centered
in x there is local product structure if there is a homeomorphism

h : [−1, 1]× [−1, 1] → U

such that h(0, 0) = x and h({t0} × [−1, 1]) is contained in a stable set Sε(h(t0, 0)) and
h([−1, 1]× {s0}) is contained in an unstable set Uε(h(0, s0)).

In a similar way, given a point x, we can consider a connected component Ls of
Sε(x)\{x} and a connected component Lu of Uε(x)\{x}. If U is a neighborhood of x and
A is a connected component of U\(Ls∪Lu∪{x}) which does not intersect Sε(x)∪Uε(x)
we say that A is an angle. We say that the angle has local product structure if a similar
property as above holds except that h : [0, 1]× [0, 1] → A and it sends h(0, 0) = x with
the rest of the properties being equal (see Figure 2).

Before we continue with a sketch of the proof of this result, let us make some com-
ments on some existing extensions. First, similar properties have been obtained for
expansive flows in dimension 3 ([Pat1]). Also, by assuming the existence of a dense set
of topologically hyperbolic periodic points these results can be extended to any dimen-
sion ([V1, ABP]), except that the behavior in the singularities is not well understood6

except in dimension 3 or in the codimension one case ([V2, ABP]) where one can show
that they do not exist. With some differentiability assumptions, the hypothesis of the

6It seems that we lack examples of “genuine” pseudo-Anosov maps in higher dimensions.



JORGE LEWOWICZ AND EXPANSIVE SYSTEMS 17

Sε sets

Uε sets

Figure 2. Local picture at a singular point with p = 3 “legs”.

existence of periodic points can be removed, at least in dimension 3 ([V3]). This has
also been extended to the plane under certain conditions of the behavior at infinity
([Gr1, Gr2]).

Just to show how far we are from obtaining a similar result in higher dimensions let
me state the following open question (it is known in the smooth case in T3, see [V3]):

Question. Has every expansive homeomorphism of a manifold a periodic point?

Now, let us discuss the main points of the proof of Theorem 4.2. Let us remark
that each of this steps are interesting by themselves, and some of them hold in higher
dimensions.

The first step of the proof consists on showing that every point in S has a local stable
and unstable set of uniform size.

Proposition 4.1. For f : S → S expansive homeomorphism and ε < α the expansivity
constant, there exists δ > 0 such that for every x ∈ S we have that the connected
component of Sε(x) ∩Bδ(x) containing x intersects ∂Bδ(x).

Sketch The proof of this proposition holds in any dimension. The key point is the non
existence of Lyapunov stable (in fact, Lyapunov unstable) points proven in Theorem
3.1.

Once this is obtained, one can construct large connected sets by considering the sets
Dn build as the connected component containing x of n-th preimage of the ball of radius
ε centered at fn(x) by f−n. The fact that there are no Lyapunov unstable points allows
one to prove that these sets have all diameter bounded from below and allow to construct
the desired set as

Cs
ε (x) =

⋂

N

⋃

n≥N

Dn

One has to check that this has the desired properties (see [L3] Lemma 2.1), in particular
that the sets Dn have diameter bounded from bellow. This can be done using Lyapunov
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functions and the metric they define, or using the metric introuduced in [Fa]. Also, it
can be done by barehanded arguments (see [L4]).

✷

We remark that the previous result gives a conceptual proof that S1 does not admit
expansive homeomorphisms: On the one hand they cannot have Lyapunov stable points,
but on the other hand the stable set of a point must contain a connected set of large
diameter, thus, non-empty interior, a contradiction.

We make a remark on stable and unstable sets which is of importance in many steps
of the proof. It can be thought of as a “big angles” result. The proof is not difficult (see
Lemma 3.3 of [ABP]).

Proposition 4.2 (Big Angles). Let f : S → S be an expansive homeomorphism with
expansivity constant α. Given V ⊂ U neighborhoods of x and ρ > 0 small enough,
there exists a neighborhood W ⊂ V of x such that if y, z ∈ W we have that d(Sε(y) ∩
U\V, Uε(z) ∩ U\V ) > ρ.

The next step of the proof is probably the deepest and it is really dependent on the
two-dimensionality of the problem. Here one sees a clear manifestation of the already
quoted phrase of “a stronger interaction of the topology of M and the dynamics of f
could be expected ”.

Theorem 4.3. For an expansive homeomorphism f : S → S with expansivity constant
α and ε < α/10, the connected component of Sε(x) containing x is locally connected at
each of its points and therefore arc-connected.

Sketch We will only give a brief outline with an heuristic idea of this subtle proof. We
refer the reader to [L3] pages 119-121 for details (see also [L4] pages 21-25).

Consider Cs
ε (x) the connected component of Sε(x) containing x. We first show that it

is locally connected at x and then a clever argument allows to show local connectedness
at every point. Once this is proved, arc-connectedness follows since a compact connected
and locally connected set is arc-connected.

The proof is by contradiction. Roughly, the idea is that if it is not locally connected
at x we can think that in an arbitrarily small ball of x the set Sε(x) is a sequence of
connected sets approaching x but connecting to Cs

ε (x) outside the ball. Using separation
properties of the plane (which are extensions of Jordan’s curve theorem) we obtain some
point z which is trapped in both sides by connected components of Sε(x). Since the
unstable set of z has a large connected component containing z, we know it must leave
the neighborhood, however, it can intersect Sε(x) only once, so we obtain that it leaves
forming “small angles” with Sε(x) a contradiction with Proposition 4.2.

In fact, there are some subtleties in what we have just said, since the fact that the
unstable set of z has a large connected component does not imply that it must have
two sides, and there is no problem to have one side going out by intersecting Sε(x). To
solve this, Lewowicz makes a clever argument that he then repeats several times in his
proof and so we partially reproduce it here: He considers an arc joining two different
connected components of Cs

ε (x) locally and he divides the arc depending on which
side the unstable set of the points leave the neighborhood: a connectedness argument
allows him to conclude that either there is a point whose unstable intersects twice Sε(x)
(contradicting expansivity) or a point whose unstable leaves forming small angles (also
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a contradiction). This connectedness argument uses the fact that stable and unstable
sets vary semicontinuously7.

Now, to get local connectedness at every point, we use local connectedness at the
centers at many scales. Consider y ∈ Cε(x) ⊂ C2ε(y). Then C2ε(y) is locally connected
at y, so for every σ > 0 and z ∈ Cε(x) close to y there exists a connected set C ⊂
C2ε(y) ∩ Bσ(y) containing y and z. Since there are no stable points, we know that
C ∪Cε(x) ⊂ C2ε(y) cannot separate, so, by an extension of Jordan’s separation theorem
we get that Cε(x) ∩C is connected and we deduce that Cε(x) is locally connected at y.

This finishes the sketch of the proof.
✷

We will give an outline of the rest of the proof of Theorem 4.2 in the next subsection.
We will omit even more details.

4.3. Singularities. The purpose of this section is to outline the rest of the proof of
Theorem 4.2. We will not enter in details here, we will only explain the main steps of
the proof.

x

Cs
ε (x)

Cu
ε (x)

Figure 3. Structure of local stable and unstable sets. They are arc con-
nected but may a priori be still “ugly”.

Pick a point x ∈ S. As we have already seen, Sε(x) has at least one connected compo-
nent intersecting ∂Bδ(x). If we consider the connected component Cs

ε (x) of Sε(x)∩Bδ(x)
and the connected component Cu

ε (x) of Uε(x)∩Bδ(x) we know that there are arcs join-
ing x to ∂Bδ(x) contained in those sets. It is possible to make an equivalence relation
between these arcs that identify arcs which start at x and then bifurcate near the bound-
ary of Bδ(x). By using this, the big angles property and connected arguments similar
to the ones used in the previous section, Lewowicz shows:

7This is a general property that holds for any homeomorphism and it is not hard to check. See for
example Lemma 3.2 of [ABP].
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Lemma 4.1. The number of (equivalence classes of) arcs in Cs
ε (x) and Cu

ε (x) joining
x to the boundary of Bδ(x) is the same, finite, and moreover, they are alternated in the
order of ∂Bδ(x).

This result together with the invariance of domain theorem and further application
of the previous arguments give the following property around points which is almost the
end of the proof of Theorem 4.2.

Proposition 4.3. For every x ∈ S, there exists a neighborhood U such that every point
y in U\{x} has a neighborhood with local product structure.

αs

αu

Figure 4. How to obtain local product structure.

This is proved as follows: Consider an arc αs of Cs
ε (x) and a consecutive one αu of

Cu
ε (x). Now, for points of αu close to x we have that using semicontinuous variation8

of stable sets and the “big angles” property (Proposition 4.2) that the stable set of the
points near x goes out of Bδ(x) near α

s. The same happens for points in αs near x and
their unstable sets. This allows to find a continuous and injective (due to expansivity)
map from a neighborhood of x in αs times a neighborhood of x in αu into S. By the
invariance of domain theorem this map is open and thus every point in this “angle” has
local product structure. This can be done in all the angles formed by the stable and
unstable arcs of x (see Figure 4).

It is immediate to conclude that:

Corollary 4.1. There exists a finite set F ⊂ S such that every point outside of which
every point has local product structure. Moreover, for x in F have a neighborhood such
that their local stable and unstable sets are p ≥ 1 (and different from 2 which would
imply local product structure around x) arcs starting at x and arriving at the boundary.

8A disclaimer is that to be precise, this argument needs that there are at least two arcs of stable and
two arcs of unstable for x. We will ignore this problem and “solve it” afterwards because we believe it
gives a better heuristic of the global argument. See [L3] for a correct proof.
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It remains only to discard the possibility of having a unique arc in the stable set
of x. This is an important issue since for example S2 admits diffeomorphisms (even
analytic, see [Ge, LL]) that have the local form we have obtained but with points having
a singularity with a unique “leg”. Needless to say, those examples are not expansive,
since for points very near to x in the stable set, very small horseshoes are created,
contradicting expansivity. Building in this example, and using the arguments developed
by Lewowicz for the other parts of the proof, one can give a general proof of the following
(see also Figure 5):

Proposition 4.4. The number p in the above corollary is ≥ 3 for every point in F .

Sε sets

Uε sets

Figure 5. One leg implies that local stable and local unstable sets intersect
in more than one point contradicting expansivity.

This concludes the outline of the proof of Theorem 4.2.

4.4. Non-existence of expansive homeomorphisms on S2. We show here how
Theorem 4.2 is enough to show that the two-dimensional sphere S2 cannot admit ex-
pansive homeomorphisms.

The easiest way to see this is using index theory for foliations. The local product
structure obtained allows one to see that stable and unstable sets foliate the surface
admitting and expansive homeomorphisms giving rise to a continuous foliation with
finitely many singularities of prong type. Since for every singularity the number of legs
is ≥ 3 we deduce that even if the foliation may be non-orientable then the index of the
singularities is always negative (notice that if there were only one leg, then the index
is positive and equal to 1/2 so that one can make one example in S2 with four such
singularities). This implies that S2 cannot support such a homeomorphism.

If the reader is not comfortable with the use of continuous (and not differentiable)
foliations, one can go to [L3] where a more elementary proof is given using Poincare-
Bendixon’s like arguments.

4.5. Other surfaces. In the torus case, essentially, due to the work of Franks, it is
enough to show that there are no singularities (which is clear by the index argument
shown above) and that the map is isotopic to a linear Anosov automorphism. Consider
then f : T2 → T2 an expansive homeomorphism.
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Although he might have used the already known argument on the growth of periodic
points and Lefshetz index, Lewowicz gives a different argument which is very beautiful9.

I outline it here: Lift f to the universal cover to obtain

f̃ : R2 → R2

Let A ∈ GL(2,Z) be its linear part (i.e. A is the matrix given by f̃(·)− f̃(0) : Z2 →
Z2). If A is not hyperbolic, then it has both eigenvalues of modulus 1 since it has
determinant of modulus 1. Then, one obtains that the diameter of a set iterated by A
grows at most polynomially. Since f̃ is at bounded distance from A, the same holds for
the iterates of a set by f̃ . If J is an unstable arc contained in a local product structure
box, one gets that diam(f̃n(J)) ≤ p(n) where p is a polynomial.

On the other hand, we know that the length10 of an unstable arc by f̃ must grow
exponentially due to expansivity, so, for the same J we get that the length of f̃n(J) is
comparable to λn with λ > 1. Moreover, since there are no singularities, a Poincare-
Bendixon’s like type of argument implies that an arc of unstable cannot intersect the
same box of local product structure twice. This implies, via the quadratic growth of
volume of R2 that the diameter of an arc of unstable of length L is comparable to

√
L

which will still be exponential. This gives a contradiction and completes the proof. See
[L3] Theorem 5.3 for more details.

In the higher genus case the proof is even more delicate. He again stands on previous
conjugacy results by Handel [Ha] (improving the results of [L2]) that state that in the
isotopy class of a pseudo-Anosov map there exist certain semiconjugacies. Then, as
in the torus case he must prove that the local classification theorem (Theorem 4.2)
provides enough tools to show that f is isotopic to pseudo-Anosov. He uses Thurston’s
classification and shows that no homotopy class of simple curves can be periodic (see
Lemma 6.4 of [L3]) which allows him to conclude.

✷
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EXPANSIVE GEODESIC FLOWS: FROM THE WORK OF J.

LEWOWICZ IN LOW DIMENSIONS TO GLOBAL GEOMETRY OF

MANIFOLDS WITHOUT CONJUGATE POINTS

RAFAEL O. RUGGIERO

Abstract. The works of Jorge Lewowicz about expansive homeomorphisms of com-

pact surfaces had remarkable impact in the theory of geodesic flows without con-

jugate points. We present a survey of results about expansive and weakly stable
geodesic flows in compact manifolds without conjugate points, starting from Lewow-

icz’s results and views about expansive dynamics in low dimensions, continuing with

their generalizations in higher dimensions, and finishing with recent developments
of the theory of weakly stable geodesic flows and their connections with Gromov

hyperbolic spaces, control theory and Finsler rigidity.

Introduction

Expansiveness is one of the most important features of hyperbolic dynamics. Its
role in the study of the topological dynamics of hyperbolic systems is crucial, specially
concerning stability theorems in weak or strong form (structural or topological stability,
pseudo-orbit tracing properties, persistence, etc). Although hyperbolic dynamics implies
in general expansiveness, the converse of this assertion is not true. It is not difficult to
exhibit examples of expansive, non-hyperbolic systems some of which will be mentioned
along the present exposition. The seminal works of Bowen [20] and Walters [129] in the
1970’s showed many interesting and intriguing properties of expansive systems which
are common to hyperbolic ones. Expansiveness played an important role in the whole
body of work developed to prove the stability conjecture, a problem set in the 1960’s
by S. Smale and solved by Mañé [86] and Liao [74] in dimension 2 for diffeomorphisms
and by Mañé [84] in any dimension in the 1980’s. In those times and context the work
of J. Lewowicz about expansive systems started by the end of the 1970’s, after a long
and fruitful experience with hyperbolic dynamics in differential equations going back
to the 1960’s. J. Lewowicz’s academic legacy, not only as a researcher but also as a
professor, advisor and colleague, left in many latin-american mathematicians (including
me) a deep and definitive trace. The purpose of this survey is to pay a modest tribute to
his work and academic life with a panorama of the theory of expansive and weakly stable
geodesic flows, presented from the perspective of his pioneer work. Another survey by
R. Potrie [101] contains a quite complete description of J. Lewowicz work with expansive
and topologically stable non-conservative dynamics, so we shall devote ourselves to the
conservative side of expansive systems theory (nevertheless, both surveys will have an
unavoidable overlap).
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owing property, Gromov hyperbolicity, accessibility, Finsler manifolds.
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We can assert without doubts that J. Lewowicz contributions concern all relevant sub-
jects in topological dynamics: topological stability, specification properties, the theory
of invariant sets, classification of expansive and topologically stable homeomorphisms
in surfaces up to semi-conjugacy and conjugacy, persistence sets and robustness. The
originality of his contribution resides in the innovative tools and ideas to tackle certain
problems in dynamics, providing elegant and simple proofs of deep results and reveal-
ing surprises in expansive, non-hyperbolic theory which led to many applications in
other fields of dynamics. The use of Lyapunov forms and functions of two variables
to classify hyperbolicity and to study stability of expansive systems is one of his main
original ideas. The existence of invariant sets for expansive homeomorphisms in com-
pact surfaces is certainly the most important result of his work. This result not only
led to the classification of expansive homeomorphisms in surfaces - they are conjugate
to pseudo-Anosov maps - but also to many different applications even in higher dimen-
sions involving Riemannian global geometry, variational calculus and stability theory.
The notion of persistence introduced in J. Lewowicz paper [70] admits a generalization
for geodesic flows in any dimension which led to striking connections with geometric
group theory and hyperbolic geometry in the large. In a paper about geodesic flows of
surfaces with non-positive curvature Lewowicz drew his attention to a family of surfaces
that proved to have many remarkable geometric and ergodic properties connected with
subtle problems in non-positive curvature geometry.

The survey is divided in many sections, almost all of them devoted to explore in
the context of geodesic flows one of the subjects of J. Lewowicz’s research. A quite
complete view of the theory of expansive and weakly stable geodesic flows is given with
many references and open problems. Theorem 2.4 in Section 2 is new, it provides an
extension of one of the results in [69] obtained for surfaces. Many of the results are due
to the author, who as one of J. Lewowicz undergraduate students in the Universidad
Simón Bolivar in Caracas, Venezuela, has been since then influenced by Lewowicz’s
ideas and points of view about dynamics. To finish the Introduction, I would like to
give special thanks to the Instituto de Matemática y Estad́ıstica ”Prof. Ingeniero Rafael
Laguardia”, Universidad de la República del Uruguay, for the hospitality received during
the congress in the honor of J. Lewowicz, and for the invitation to write this humble
tribute to his work.

1. Preliminaries

Let us start with some notations. (M, g) will denote a C∞, compact n-dimensional

Riemannian manifold; M̃ the universal covering of M , p : M̃ −→ M the covering map;
(M̃, g̃) the pullback of g by the map p, TM the tangent bundle of M , T1M the unit
tangent bundle of (M, g); the canonical coordinates of a point θ ∈ TM are θ = (p, v),
where p ∈M , v ∈ TpM ; and π : TM −→M is the canonical projection π(p, v) = p.

Definition 1.1. The geodesic flow of (M, g) is the one parameter family of diffeomor-
phisms φt : T1M −→ T1M defined by φt(p, v) = (γ(p,v)(t), γ

′
(p,v)(t)), where γθ(t) is the

geodesic having initial conditions γ′θ(0) = v, γθ(0) = p. The parameter t is the arc
length parameter.

The unit tangent bundle T1M inherits a Riemannian metric ḡ that is naturally asso-
ciated to the Riemannian metric g, the so-called Sasaki metric. We refer to [41] for
its definition, we shall state some of its main properties for the sake of completeness.
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The first fundamental property of the Sasaki metric is that the canonical projection
π : (T1M, ḡ) −→ (M, g) is a Riemannian submersion. For each θ ∈ T1M there is a
n-dimensional subspace Hθ ⊂ TθT1M called the horizontal subspace where dθπ is an
isometry. The horizontal subspace can be identified with the subspace of parallel vector
fields with respect to the metric g.

The kernel of dθπ is called the vertical subspace Vθ ⊂ TθT1M , it is an n − 1
dimensional subspace and Hθ, Vθ are orthogonal with respect to the Sasaki metric. The
unit vector tangent at θ to the geodesic flow will be denoted by X(θ), this is a horizontal
vector field that is orthogonal to the vertical subspace with respect to the Sasaki metric.
Let Nθ the orthogonal complement of X(θ), and let Hθ = Hθ ∩Nθ.

Let TθT1M = Hθ⊕Vθ⊕X(θ) be the horizontal-vertical splitting of TθT1M (orthogonal
in the Sasaki metric). The subspace Nθ = Hθ ⊕ Vθ is invariant by the differential of the
geodesic flow, whose action in Nθ is given by

Dθφt(W ) = Dθφt(WH ,WV ) = (JW (t), J ′W (t))

where JW (t) is a perpendicular Jacobi field of the geodesic γθ defined by the initial
conditions

JW (0) = WH , J
′
W (0) = WV , g(JW (0), γ′θ(0)) = 0.

Perpendicular Jacobi fields give matrix solutions of the differential equation J ′′(t) +
Kθ(t)J(t) = 0, where Kθ(t) is the matrix of sectional curvatures of planes containing
γ′θ(t). Indeed, if the choose an orthonormal, parallel frame ei(t) i = 0, 1, .., n− 1 along a
unit speed geodesic γθ(t), with e0(t) = γ′θ(t), then any collection Jk(t) of n− 1 linearly
independent, perpendicular Jacobi fields of γθ(t) defines a curve of matrices J (t) with
entries

Jki(t) = g(Jk(t), ei(t))

that is a matrix solution of the above matrix Jacobi equation where

Kθ(t)ki = g(R(γ′θ(t), ek(t))γ′θ(t), ei(t)).

In the above formula, the curvature tensor isR. The curve of matrices U(t) = J ′(t)J (t)−1

defines a solution of the so-called Riccati equation U ′(t) + U2(t) +K(t) = 0, whenever
J (t) is invertible. The Liouville 1-form, denoted by α, is given at each point θ ∈ T1M
by αθ(Z) = ḡ(Z,X(θ)) for every Z ∈ TθT1M . The form α and its exterior differential
dα are invariant by the geodesic flow. The two form dαθ is symplectic in Nθ and the
exterior product α ∧ (dα)n−1 provides a volume form for T1M that is invariant by the
geodesic flow as well. A subspace S of Nθ is called Lagrangian if dα(Z, Y ) = 0 for
every pair of vectors Z, Y in S (S is isotropic in notation of classical mechanics) and S
has maximal dimension with this property, n− 1. It is not hard to show that

dα(Dφt(Z), Dφt(Y )) = g(JZ(t), J ′Y (t))− g(J ′Z(t), JY (t))

for every Z, Y ∈ Nθ and every θ ∈ T1M . This expression is the well known Wronskian
of the pair JZ , JY of solutions of the Jacobi equation.

The conservative nature of the geodesic flow can be viewed (and perhaps better
understood) from the point of view of Lagrangian or Hamiltonian systems. Indeed, the
geodesic flow is the Euler-Lagrange flow of the Lagrangian L : TM −→ R, L(p, v) =
1
2gp(v, v).
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1.1. Expansiveness and topological stability for flows. The notion of expansive-
ness for flows poses some technical difficulties, concerning reparametrizations of the flow,
which do not arise in discrete dynamics. Here we state the definition of expansive flow
without singularities, for a general definition we refer to [20].

Definition 1.2. A non-singular smooth flow φt : Σ −→ Σ acting on a complete Rie-
mannian manifold Σ is ε-expansive if given x ∈ Σ we have that for each y ∈ Σ such
that there exists a continuous surjective function ρ : R −→ R with ρ(0) = 0 satisfying

d(φt(x), φρ(t)(y)) ≤ ε,
for every t ∈ R then there exists t(y), | t(y) |< ε such that φt(y)(x) = y. A smooth
non-singular flow is called expansive if it is expansive for some ε > 0.

The considerations about the reparametrization ρ(t) are in many senses natural. If
we just let ρ(t) = t like in the discrete case where t ∈ Z, many simple examples of
”non-expansive” dynamical systems might turn into expansive ones. Take for instance a
linear flow in the flat two torus where orbits are all periodic. It is possible to change the
parametrization of the flow while keeping the same orbits as curves. So we can produce
a ”drift ” in the dynamics, in a way that two close points move in different speeds along
two periodic orbits which remain close as curves but not as orbits.

The same sort of considerations about reparametrizations appear in the definition of
topological stability for flows.

Definition 1.3. A non-singular smooth flow φt : Σ −→ Σ acting on a complete Rie-
mannian manifold Σ is Ck topologically stable if there exists an open neighborhood
U of φt in the Ck topology such that for each flow ψt in the neighborhood there exists a
continuous surjective map h : Σ −→ Σ such that for every x ∈ Σ there exists r : R −→ R
continuous and surjective, r(0) = 0, with

h(ψt(x)) = φr(t)(h(x)).

When h is a homeomorphism (or conjugacy) the flow is Ck structurally stable.

The reparametrization ρ(t) cannot be the identity in many important families of
continuous systems. In the set of Anosov geodesic flows in compact surfaces, a time
preserving conjugacy h isotopic to the identity between the geodesic flows of (M, g) and
(M,σ) implies rigidity: (M, g) is isometric to (M,σ). This statement is known in the
literature as marked length spectrum rigidity, it was first proved by Otal [94] in negative
curvature, and by Croke, [35], Croke-Fathi [36] for surfaces without conjugate points.

1.2. Lyapunov forms and functions for flows.

Definition 1.4. Given a C∞ manifold Σ and a smooth, non-singular vector field Y in
the tangent space TΣ of Σ, a Ck Lyapunov quadratic form Q : TΣ× TΣ −→ R for the
flow of Y is given by the following properties:

(1) Q is Ck.
(2) The Lie derivative LYQ of the form Q is positive.

Lyapunov quadratic forms are powerful tools to find invariant cones of the dynamics of
the differential of the flow of Y . The relevance of invariant cones is their close relationship
with nonzero Lyapunov exponents, and hence with hyperbolicity and positive entropy
(see for instance the works of Wojtkowsky [130], Markarian [87], [88] for billiards, Katok
[61], Chernov-Markarian [29] for a complete exposition about the subject).
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Definition 1.5. Given a smooth manifold Σ and a neighborhood U of the diagonal of
Σ× Σ, A Ck Lyapunov function of two variables f : U −→ R for the flow of Y is a Ck

non-negative function such that

(1) f(x, x) = 0 for every x ∈ Σ,
(2) The derivative of f(x, y) with respect to the flow is positive for every (x, y) ∈ Σ.

Lewowicz introduces a special family of Lyapunov functions called non-degenerate:
they can be obtained by applying an integration procedure to Lyapunov forms. Such
Lyapunov functions imply topological stability. However, Lyapunov functions of two
variables might exist independently of Lyapunov forms. In [71], Lewowicz shows that
every expansive homeomorphism has a Lyapunov function of two variables that is not
necessarily non-degenerate. The construction of such Lyapunov function can be viewed
as a clever generalization of the ideas of Conley and Auslander in the 1960’s to con-
struct Lyapunov functions of one variable to localize recurrence in dynamical systems.
The existence of a Lyapunov quadratic form is much stronger than the existence of a
Lyapunov function of two variables.

The idea of invariant cones is behind one of the most remarkable results proved by
J. Lewowicz: the characterization of Anosov dynamics in terms of Lyapunov quadratic
forms. We shall state a version of this result for flows, that is in fact a continuous version
of a discrete result by himself: Lyapunov functions and topological stability, J. of Diff.
Equations (38), 1980.

Theorem 1.6. : Let Σ be C∞ compact manifold, then a smooth flow Yt acting on Σ
is Anosov if and only if there exists a non-degenerate Lyapunov quadratic form for the
flow Yt.

Invariant cones were one of many different (equivalent) mechanisms developed in the
19070’s and early 1980’s to find hyperbolic behavior for the differential of the dynamics.
Indeed, the notions of dominated splitting and quasi-Anosov system already present in
Eberlein’s work for Anosov geodesic flows [41], and formally introduced by R. Mañé [83],
[84], are counterparts of the notion of invariant cones.

The application of Lyapunov quadratic forms to study local and global stability of
hyperbolic systems proved to be very rich and enlightening. In the paper by J. Lewowicz
: Invariant manifolds for regular points. Pacific J. of Math. 1981, a simple and very
elegant proof of the stable manifold theorem is made using Lyapunov quadratic forms.
In another article by J. Lewowicz, E. Lima de Sá, and J. Tolosa : Lyapunov functions
of two variables and a conjugacy theorem for dynamical systems. Acta Cient́ıfica Vene-
zolana, 1981, a surprisingly simple proof of the Hartmann-Grobman Theorem arises as
an application of the theory of Lyapunov quadratic forms. Another nice application
of this theory is found in the paper by J. Lewowicz, J. Tolosa.: Local conjugacy of
quasihyperbolic systems. Diff. equations, Qualitative theory I, II, 1984.

All the above results hold for general flows, but specific results for geodesic flows, the
main object of our survey, were also obtained by J. Lewowicz in the case of surfaces.
In those we can see the Riemannian structure of the flow in the construction of special
Lyapunov quadratic forms. This will be the subject of the next section.

2. Lyapunov quadratic forms and functions for geodesic flows

The goal of this section is to discuss the proof and generalizations of the following
result.
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Theorem 2.1. (J. Lewowicz): Let (M, g) be a compact surface with non-positive cur-
vature.

(1) The geodesic flow is Anosov if and only if there exists an invariant sub-bundle
W of T (T1M), and a non-degenerate quadratic form Q : W ×W −→ R such
that the Lie derivative is positive definite.

(2) If the geodesic flow is not Anosov but the interior of the set of points with zero
curvature is empty, then the flow has a Lyapunov function of two variables and
is topologically stable in the set of non-positive curvature geodesic flows.

(3) If the curvature fails to be negative just along a simple closed geodesic γ where
| K(x) | decays to zero as K(x) ≈ d(x, γ)2 then the geodesic flow is C4 topolog-
ically stable.

This result is published in the article ”Lyapunov functions and stability of geodesic
flows” (1983) [69].

2.1. A closer look at the paper: Lyapunov quadratic forms for Anosov ge-
odesic flows. The obtention of the Lyapunov quadratic form for geodesic flows of
surfaces of negative curvature starts with Cartan’s structural equations. Let us recall
briefly Cartan’s formulation.

Let α be the Liouville 1-form dual to the geodesic flow, ω the connection 1-form (dual
to the vertical bundle in T1M), ω⊥ the 1-form such that α∧ ω⊥ ∧ ω is the volume form
preserved by the geodesic flow. Such forms are called the Cartan forms, and they satisfy
the following system of equations:

dα = ω ∧ ω⊥

dω⊥ = −ω ∧ α
dω = −(K ◦ π)α ∧ ω⊥,

where K is the Gaussian curvature of the surface.
Let us define the quadratic form Q given at each θ ∈ T1M by the form Qθ : Nθ ×

Nθ −→ R,

Qθ(v, v) = ω⊥(v)× ω(v).

From Cartan’s structural equations it is not difficult to deduce the first part of The-
orem 2.1:

(1) If the curvature is negative the geodesic flow is Anosov and the Lie derivative of
Q with respect to the geodesic flow, LXQ = −(K ◦ π)(ω⊥)2 + (ω)2, is positive.

(2) If the curvature is nonpositive, the geodesic flow is Anosov if and only if there
exists T > 0 such that the Lie derivative with respect to the geodesic flow of
the form

Q̄(v, v) =

∫ T

0

φ∗tQ(v, v)dt

is positive restricted to the unstable sub-bundle.

In item (1), the proof of the fact that negative curvature implies Anosov geodesic
flow follows from standard Sturm-Liouville theory applied to the Jacobi equation and
the representation of the differential of the geodesic flow in terms of Jacobi fields as
stated in the Preliminaries (page 3). Indeed, negative curvature implies that the norms
of perpendicular Jacobi fields are comparable to exponential functions. At the same
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time, the Lie derivative of Q with respect to the geodesic flow has positive sign whenever
the curvature is non-positive.

To show item (2) we use the formula

(∗) LXφ∗tQ(Z,Z) = −K(γ(t)) ‖ JZ(t)) ‖2 + ‖ J ′Z(t) ‖2

where φt(p, v) = (γ(t), γ′(t)), Z ∈ N(p,v), which follows from the definition of the forms

ω, ω⊥ and the representation of the differential of the geodesic flow in terms of Jacobi
fields along the orbit φt(p, v). Since the curvature may vanish along the orbit of (p, v)
the proof of item (2) can be reduced to the following statement: ‖ J ′Z(t) ‖2 cannot be
zero in arbitrarily large intervals for (p, v) varying in T1M . For otherwise we would get,
after a limiting process, a geodesic and a perpendicular Jacobi field whose derivative is
zero everywhere, a parallel vector field. But then, it is not difficult to deduce that the
geodesic flow is not Anosov.

The goal of this subsection is to show a generalization to any dimension of the above
statement. To do that, we shall explain in detail how formula (*) is deduced in the
n-dimensional case. Let (M, g) be a compact Riemannian manifold, let Ω and Ω⊥ be
the 1-forms given respectively at each point by the orthogonal projection Ωθ : Nθ −→ Vθ
in the vertical subspace with respect to the Sasaki metric, and the orthogonal projection
Ω⊥θ : Nθ −→ Hθ in the horizontal subspace with respect to the Sasaki metric. Notice
that in the case of surfaces, we have that ω = Ω, ω⊥ = Ω⊥.

The tangent space TθTM for θ = (p, v) is isomorphic to TpM ×TpM and the vertical
subspace Vθ can be naturally identified with the second component TpM of the cartesian
product. Indeed, any vector v ∈ Vθ, being a vector tangent to a curve of vectors in TpM ,
can be viewed itself as a tangent vector in TpM . Let i : Vθ −→ TpM be this isomorphism.
We have the following statement that can be found in [41] for instance.

Lemma 2.2. There exists an operator ∇ : TM −→ TM , called the connection operator,
given for each TpM by a linear operator ∇p : TpM −→ TpM such that

(1) ∇p(i(Z)) = Ω(Z) for every Z ∈ Vθ.
(2) Let γθ(t) be a unit speed geodesic such that γθ(0) = p, γ′θ(0) = v. Let J(t) be a

perpendicular Jacobi field defined along γθ. Then

∇p(J(0)) = J ′(0)

while Ωθ(J(0), J ′(0)) = (0, J ′(0)). Here, (J(0), J ′(0)) are horizontal-vertical
coordinates in Nθ.

The above formal discussion about the representation of Ω as an operator in TpM
leads to the following definition: let Qθ : Nθ ×Nθ −→ R be the two form given by

Qθ(Z,Z) = gπ(θ)(dθπ(Z),∇p(i(Z))).

The two form Q is a natural generalization of the two form given in Theorem 2.1 for
surfaces. Notice that

Lemma 2.3. Let Z ∈ Nθ, let JZ be the Jacobi field defined along γθ whose initial
condidions are JZ(0) = dπ(Z) = Ω⊥θ (Z), J ′Z(0) = Ωθ(Z). Let φt be the geodesic flow of
(M, g). Then

(1) φ∗tQ(Z,Z) = 1
2
d
dt (‖ JZ(t) ‖2)

(2) The Lie derivative of φ∗tQ(Z,Z) with respect to the geodesic flow at γθ(t) is

LXφ∗tQ(Z,Z) = −g(R(γ′θ(t), JZ(t))γ′θ(t), JZ(t))+ ‖ J ′Z(t) ‖2
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where R is the curvature tensor, ‖ v ‖ is the norm of the metric g, and derivatives
are taken with respect to the covariant derivative of g. In particular, if the sectional
curvatures of g are all negative, the Lie derivative of Q is positive.

Proof. The proof is almost tautological: by the definition of Q we have that

φ∗tQ(Z,Z) = g(JZ(t), J ′Z(t)) =
1

2

d

dt
(‖ JZ(t) ‖2)

which is item (1). Item (2) follows from item (1) taking derivatives with respect to the
covariant derivative of g and replacing the second derivative of JZ(t) by its expression
in the Jacobi equation. �

Lemma 2.3 extends the statement of Theorem 2.1 concerning surfaces of negative
curvature to compact Riemannian manifolds of negative curvature. The main result of
this subsection is the full generalization of Anosov geodesic flows in terms of the form
Q regardless of the sectional curvature signs of (M, g).

Theorem 2.4. Let (M, g) be a compact Riemannian manifold. Then the geodesic flow
is Anosov if and only if there exists T0 > 0 and a Lagrangian, invariant subbundle Eu,
where Euθ ⊂ Nθ for each θ ∈ T1M , such that

(1) The quadratic form Q̄(Z,Z) =
∫ T0

0
(
∫ t
0
φ∗sQ(Z,Z)ds)dt is positive for every Z ∈

Euθ and every θ ∈ T1M .
(2) The Lie derivative of the restriction of Q̄ to Euθ with respect to the geodesic flow

is positive for every θ ∈ T1M .

Theorem 2.4 can be regarded as a (natural) version of Theorem 1.6 for geodesic flows,
we think that symplectic diffeomorphisms and Hamiltonian flows should admit versions
with analogous assumptions. Notice that the quadratic form Q̄ has the same formula
of the well known index form used in Morse theory to study minimizing properties of
geodesics. While in Morse theory the index form is evaluated in Jacobi fields vanishing
in at least two points, the form Q̄ is relevant in Lyapunov form theory when evaluated
at unstable Jacobi fields, which never vanish. The Anosov property implies that the
manifold has no conjugate points. So these Jacobi fields generate the subbundle Euθ ,
which is nothing but the unstable Green subspace (see Lemma 2.8 below). We start

with some elementary calculations. Let Qt(Z,Z) =
∫ t
0
φ∗sQ(Z,Z)ds.

Lemma 2.5. We have the following identity:

Qt(Z,Z) =
1

2
(‖ JZ(t) ‖2 − ‖ JZ(0) ‖2).

Proof. Just apply Lemma 2.3 item (1) to the definition of Qt. �

Definition 2.6. Let (M, g) be a complete Riemannian manifold. A geodesic γ is said to
have no conjugate points if every Jacobi field of γ which vanishes at two different points
must vanish everywhere. The manifold (M, g) has no conjugate points if no geodesic
has conjugate points.

The manifold (M, g) has no conjugate points if and only if the exponential map is non-
singular at every point. The following characterization of geodesics without conjugate
points due to Green [50] will be useful in the section.

Proposition 2.7. Let (M, g) be a compact Riemannian manifold whose sectional cur-
vatures are bounded below by a constant −K0, where K0 > 0. Then, a geodesic γ(t) has
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no conjugate points if and only if there exists a solution of the matrix Riccati equation
U(t) defined along γ for every t ∈ R. Moreover, any solution U(t) of the Riccati equation
defined for every t ∈ R satisfies

‖ U(t) ‖≤
√
K0

for every t ∈ R. Here, ‖ U ‖ is the usual norm of symmetric matrices.

We continue with some results concerning the so-called Green bundles. We gather in
the following statement some results proved by Green [50] and Eberlein [41].

Lemma 2.8. Let (M, g) be a compact manifold without conjugate points whose sectional
curvatures are bounded below by a constant −K0, where K0 > 0. Then for every geodesic
γθ we have:

(1) For every w ∈ Tγθ(0)M that is in the plane γ′θ(0)⊥ of vectors perpendicular to
γ′θ(0), the limit

lim
T→+∞

JT (t)(w) = Jsw(t)

exists for every t ∈ R, and it is a perpendicular Jacobi field with Jsw(0) = V . The
collection of asymptotic Jacobi fields obtained in this way generates an invariant
Lagrangian subspace Esθ ⊂ Nθ given by

Esθ = {(Jsw(0), Jsw
′(0)), w ∈ γ′θ(0)⊥}.

(2) Analogously, the limit limT→−∞ JT (t)(w) = Juw(t) exists, and it is a perpen-
dicular Jacobi field with Juw(0) = V . The collection of asymptotic Jacobi fields
obtained in this way generate an invariant Lagrangian subspace Euθ ⊂ Nθ given
by

Euθ = {(Juw(0), Juw
′(0)), w ∈ γ′θ(0)⊥}.

(3) The Jacobi fields Jsw(t), Juw(t) never vanish if w 6= 0, and we have

‖ Jsw′(t) ‖≤
√
K0 ‖ Jsw(t) ‖

‖ Juw′(t) ‖≤
√
K0 ‖ Juw(t) ‖

for every t ∈ R.
(4) If a perpendicular Jacobi field J(t) defined in the geodesic γθ satisfies

‖ J(t) ‖≤ C
for every t ≥ 0, then (J(0), J ′(0)) ∈ Esθ . Analogously, if

‖ J(t) ‖≤ C
for every t ≤ 0, then (J(0), J ′(0)) ∈ Euθ

The Jacobi fields Jsw are called stable Jacobi fields, and the subspace Esθ is called the
stable Green subspace. The Jacobi fields Juw are called unstable Jacobi fields and
Euθ is called the unstable Green subspace. Item (3) is a straightforward application
of Proposition 2.7. Applying Rauch comparison theorem it is easy to check that in the
case of negative curvature there exists a > 0 such that the norms of such Jacobi fields
satisfy

‖ Jsw(t) ‖=‖ w ‖ e−at,
‖ Juw(t) ‖=‖ w ‖ eat,

for every t ∈ R. In the case of Anosov geodesic flows we have,



34 RAFAEL O. RUGGIERO

Theorem 2.9. (Klingenberg [63]) Let (M, g) be a compact Riemannian manifold whose
geodesic flow is Anosov. Then (M, g) has no conjugate points.

Klingenberg’s Theorem was improved by the following beautiful result due to R. Mañé
[85].

Theorem 2.10. Let (M, g) be a compact Riemannian manifold such that the geodesic
flow preserves a continuous subbundle E : T1M −→ TT1M where each subspace E(θ) is
a Lagrangian subspace of Nθ with respect to the symplectic form dα. Then (M, g) has
no conjugate points.

Combining Klingenberg’s theorem with Lemma 2.8 and the divergence of Jacobi fields
which vanish at one point (Green [49]) we get

Proposition 2.11. Let (M, g) be a compact Riemannian manifold whose geodesic flow
is Anosov. Then Esθ is the dynamical stable subspace of the dynamics, and Euθ is the
dynamical unstable subspace of the dynamics. So

(1) TθT1M = Esθ ⊕ Euθ ⊕X(θ) for every θ ∈ T1M .
(2) There exist C > 0, 0 < a such that

‖ Dθφt(Z) ‖S≤ Ce−at ‖ Z ‖S
for every t > 0, Z ∈ Esθ , and

‖ Dθφt(Z) ‖S≤ Ceat ‖ Z ‖S
for every t < 0, Z ∈ Euθ , where ‖ Z ‖S is the Sasaki norm.

Now, we are ready to show Theorem 2.4.

Proposition 2.12. Let (M, g) be a compact Riemannian manifold. If the geodesic flow
is Anosov then there exists T0 > 0 such that for each θ ∈ T1M we have,

(1) The manifold has no conjugate points and the quadratic form Q̄(Z,Z) =
∫ T0

0
(
∫ t
0
φ∗sQ(Z,Z)ds)dt

is positive for every Z ∈ Euθ and every θ ∈ T1M , where Euθ is the unstable Green
subspace.

(2) The Lie derivative of the restriction of Q̄ to Euθ with respect to the geodesic flow
is positive for every θ ∈ T1M .

Proof. This statement is the easy part of Theorem 2.4. Let us denote by ‖ Y ‖S the
Sasaki norm and let ‖ J ‖ be the g-norm. By Proposition 2.11 and Lemma 2.8, we have
that for every Z ∈ Euθ ,

1

C
ebt ‖ Z ‖S ≤ ‖ Dθφt(Z) ‖S

= (‖ JZ(t) ‖2 + ‖ J ′Z(t) ‖2)
1
2

≤
√

1 +K2
1 ‖ JZ(t) ‖ .

Applying again Lemma 2.8 we get,

1

C
ebt ‖ JZ(0) ‖≤

√
1 +K2

0 ‖ JZ(t) ‖ .

So the norm of unstable Jacobi fields growths exponentially with time. Since by Lemma
2.5 we have

Qt(Z,Z) =
1

2
(‖ JZ(t) ‖2 − ‖ JZ(0) ‖2),
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clearly there exists T0 > 0 such that for every t > T0 the above both quadratic form is
positive and growths exponentially fast with t for every Z ∈ Euθ , θ ∈ T1M . Since

LXQ̄(Z,Z) =

∫ T

0

φ∗tQ(Z,Z)dt = QT (Z,Z)

we immediately conclude that the Lie derivative of Q̄ restricted to Euθ is positive if
T > T00 and every θ ∈ T1M . �

Now, let us show the converse of Proposition 2.12. The next result due to Eberlein
[41] will plays an important role in the proof.

Theorem 2.13. Let (M, g) be a compact Riemannian manifold without conjugate points.
The following statements are equivalent:

(1) The geodesic flow is Anosov.
(2) There is no nontrivial perpendicular Jacobi field J(t) such that ‖ J(t) ‖≤ C for

every t ∈ R.
(3) Green subspaces are linearly independent.

Proposition 2.14. Let (M, g) be a compact Riemannian manifold. Suppose that for
every θ ∈ T1M there exist an invariant, Lagrangian subspace Eθ ⊂ Nθ, T > 0 such

that the Lie derivative of the restriction of Q̄(Z,Z) =
∫ T
0

(
∫ t
0
φ∗sQ(Z,Z)ds)dt to Eθ with

respect to the geodesic flow is positive for every θ ∈ T1M . Then,

(1) The manifold has no conjugate points.

(2) There exists T̄ > 0 such that quadratic form QT (Z,Z) =
∫ T
0

(φ∗sQ(Z,Z)ds is

positive for every T > T̄ , Z ∈ Eθ and θ ∈ T1M .
(3) The subbundle of subspaces Eθ is continuous.
(4) Eθ = Euθ for every θ ∈ T1M .
(5) The geodesic flow is Anosov.

Proof. Since the Lie derivative of Q̄ is

LXQ̄(Z,Z) =

∫ T

0

φ∗tQ(Z,Z)dt = QT (Z,Z) =
1

2
(‖ JZ(T ) ‖2 − ‖ JZ(0) ‖2),

by the assumption in the Proposition we have that there exists λ(Z, θ) > 1 such that

‖ JZ(T ) ‖> λ(Z, θ) ‖ JZ(0) ‖
for every Z ∈ Eθ. Notice that this implies that JZ(t) 6= 0 for every Z ∈ Eθ, Z 6= 0, and
t ∈ R. Since the subspace Eθ is Lagrangian the dimension of the subspace of the Jacobi
fields JZ , Z ∈ Eθ is n − 1. So a basis of these Jacobi fields provides a matrix solution
U(t) of the Riccati equation along γθ(t) that is defined for every t ∈ R. By Proposition
2.7 the geodesic γθ has no conjugate points, and since this happens for every θ ∈ T1M
we conclude that the manifold has no conjugate points. This shows item (1).

Let us consider the unit ball S(Eθ) of vectors in Eθ. The invariance of Eθ provides

‖ JZ(nT ) ‖> λ(θ)n,

‖ JZ(−nT ) ‖< λ(θ)−n,

for every Z ∈ S(Eθ), n ∈ N and θ ∈ T1M .

Claim: By compactness of (M, g), there exists C > 0 such that

(∗) ‖ JZ(−t) ‖≤ C,
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for every Z ∈ S(Eθ), t > 0 and every θ ∈ T1M .

Indeed, by the choice of Z we have that ‖ JZ(−nT ) ‖≤ 1 for every n > 0. So it is
enough to show that there exists C > 1 such that every non-vanishing Jacobi field JZ
with max{‖ JZ(0) ‖, ‖ JZ(T ) ‖} ≤ 1 satisfies ‖ JZ(t) ‖≤ C for every t ∈ [0, T ]. To see
this, observe first that applying Proposition 2.7 to the Riccati solutions associated to
the Jacobi fields JZ , Z ∈ Eθ, we get

‖ J ′Z(0) ‖, ‖ J ′Z(T ) ‖≤
√
K0

where K0 is the maximum absolute value of the sectional curvatures of (M, g). So given
L > 0, let F be the family of Jacobi fields of (M, g) such that ‖ J(0) ‖≤ 1, ‖ J ′(0) ‖≤ L.
This is a co-compact family of Jacobi fields and by Rauch’s comparison theorem, the
norms of Jacobi fields with the same initial conditions in a Riemannian manifold with
negative curvature −K0 bound from above the norms of the Jacobi fields in F . This
yields that for every J ∈ F we have

‖ J(t) ‖≤ (1 + L)eT
√
K0

for every t ∈ [0, T ], from which we easily conclude the Claim.

Claim: The subspaces Eθ depend continuously on θ ∈ T1M .

The symplectic structure of the geodesic flow plays a key role in the proof. Observe
that (∗) is a closed property in T1M , as well as the Lagrangian character of the subspaces
Eθ. So if we consider a sequence θn of points converging to some θ0, we can choose a
convergent sequence of subspaces Eθnk converging to some Lagrangian subspace E0 ⊂
Nθ0 where ‖ JZ(t) ‖≤ C for every t ≤ 0 and for every Z ∈ E0. If E0 is not equal to
Eθ0 , there exist two non-vanishing vectors Z0 ∈ E0, Z1 ∈ Eθ0 such that dα(Z0, Z1) 6= 0.
Simply because E0 is Lagrangian and hence it is a maximal isotropic subspace. On the
other hand, the form dα is invariant by the action of the flow, so we have

0 6= dα(Z0, Z1) = dα(Dφ−t(Z0), Dφ−t(Z1))

= g(JZ0(−t), J ′Z1
(−t))− g(J ′Z0

(−t), JZ1(−t))
for every t > 0. But this implies that the expression at the right tends to zero as
t→∞ since limt→−∞ ‖ JZ1

(t) ‖= 0 and therefore by Lemma 2.8 this yields limt→−∞ ‖
J ′Z1

(t) ‖= 0 as well. This contradiction implies that E0 coincides with Eθ0 , and clearly
implies the continuity of the subspaces Eθ and item (3).

By Lemma 2.8 we have that Z ∈ Euθ for every Z ∈ Eθ and every θ. Since Eθ and
Euθ are both Lagrangian, they must coincide thus showing item (4). Moreover, there
is no nontrivial Jacobi field J(t) such that ‖ J(t) ‖≤ C for every t ∈ R. Because by
Lemma 2.8 J(t) should be unstable whilst the above inequalities imply that its norm
is not bounded. So Theorem 2.13 implies that the geodesic flow of (M, g) is Anosov
showing item (5). Proposition 2.12 shows item (2). �

One interesting consequence of Theorem 2.4 combined with Lemma 2.3 is that the
geodesic flow is Anosov if and only if the index form in an interval [0, T ] restricted to
unstable Jacobi fields is positive.
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2.2. Lyapunov functions for nonpositive curvature. The second part of J. Lewow-
icz’s paper [69] contains an interesting construction of a Lyapunov function of two vari-
ables for compact surfaces with non-positive curvature such that int (K−1(0)) = ∅. This
Lyapunov function is obtained by a sort of integration process applied to the Lyapunov
quadratic form in the statement of Theorem 2.1. The construction is quite technical
and relies strongly in two dimensional arguments. With this tool in hand it is showed
that such geodesic flows are C1 topologically stable. Observe that the geodesic flow of
a compact nonpositively curved surface where int(K−1(0)) = ∅ is expansive.

The third part of [69] improves the Lyapunov function obtained in the second part
for a certain family of interesting surfaces of nonpositive curvature: those where the
curvature fails to be negative just along a simple closed geodesic and the way curvature
decays to zero in a neighborhood of this geodesic has a non-degenerate analytic behav-
ior. Namely, the second derivatives of the curvature with respect to Fermi coordinates
orthogonal to the geodesic do not vanish along the geodesic. The non-degeneracy of the
second jet of the curvature affects the second jet of the Lyapunov function obtained be-
fore, giving the function genericity enough to show topological stability of the geodesic
flow in the C4 topology.

In brief, the second and third parts of the paper [69] attempt to study topological
stability of expansive, non-Anosov geodesic flows in surfaces with nonpositive curvature
using Lyapunov functions of two variables. The construction of such a function showed
to be so technical and particular of nonpositive curvature, bi-dimensional geometry,
that a more topological approach seemed to be more promising than an analytical one.
At the time, J. Lewowicz was working simultaneously on a topological approach to
tackle stability problems of expansive, non-Anosov systems. This approach did not use
Lyapunov functions and proved to be far more efficient and enlightening in stability
theory of expansive systems, not only in surfaces but in higher dimensions. We shall
discuss this branch of J. Lewowicz work and its applications to geodesic flows in the
forthcoming sections.

3. Stability without Lyapunov functions: topological dynamics in low
dimension and beyond

The goal of the section is to present the main results of J. Lewowicz about the
topological dynamics of expansive homeomorphisms and its applications in the theory
of geodesic flows of compact manifolds without restrictions in the dimension. This part
of Lewowicz’s work differs fundamentally from his first studies of topological stability
because there is no use of Lyapunov forms and functions. The idea now is to get a
version of the stable manifold theorem for expansive systems, then try to show the
existence of a local product structure and from this a series of persistence properties
of orbits would follow just as in the case of hyperbolic dynamics (pseudo-orbit tracing
property, topological stability, persistence of some recurrent sets). The task does not
seem easy: expansive systems might not be hyperbolic so the differential of an expansive
diffeomorphism does not give any hint about the behavior of the dynamics, like in the
smooth stable manifold theorem of hyperbolic dynamics and the tools involved in its
proof (the well known lambda lemma for instance). A similar program to study stability
of expansive systems was suggested by Bowen and Walters in the 1970’s [20], [129], who
made indeed some preliminary steps.
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3.1. Expansive homeomorphisms and hyperbolic topological dynamics. Let
us start with a result proved by J. Lewowicz: Expansive homeomorphisms of surfaces,
Bol. Soc. Bras. Math. 1989, [71]. Obtained independently by Hiraide: Expansive
homeomorphisms of compact surfaces are pseudo-Anosov, Osaka Math. Journal. 1990,
it is in my opinion, the most important work of J. Lewowicz.

Theorem 3.1. Expansive homeomorphisms of compact surfaces have local invariant sets
with ”product structure” in all but a finite number of periodic orbits, and are conjugate
to pseudo-Anosov maps. In particular, there are no expansive homeomorphisms in the
two sphere.

Local invariant sets are connected arcs which provide two invariant families of curves
of the dynamics. In one of them the dynamics approaches orbits with time, this would
be a counterpart of the stable foliation of hyperbolic dynamics. In the other family
the dynamics expands orbits with time, a counterpart of the unstable foliation. Of
course, nothing about smoothness of these curves can be deduced from the expansiveness
assumption. The local product structure refers to the following fact: in a neighborhood
of every point but a finite number of periodic orbits, each stable set meets an unstable
set at just one point. In the set of ”exceptional” periodic orbits stable and unstable
sets are ramified, like prone singularities of pseudo-Anosov maps. In the survey by R.
Potrie [101], there is a very nice, complete and geometric exposition of the proof of
Theorem 3.1, together with many references of subsequent applications of these ideas
for homeomorphisms in two and three dimensional manifolds. Let us discuss some
applications of Theorem 3.1 in the theory of geodesic and Hamiltonian flows.

3.2. Persistently expansive geodesic flows.

Definition 3.2. Given a C∞ manifold N and a family of C∞ flows F defined in N , we
say that a expansive flow ψt : N −→ N is Ck persistently expansive in F if there exists
a Ck neighborhood W of ψt in F such that every flow in W is expansive.

Persistence of topological properties of orbits of systems was one of the main objects
of study in the 1970’s and 1908’s in the context of the structural stability theory of
Axiom A systems. Here we shall focus on the persistence of expansiveness, later on
we shall comment about other types of persistent properties. The main result of the
subsection is the following:

Theorem 3.3. : (R. Ruggiero) Let (M, g) be a compact Riemannian manifold. If the
geodesic flow is C1 persistently expansive in the family of C∞ Hamiltonian flows then
the closure Ω of the set of periodic orbits is a hyperbolic set. If M is a surface, the
geodesic flow is Anosov.

This result is published [108] in a paper entitled: Persistently expansive geodesic
flows, Comm. Math. Physics, 1991. The problem was motivated by a result due to
Mañé [81] where it is shown that persistently expansive diffeomorphisms are quasi-
Anosov: the orbit of every nontrivial vector by the action of the differential of the
diffeomorphism is not bounded. The work of Eberlein [41] in 1973 showed that the
geodesic flow of a compact manifold without conjugate points is Anosov if and only if
it is quasi-Anosov. So if we knew that persistently expansive geodesic flows have no
conjugate points we could combine this property with a generalization of Mañé’s result
to flows and deduce that such flows are Anosov. This line of reasoning leads to the
following interesting question: Do expansive geodesic flows have no conjugate points?
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This problem was solved by M. Paternain [97] in 1994 for surfaces, and remains open in
higher dimensions. We shall come back to the subject in the next section.

We shall give a sketch of proof of Theorem 3.3 to show where J. Lewowicz work about
expansive homeomorphisms of surfaces plays a crucial role. The proof has several steps.

Proposition 3.4. The C1 persistent expansiveness in the family of geodesic flows im-
plies that periodic orbits are C1 persistently hyperbolic.

Proof. The proof is by contradiction: if there is a nearby geodesic flow φ̄t with a non-
hyperbolic periodic orbit O then there exists eigenvalues of the Poincaré map of O
with modulus one. Then, by a theorem due to Klingenberg and Takens [65], we can

perturb the flow in the family of geodesic flows to get another Hamiltonian flow φ̂t with
a periodic Ô orbit having complex, generic eigenvalues with modulus one. Here generic
refers to the set of generic properties of symplectic maps, which imply the assumptions
on the Poincaré map of the orbit required by the Birkhoff-Lewis fixed point Theorem
[63]. This theorem implies the existence of infinitely many periodic orbits in a tubular

neighborhood of Ô, contradicting the expansiveness of φ̂t. A similar argument was
used by Newhouse [93] to show that structurally stable symplectic diffeomorphisms are
Anosov. �

We would like to point out that the genericity result by Klingenberg and Takens [65]
has a recent, much simpler proof using ideas of control theory by L. Rifford and the
author [105]. Actually, what is proved in [105] is that generic properties of symplectic
maps are Mañé generic for Poincaré maps of closed orbits of Hamiltonians. A property
P of the Hamiltonian flow of H : T ∗M −→ R is called Mañé Ck-generic if there exists
a Ck-generic family of functions U : M −→ R such that the Hamiltonian flow of the
Hamiltonians HU (p, q) = H(p, q)+U(p) have the property P . If the Hamiltonian is given
by a Riemannian metric g as in our case, Mañé’s genericity is equivalent to genericity
in the conformal class of g by the Maupertuis’ principle [5]. So Proposition 3.4 admits
the following improvement:

Proposition 3.5. The C1 persistent expansiveness of the geodesic flow of (M, g) in the
family of geodesic flows of metrics in the conformal class of (M, g) implies that periodic
orbits are C1 persistently hyperbolic.

The following step is a version for Hamiltonian flows of a well known result due to R.
Mañé [83]. Let P1(M) be the collection of Hamiltonian flows in M all of whose periodic
orbits are hyperbolic endowed with the C1 topology.

Lemma 3.6. If φt is in the interior of P1(M) then there exists a continuous, La-
grangian, invariant dominated splitting in the closure of the periodic orbits Ω. Namely,
there exist C > 0, T > 0, λ ∈ (0, 1), invariant, Lagrangian subspaces Eθ, Uθ for every
θ ∈ Ω, such that Eθ ⊕ Uθ ⊕X(θ) = TθT1M , and

‖ DθφnT |Eθ‖‖ DφnT (θ)φ−nT |Uθ‖≤ Cλn.
Let us remark that Lemma 3.6 has been proved by Contreras-Paternain [33] for sur-

faces and by Contreras [30] replacing P1(M) by the set of geodesic flows of Riemannian
metrics whose periodic orbits are all hyperbolic. In a work in progress with L. Rifford,
we show Lemma 3.6 replacing P1(M) by the set of geodesic flows of Riemannian metrics
which are conformal to (M, g) whose periodic orbits are hyperbolic.
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A hyperbolic invariant set for a nonsingular flow of a compact manifold has a domi-
nated splitting: the stable and unstable subspaces play the role of Eθ and Uθ. The point
is that this assertion has a converse in symplectic dynamics according to [108] Theorem
2.1:

Theorem 3.7. Let (M, g) be a compact Riemannian manifold. A Lagrangian, invariant,
dominated splitting defined in a compact invariant set is hyperbolic.

The third step of the proof of Theorem 3.3 is where J. Lewowicz’s work about ex-
pansive dynamics comes into play. Indeed, if dim (M) = 2, dim (T1M) = 3, and the
product structure of an expansive homeomorphism extends to expansive flows without
singularities. This fact has been used also by M. Paternain in his PhD thesis at IMPA,
[97] 1990, and by Inaba-Matsumoto, in a paper published in the Japan J. Math. 1990
[57]. Moreover, the exceptional set of the flow where the local product structure might
not exist is empty under our assumptions, since every orbit in this set is periodic and
we know that periodic orbits are hyperbolic. So the stable manifold theorem holds for
every periodic orbit. Thus, persistently expansive geodesic flows in compact surfaces
have local product structure everywhere and by Poincaré ’s recurrence lemma we get
the density of periodic orbits. Therefore, the hyperbolic set Ω is the whole T1M and
this proves Theorem 3.3.

Some final remarks. Theorem 3.3 actually holds for C1-persistently expansive ge-
odesic flows in the family of Riemannian geodesic flows, and it might be improved by
assuming C1 persistent expansiveness in the set of conformal perturbations of the metric
(or equivalently, Mañé’s perturbations).

4. Does expansiveness imply no conjugate points?

In this section we present a survey of results about the relationship between expansiv-
ity and absence of conjugate points. The starting point of our discussion is Klingenberg’s
Theorem 2.9 which states that Anosov geodesic flows have no conjugate points, estab-
lishing a link between expansive dynamics and the absence of conjugate points. Mañé’s
Theorem 2.10 implies Klingenberg’s result since the stable and unstable subspaces of an
Anosov geodesic flow form continuous, Lagrangian invariant bundles.

Of course, the existence of an invariant Lagrangian splitting does not imply expan-
siveness of the geodesic flow, as in the Anosov case. Nevertheless, Mañé’s new, simpler
approach to the proof of Klingenberg’s Theorem combined with Lewowicz’s work about
expansive dynamics led to the first result linking expansiveness and conjugate points in
the context of topological dynamics. The result was proved by M. Paternain, in Ergodic
Theory and Dyn. sys. (1994), in a paper entitled ”Expansive geodesic flows on surfaces”
[97].

Theorem 4.1. If the geodesic flow of a compact Riemannian surface is expansive then
the surface has no conjugate points. In particular, there are no expansive geodesic flows
in the two sphere.

The proof starts with the three-dimensional extension of Lewowicz results about
local product structure for expansive homeomorphisms. Geodesic flows of surfaces act
without singularities on the unit tangent bundle that is three dimensional, local stable
and unstable sets exist for every point in T1M and there is a local product structure
everywhere but at a finite number of periodic orbits. The notion of index introduced by
M. Paternain in [97] which mimics the Maslov index, allows to show that the exceptional
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set is empty and that the index of every orbit is zero. This finally implies, as in Maslov
index theory, that geodesics have no conjugate points.

There is a Hamiltonian version of the theorem by G. Paternain and M. Paternain
published at Comptes Rendu de l’ Academie de Sciences, Paris (1993) [96], always for
surfaces. The n-dimensional version of Theorem 4.1 is still an open problem. Neverthe-
less, there are some partial positive results that will be presented next.

4.1. Expansive geodesic flows in manifolds without conjugate points. Based on
the previous results linking expansiveness and absence of conjugate points, we focused on
the study of geodesic flows of compact manifolds without conjugate points. The following
results by the author, published in Ergodic Theory and Dynamical systems, 1996-1997,
[111], [113], show that Lewowicz’s theory for low dimensional expansive systems extends
to geodesic flows in n-dimensional manifolds without conjugate points.

Theorem 4.2. Let (M, g) be a compact Riemannian manifold without conjugate points.
If the geodesic flow is expansive. Then,

(1) The flow has a local product structure, the pseudo-orbit tracing property, it is
topologically stable, transitive and periodic orbits are dense and unique in each
nontrivial homotopy class.

(2) There exists a C0 neighborhood of the flow in the family of geodesic flows such
that any expansive geodesic flow in the neighborhood with the same expansivity
constant has no conjugate points.

(3) If the geodesic flow of (M, g) is C1-persistently expansive in the family of geodesic
flows then it is Anosov.

Item (1) shows that the topological dynamics of expansive geodesic flows in the
absence of conjugate points is just like hyperbolic topological dynamics.

Item (2) can be viewed as a partial answer to the problem of absence of conjugate
points in the presence of expansiveness. The idea of the proof is not difficult: expansive
flows of metrics (M, g), (M,h) which are sufficiently close to each other with the same
expansiveness constant are conjugate. So if (M, g) has no conjugate points item one
implies that closed orbits are dense. By Cartan’s Theorem [28], in each homotopy class
there is one closed orbit minimizing the h-length of closed curves in the class. Now,
expansiveness allows to show that a periodic minimizer γ of (M,h) in its homotopy class

must be a globally minimizing geodesic. Namely, each lift γ̃ of the geodesic in (M̃, h̃)
has the property that the distance dh̃(γ̃(t), γ̃(s)) is the h-length of γ̃(s, t) for every s ≤ t.
In particular, the set of periodic minimizers of the length has no conjugate points. Since
the flows of (M, g) and (M,h) are conjugate and periodic g-geodesics in each homotopy
class are unique, the same happens with periodic h-geodesics. Therefore, h-geodesics
without conjugate points are dense in the unit tangent bundle, and since geodesics
without conjugate points form a closed set, there are no geodesics with conjugate points
in (M,h).

Item (2) implies as well that expansive geodesic flows in the boundary of geodesic
flows without conjugate points must be accumulated by non-expansive geodesic flows.
So such flows are not only boundary flows in the family of flows without conjugate points
but they are also boundary flows for the family of expansive flows.

The proof of item (3) combines item (1) and the results in the previous section.
Indeed, by Theorem 3.3, the closure of periodic orbits of a C1-persistently expansive
geodesic flow is a hyperbolic set. By item (1), the absence of conjugate points implies
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the density of periodic orbits. So the whole unit tangent bundle is the closure of the
periodic orbits and hence the flow is Anosov.

Theorem 4.2 gives a quite complete description of the topological dynamics of expan-
sive geodesic flows. The ergodic theory of expansive geodesic flows is more complicated
and less developed than topological dynamics theory. The most famous problem related
with this field is the ergodicity of rank one geodesic flows in manifolds with nonpositive
curvature, whose answer is not known even in surfaces. Expansiveness proved to be a
rich source of links between dynamics and global geometry in the theory of manifolds
without conjugate points. Theorem 4.2 is just one example, in the forthcoming sections
we shall show many others.

5. Expansive geodesic flows and Gromov Hyperbolic geometry

Expansive dynamics of geodesic flows without conjugate points has a strong impact
in the global geometry of the universal covering and in particular, in the algebraic
structure of the fundamental group. We shall give the highlights of a theory developed
by the author in many papers from 1994 to 2004 involving expansive and topologically
stable dynamics. We start in this section with the link between expansivity and Gromov
hyperbolic spaces. We say that a complete metric space (X, d) is geodesic if for every
pair of points p, q ∈ X there exists a continuous curve γ : [0, a] −→ X such that γ(0) = p,
γ(a) = q, and γ is an isometry of the interval [0, a] endowed with the Euclidean length.

Definition 5.1. Given a complete geodesic space (X, d), a geodesic triangle ∇ with
vertices x0, x1, x2, is the union of three geodesics I0, I1, I2 such that:

(1) The endpoints of I0 are x0 and x1,
(2) The endpoints of I1 are x1 and x2,
(3) The endpoints of I2 are x2 and x0.

Definition 5.2. Let (X, d) be a complete, geodesic metric space. (X, d) is a Gromov
hyperbolic space if there exists δ > 0 such that every geodesic triangle ∇ with sides
I0, I1, I2 satisfies the following property: the distance from any p ∈ Ij to Ik ∪ Is, where
j 6= k, j 6= s, k 6= s is bounded above by δ (the indices are taken mod. 3).

A geodesic triangle with the property given in Definition 5.2 is called δ-thin. Geodesic
triangles in manifolds of negative curvature bounded above by a negative constant are δ-
thin for some δ depending on the curvature bound. A tree is a Gromov hyperbolic space
where triangles are 0-thin. Gromov hyperbolicity captures hyperbolic geometry in the
large. The famous work of Gromov [51] in the 1980’s started a fruitful field of research
involving global analysis and geometry, group representations, combinatorics, graph
theory, ergodic theory, complexity of algorithms and many other research areas. The
rich structure of Gromov hyperbolic spaces is comparable with the structure of manifolds
of negative curvature. Expansive dynamics is also related to Gromov hyperbolicity:

Theorem 5.3. The fundamental group of a compact Riemannian manifold without
conjugate points and expansive geodesic flow is Gromov hyperbolic.

The above result was proved by the author and published in the Bulletin of the
Brazilian Math. Soc. (1994) [110]. It shows that expansiveness not only provides for
the geodesic flow all the features of the topological dynamics of Anosov flows, but also
provides coarse hyperbolic geometry for the universal covering and the fundamental
group. For instance, we have that the volume of balls increases exponentially with the



EXPANSIVE GEODESIC FLOWS, A SURVEY 43

radius, the topological entropy of the flow is positive (already observed by M. Paternain
in the case of compact surfaces in [97]), the universal covering has a compactification
with a cone topology analogous to negative curvature manifolds, this compactification is
homeomorphic to a n-ball if the manifold has dimension n, the action of the fundamental
group extends to the boundary of this compactification (that is homeomorphic to a
(n − 1)-sphere), and many deep results of the theory of Kleinian and Fuchsian groups
extend to the boundary action. A good survey of results of the theory of Gromov
hyperbolic groups is [14]. In 3-dimensional manifolds, we get a topological classification
of manifolds admitting expansive geodesic flows [120].

Theorem 5.4. Let (M, g) be a compact 3-manifold admitting a Riemannian metric
without conjugate points and expansive geodesic flow. Then (M, g) admits a hyperbolic
geometric structure.

The idea of the proof is based in the solution of the Poincaré conjecture by Perel-
mann [98]. Indeed, a compact Riemannian 3-manifold without conjugate points is a
”prime” manifold (see the book of Hempel [52]). The word ”prime” refers to certain
decomposition of 3-manifolds in ”minimal” pieces in a very precise sense. Milnor [91]
shows that every smooth compact manifold can be decomposed ”uniquely” in a con-
nected sum of manifolds with the simplest possible topology. A manifold is called prime
if each piece of a connected sum decomposition of the manifold is either diffeomorphic
to the manifold itself or to a 3-sphere. The Poincaré conjecture according to the work of
W. Thurston [127] is equivalent to the geometrization conjecture for prime manifolds: a
prime manifold can be cut along tori such that each piece admits a geometric structure
modeled in one of the eight geometries R3, S3, S2 × R, H3, H2 × R, the Heisenberg
group, the so-called Solv-group, and SL(2,R). To admit a geometric structure means
to have a Riemannian covering that is an homogeneous, simply connected space. Since
the universal covering of manifolds without conjugate points are diffeomorphic to Rn,
the manifold is prime. Moreover, Theorem 5.3 implies that there are no incompressible
tori in the manifold. So the geometrization ”conjecture” can be applied to the manifold,
leaving us with R3, H3, H2 × R, the Heisenberg group, the Solv-group, and SL(2,R).
But the only one of them that is Gromov hyperbolic is H3. Since Gromov hyperbolicity
does not depend on the Riemannian metric for compact manifolds, we get that the only
possibility of geometric structure for our manifold is the hyperbolic 3-space.

A final remark of dynamical interest. The argument in E. Ghys work [47] to show that
Anosov geodesic flows of compact surfaces are conjugated (not parameter preserving)
to geodesic flows in constant negative curvature extends to expansive geodesic flows in
compact manifolds without conjugate points which admit constant negative curvature
structures. So Theorem 5.4 implies that expansive geodesic flows in compact 3-manifolds
without conjugate points are conjugate to geodesic flows of constant negative curvature.

6. Surfaces with non-positive curvature and finite area ideal triangles

We come back to J. Lewowicz’s paper [69] and Theorem 2.1. In item (3) of this theo-
rem a family of nonpositive curvature surfaces is given with some properties prescribing
the decay to zero of the absolute value of the curvature in a tubular neighborhood of a
closed geodesic. This article is the first one to consider such surfaces, whose geodesic
flows proved to enjoy very interesting properties revealed by many authors [34], [112],
[46], [76]. The geodesic flows of these surfaces where about the first non-Anosov, er-
godic examples of geodesic flows of rank one manifolds. The purpose of this section is
to discuss some more subtle results in the literature.



44 RAFAEL O. RUGGIERO

6.1. Prescribed decay of negative curvature and ”fake” Anosov flows. Let us
start with a result inspired by the work of J. Barges and E. Ghys [23] published in 1988:
if ideal geodesic triangles in the universal covering of a compact surface of negative
curvature have constant area, the curvature is constant as well.

Theorem 6.1. There exist expansive, non-Anosov, C2 geodesic flows in compact sur-
faces with non-positive curvature with the following property: there exists a constant
C > 0 such that every geodesic ideal triangle in the universal covering has area bounded
above by C. The curvature of such surfaces is negative but along a simple closed geodesic
γ where | K(x) |≈ d(x, γ)α, for some α ∈ (1, 2).

The above theorem was proved by G. Contreras and the author and published in
1997 [34]. It says that if we replace the constant area assumption on ideal geodesic
triangles proposed by Barges-Ghys by bounded area the geodesic flow might no longer
be Anosov. And the examples are very close to the ones considered by J. Lewowicz in
[69], the difference being the decay to zero of the absolute value of the curvature: it is
of the type d(x, γ)α where α is not integer as in item (3) of Theorem 2.1. We might
have expected that the bounded area condition for ideal triangles would be sufficient
to characterize Anosov flows, Theorem 6.1 gave us a surprising negative result in this
sense. However, the following result due to the author and published in 1997 [112] gives
a complete answer to the problem in the family of non-positive curvature surfaces.

Theorem 6.2. If the geodesic flow of a compact surface (M, g) is C3 (namely, (M, g)
is a C4 Riemannian manifold) and every geodesic ideal triangle has finite area (in the
above sense) then the geodesic flow is Anosov.

So the natural guess of the characterization of Anosov flows by the existence of
a uniform bound for the area of ideal triangles holds if the flow is smooth enough.
Moreover, in [34] it is proved that if the decay to zero of the absolute value of the
curvature in the surfaces considered in Theorem 6.1 is of the order of | K(x) |≈ d(x, γ)α

where α ≥ 2 then the flow is of class C3. Thus, the ideal triangles in the universal
covering of the surfaces considered by Lewowicz in [69] do not have a uniform upper
bound for the area.

6.2. Hölder continuity of invariant foliations of expansive, non-Anosov geo-
desic flows. The surfaces considered by Lewowicz and described in Theorem 2.1 item
(3) provide examples of non-Anosov geodesic flows with invariant foliations (namely, cen-
ter stable and center unstable foliations) which are transversal everywhere in T1M but
along a vanishing curvature closed orbit. Tangencies of invariant foliations of partially
hyperbolic systems pose serious technical problems in ergodic theory, the complexity
of Pesin’s theory [99] shows how difficult is to deal with smooth ergodic theory in the
presence of zero Lyapunov exponents which appear naturally when such tangencies oc-
cur. The center stable foliation is obtained by saturation of the stable horocycle flow.
The center unstable foliation is obtained by saturation of the unstable horocycle flow.
However, the following result proved by Gerber and Nitica published in 1999 [46] shows
that the regularity of invariant foliations of our expansive, non-Anosov surfaces is not
that bad:

Theorem 6.3. Let (M, g) be a C2 compact surface with non-positive curvature such
that the curvature is negative but along a closed geodesic γ where the decay to zero of
its absolute value is of the order of | K(x) |≈ d(x, γ)α where α > 1. Then there exists
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β ∈ (0, 1) such that the invariant foliations of the geodesic flow are β-Hölder continuous
at the points of γ.

The above result tells us that the regularity of invariant foliations of the geodesic flows
of the considered surfaces may not be as good as Anosov regularity for geodesic flows
of surfaces, that is C1 by the work of Hopf [54], but is as good as Anosov regularity
for higher dimensional manifolds according to the work of Anosov [4]. The Hölder
regularity of the invariant foliations combined with the well known Hopf’s argument to
show the ergodicity of Anosov geodesic flows in compact surfaces, yield the ergodicity
of the geodesic flow for the surfaces described in Theorem 6.3 (with a little help of
Pesin’s theory). In the forthcoming subsection we shall comment about other surprising
resemblances of these expansive, non-Anosov geodesic flows with true Anosov flows.

6.3. More about surfaces with ”fake” Anosov flows: subactions and large
deviations. The subject now is ergodic theory for expansive, non-hyperbolic geodesic
flows from a variational viewpoint. The variational study of the entropy of invariant
measures goes back to the late 1960’s and the 1970’s, when the works of Bowen, Ruelle
and Sinai started the application of the nowadays called Ruelle-Perron-Frobenius oper-
ator in the context of the thermodinamic formalism to find invariant measures which
maximize the metric entropy [20]. This beautiful theory led naturally to the problem of
finding invariant probabilities which maximize the action of Hölder continuous observ-
ables. Given a metric space (X, d), a Hölder continuous observable with exponent α > 0
is a continuous function f : X −→ R such that d(f(x), f(y)) ≤ d(x, y)α. In smooth
hyperbolic dynamics, the logarithm of the Jacobian of the differential restricted to the
unstable bundle is the observable most commonly considered. In expansive dynamics,
the above function is not Hölder continuous in general, it is typically quite singular
due to the presence of zero Lyapunov exponents. However, the study of other types of
observables has many applications in physics [100], [78], [79], [80], [19] and [32]. Based
on the work of A. Lopes and P. Thieullien [79] for Anosov flows, A. Lopes, V. Rosas
Meneses and the author get the following result for our expansive, non-Anosov geodesic
flows that is published in Discrete and Continuous Dynamical systems (2004) [76]):

Theorem 6.4. Let (M, g) be a compact, C3 surface with non-positive curvature such
that the area of ideal triangles is finite. Then the Livsic’s Theorem holds in its classical
(continuous, Hölder) version and there exist continuous subaction functions associated
to Hölder continuous observables.

Livsic’s Theorem is one of the most classical cohomological features of measure pre-
serving Anosov dynamics. Briefly speaking, the theorem asserts that a continuous func-
tion that is cohomologous to zero along periodic orbits of a measure preserving Anosov
flow (or diffeomorphism) acting on a compact manifold is cohomologous to zero in the
whole manifold. The theorem has many interesting applications in spectral theory and
rigidity (see for instance [66], [38]), [61], [100]).

A subaction function F is defined as a solution of an inequality involving the same
terms occurring in a cohomology equation: given a smooth flow ψt : N −→ N and
a Hölder continuous function f : N −→ R, a continuous function F : N −→ R is a
subaction function associated to f if

F (ψt(p)) ≥ F (p) +

∫ t

0

(f(ψs(p))−m(f))ds,
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where m(f) is the supremum over all ψt-invariant probability measures of the action∫
fdµ.
Subaction functions ”localize” the support of invariant measures which maximize the

action of f in the set of invariant probabilities: the set of zeroes contains the support of
the measure.

This observation has a strong flavor of Aubry-Mather theory, as observed in many
papers in the literature (see for instance [100], [78], [79], [19] and [32]). Subaction
functions are in many respects counterparts of the so-called subsolutions of the Hamilton-
Jacobi equation of Tonelli Lagrangians. Both functions attain equality in an invariant
set that contains the support of an invariant measure that is critical, in the case of the
subsolutions of the Hamilton-Jacobi equation we are talking about Mather measures.
Subsolutions attain minimum values at the so-called Aubry set, which might contain
strictly the Mather set. The set of vanishing points of a subaction can be compared
with the Aubry set, and the support of a maximizing measure to the Mather set. It
was conjectured by Mañé [86] that generically in the set of perturbations of Tonelli
Lagrangians by potentials the Aubry set coincides with the Mather set. This conjecture
has recent, positive partial answers [89], [15] which encourage to consider the same
problem in the context of subactions (see [32] for a partial answer for shifts).

So the variational theory of measures from the Bowen-Ruelle point of view has many
interesting links with Aubry-Mather theory, they might be considered dual of each
other in many senses. Another remarkable link between both theories arises in the
context of stochastic differential equations. N. Anantharamam in [2] proved that the
family of stationary probabilities of twisted Brownian motions associated to the twisted
Hamiltonians

Hλ(p, v) =
1

2
gp(v, v)− λωp(v)

where ω is a closed one form, converges as λ goes to ∞ to the projected Mather mea-
sure with cohomology class coinciding with the class of ω, provided that this measure
is unique in its class. The convergence is described by a very precise formula of large
deviations depending on the so-called Peierl’s barrier. The proof is a very interesting
combination of what is called weak KAM theory, introduced by A. Fathi and A. Siconolfi
[45] - an analytic approach to Aubry-Mather theory through fixed point theory in func-
tional spaces - and stochastic partial differential equations. The parameter λ can be
compared to the inverse of the temperature in the one parameter, thermodynamic for-
malism: when we multiply the topological pressure by the temperature in Bowen-Ruelle
formula, and let the temperature to go to zero, we get a family of equilibrium measures
depending on the temperature that in many important systems converges to a ground
state or equilibrium state. So the Mather measure can be viewed as a counterpart of a
ground state in thermodynamics from this point of view.

When the support of the Mather measure is hyperbolic, an estimate of the Peierl’s
barrier can be obtained in terms of the Lyapunov exponents, providing an exponential
large deviation principle for the above family of measures [3]. However, if the support
is not hyperbolic, to obtain an estimate is much more subtle. In a paper published
in 2011 [77], A. Lopes and the author gave an estimate for the large deviation in the
case of nonpositive curvature surfaces having zero curvature just along a simple closed
geodesic .. Once more, the examples considered by J. Lewowicz in his pioneering paper
[69] give us a hint of how the lost of hyperbolicity might affect ergodic properties of a
non-Anosov, expansive geodesic flow.
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Theorem 6.5. Let (M, g) be a compact surface of non-positive curvature where the
curvature fails to be negative just along a simple closed geodesic γ where | K(x) |'
d(x, γ)n, n ≥ 2, that is the support of the Aubry-Mather measure associated to its
homology class. If the geodesic coincides with the Aubry set of the homology class then
the stationary measures of the Brownian motions of the twisted Hamiltonians Hλ(p, v) =
1
2gp(v, v)− λωp(v) converge, as λ→ +∞ to the projected Aubry-Mather measure with a
complete large deviation law of polynomial type.

The main idea of the proof is to obtain a formula for the Peierl’s barrier in terms of the
Busemann functions of a lift of the geodesic γ in the universal covering. The Busemann
functions can be estimated using the precise analytic expression of the curvature in
a tubular neighborhood of γ and comparison theory taking surfaces of revolution as
models. We would like to point out that an analytic description of the curvature near the
vanishing curvature set is absolutely necessary to get a large deviation formula, without
any specification of this sort it is impossible to get any interesting estimate. Theorem 6.5
reminds us the ergodic theory of Manneville-Pommeau maps of the interval, a family of
expansive, non-hyperbolic maps with one indifferent fixed point given by f(x) = x+xα,
α > 1. These maps were studied in great detail by L. S. Young [131] who gets a large
deviation principle of polynomial type with exponent depending on α.

As a conclusion for the section, the surfaces considered by J. Lewowicz in [69] are
good examples to study how the lost of hyperbolicity might affect a variety of subtle
properties of the dynamics: from the rigidity results of the first subsection, the Hölder
regularity for the invariant foliations presented in the second subsection, to ergodic
optimization and Aubry-Mather theory in the third subsection. There are still many
open problems concerning the surfaces considered by Lewowicz, like the extension of
Theorem 6.5 to surfaces with a finite number of vanishing curvature geodesics, and the
decay of correlations and large deviations of the Liouville measure for such surfaces. We
hope to have motivated the interest of the reader in this rich field of research.

7. Control Theory and Accessibility

Control theory usually applies to a category of problems with three elements: a
source set (or set of initial conditions), a target set and a family of processes depending
on time which start at a point in the source set and ends in the target set. The family of
processes is usually given by a family of differential equations, ordinary or partial, and
the problem is said to be controllable if for each p in the source set and q in the target
set there exists a process in the family which starts at p and ends at q. M. Brin in [21]
introduced a notion related to controllability called Accessibility in recent works about
persistent ergodicity (see for instance [25]). The initial setting is a smooth dynamical
system with one or two invariant foliations, and the system has the local accessibility
property if for every point p there exists an open neighborhood V (p) such that every
x ∈ V (p) can be connected to p with a finite number of arcs each of which is contained
in one of the foliations. A well known theorem due to Hörmander [56] allows to link
accessibility with totally non-integrable distributions: if the Lie brackets of a smooth k-
dimensional distribution defined in a C∞ manifold generate the tangent space at every
point of the manifold, then for each point x there exists an open neighborhood of x
where each point can be joined to x by a smooth arc tangent to the distribution. So
contact structures are related to accessible systems, and in particular Anosov geodesic
flows are accessible with respect to the stable and unstable foliations: these foliations are
not jointly integrable because their tangent planes generate the contact plane field of the
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geodesic flow. Brin’s notion of accessibility by arcs can be deduced for contact Anosov
flows with C1 invariant foliations by means of the relation between the Lie brackets of
stable vector fields Xs (i.e., tangent to the stable bundle) with unstable vector fields
Xu, and the commutators of their flows. The main result of the section is a version due
to the author [121], published in 2008, of this statement for expansive geodesic flows in
manifolds without conjugate points.

Theorem 7.1. Expansive geodesic flows in compact manifolds without conjugate points
have the accessibility property with respect to stable and unstable sets. Namely, given
a point θ ∈ T1M there exists an open neighborhood V (θ) such that each z ∈ V (θ) can
be joined to θ by a continuous arc formed by a finite number of arcs, each of which
is contained either in a stable set (an s-arc) or in an unstable set (u-arc). Moreover,
expansive geodesic flows are accessible: every two points can be joined by a continuous
arc formed by a finite number of arcs each of which is either a s-arc or a u-arc.

Theorem 7.1 can be viewed as a sort of continuous version of the non-joint-integrability
of stable and unstable foliations of Anosov geodesic flows. The invariant foliations of
an expansive, non-Anosov geodesic flow might not be smooth in general, so a definition
of accessibility using arcs tangent to distributions might not make sense in this setting.
The main idea of the proof is a surprising application of the Gromov hyperbolic struc-
ture of the universal covering of the manifold (Theorem 5.3). A continuous path formed
by s-arcs and u-arcs is associated to a system of horospheres which are tangent to each
other in the universal covering. The Gromov hyperbolic structure of the universal cov-
ering allows to describe in a very precise way the structure of the set of horospheres
which are simultaneously tangent to two given horospheres: the ideal centers of such
horospheres in the ideal boundary of the universal covering form a continuous, codi-
mension 1 submanifold that separates the ideal boundary into two disjoint connected
components. This statement is used to show that given a point θ ∈ T1M , the endpoints
of continuous arcs starting at θ and formed by 4 continuous s-arcs or u-arcs fill an open
neighborhood of θ.

The accessibility of expansive geodesic flows in manifolds without conjugate points
shows somehow that the contact structure of the geodesic flow can be seen even at a
topological, non-smooth level. Of course, the lack of regularity of invariant foliations
of expansive systems makes unfeasible a theory of persistent ergodicity. But perhaps
accessibility might be used to explore the persistence of ergodic properties of the geodesic
flow restricted to the Pesin set ...

Many questions remain open. For instance, does the geodesic flow of a compact mani-
fold without conjugate points and Gromov hyperbolic fundamental have the accessibility
property? Does accessibility imply the Gromov hyperbolicity of the fundamental group?

8. Rigidity in Finsler surfaces

Let us change completely the subject: Finsler metrics. A Ck Finsler metric in a
smooth manifold M is a function F : TM −→ [0,+∞) such that

• F (p, tv) = tF (p, v) for every t > 0, and (p, v) ∈ TM .
• F is Ck in TM − (M, 0).
• The Hessian of F 2 in the vertical variables is positive definite.

The term metric is just a convention for Finsler, in fact it is possible to define a

”distance” dF (x, y) by taking the infimum of the Finsler lengths
∫ 1

0
F (c(t), c′(t))dt of

continuous rectifiable paths c : [0, 1] −→ M such that c(0) = x, c(1) = y. Although
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this function satisfies the triangle inequality, it is not symmetric with respect to x, y.
The convexity of the Hessian of the Finsler metric allows to solve the Euler-Lagrange
problem for Finsler geometry and we get, as in Riemannian geometry, Finsler geodesics
and a Finsler geodesic flow φt : T1M −→ T1M acting with constant speed in the set of
unit vectors of the Finsler metric.

Finsler metrics are important in classical mechanics because the Hamiltonian flow of
a Tonelli Hamiltonian in a sufficiently high energy level can be parametrized in a way
that it becomes the geodesic flow of some Finsler metric. The minimum level above
which this holds is the so-called Mañé critical level, after [31].

The local geometry of Finsler metrics is more complicated than the local Riemannian
geometry. In the case of surfaces, there is a generalization of Cartan’s structural equa-
tions (see for instance [11]) where we can see three shape operators instead of just one
like in Riemannian surfaces. Let ω1, ω2, ω3 the Cartan forms, ω3 is the connection form
(dual to the vertical bundle, the kernel of the canonical projection), ω2 is the canonical
one form (dual to the geodesic flow). Then the exterior derivatives of the forms give,

dω1 = −Iω1 ∧ ω3 + ω2 ∧ ω3

dω2 = −ω1 ∧ ω3

dω3 = Kω1 ∧ ω2 − Jω1 ∧ ω3.

The functions I, J , K are respectively, the Cartan scalar, the Landsberg scalar and
the flag curvature, the generalization of the Gaussian curvature in Finsler geometry. All
these shape operators depend on the horizontal and vertical variables of the tangent
space since the Finsler metric is defined in the tangent space of the manifold. If the flag
curvature does not depend on the vertical variables the Finsler metric is called k-basic.
Notice that if I and J are identically zero, we get the Riemannian Cartan’s equations.
It is known that I vanishes everywhere if and only if the metric is Riemannian. It
is also known that J is the derivative of I with respect to the geodesic flow. When
J vanishes everywhere the Finsler metric is called Landsberg metric. A huge body of
work in Finsler geometry is devoted to find under what weaker assumptions on I, J,K
the metric is actually Riemannian. This field of the theory is usually called rigidity
theory.

Before introducing expansive dynamics in the exposition, we would like to introduce
some rigidity results whose proofs have a certain dynamical flavor. For instance:

Theorem 8.1. (Akbar-Zadeh [1] ) Let (M,F ) be a C∞ compact Finsler manifold with
constant sectional flag curvatures. Then the manifold is Riemannian.

Theorem 8.2. (Paternain [95] Let (M,F ) be a compact, analytic Finsler surface with
genus greater than one that is either Landsberg or k-basic. Then the metric is Riemann-
ian.

Theorem 8.3. (Barbosa-Ruggiero [13]) Let (M,F ) be a C4 compact Finsler, Lands-
berg surface with genus greater than one and no conjugate points. Then the metric is
Riemannian.

The proof of Akbar-Zadeh’s Theorem relies on the following fact: if the flag sectional
curvatures are constant, the Cartan scalar satisfies the Jacobi equation. Since the nega-
tive curvature implies that non-trivial solutions of the Jacobi equation are not bounded,
the Cartan scalar must vanish since it is a continuous function defined in compact man-
ifold. Therefore, the Finsler metric is in fact Riemannian. In the case of surfaces, it
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is relatively easy to show that the Cartan scalar vanishes in the presence of hyperbolic
dynamics and some additional assumptions on the flag curvature. The so-called Bianchi
identity is given by,

I ′′(t) +Kv(t)I
′(t) +K(t)I(t) = 0,

where I(t) is the Cartan scalar evaluated at a point φt(θ) of an orbit of the geodesic
flow, Kv is the derivative of the flag curvature with respect to a unit vertical field,
and derivatives are taken with respect to the geodesic flow. If the flag curvature is
constant, Kv = 0 everywhere, and we get the Jacobi equation. In the case of k-basic
Finsler metrics Kv vanishes as well. There are well known examples of Finsler surfaces
which are k-basic and non-Riemannian: Randers metrics for instance [11]. The proof
of Theorem 8.2 for k-basic metrics combines the existence of a hyperbolic set for the
geodesic flow and the fact that the Cartan tensor must vanish in this set by the above
argument. Since the metric is analytic, the Cartan scalar is analytic as well and hence
it must be zero everywhere. The proof of Theorem 8.2 for Landsberg metrics applies
the same dynamical feature of the geodesic flow and the fact that the Cartan scalar is
a first integral of the flow since 0 = J = I ′. Thus, I must be constant in the hyperbolic
set and analyticity implies that it must be constant everywhere. From this and some
local Finsler geometry we deduce that the Cartan scalar vanishes everywhere. The proof
of Theorem 8.3 is a sort of extension of Theorem 8.2 without assuming analyticity but
imposing the absence of conjugate points. The proof once more relies on the fact that a
first integral of the geodesic flow must be constant in this case, but the lack of analyticity
makes the argument much harder. The main result proved in Theorem 8.3 is that Finsler
compact surfaces without conjugate points have a continuous, center stable foliation that
is minimal, a fact that holds already for Riemannian surfaces without conjugate points.
Combining this property with the fact that the geodesic flow restricted to the center
stable leaf of a hyperbolic closed geodesic has expansive behavior, we conclude that
every first integral in such a leaf must be constant in the leaf. Since each leaf is dense,
every continuous first integral must be constant in the unit tangent bundle.

Following this dynamical line of arguments, J. Barbosa Gomes and the author [12]
proved the next result involving expansiveness.

Theorem 8.4. Every k-basic Finsler metric in a compact surface with expansive geo-
desic flow is Riemannian.

The combination of Theorems 8.3 and 8.4 without the assumption of expansiveness
would provide a complete extension of Theorem 8.2 for compact Finsler surfaces without
conjugate points.

9. What about weakly stable geodesic flows?

The last sections of the survey will be devoted to study geodesic flows which are
in some sense close to expansive. We shall look at geodesic flows which have some
persistent properties similar to those introduced by J. Lewowicz in a very nice paper
published in Ergodic Theory and Dynamical systems in 1983 [70]. Let us recall the
notion of persistence stated in [70] to motivate the results of the section.

Definition 9.1. Let (X, g) be a compact Riemannian manifold and let f : X −→ X
be a homeomorphism. An orbit O(x) of f is said to be persistent if given ε > 0 there
exists an open C0 neighborhood U of f such that for every h ∈ U there exists y ∈ M
whose orbit ε-shadows the orbit of x. Namely, d(fn(x), fn(y)) ≤ ε for every n ∈ N.
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In [70], expansive homeomorphisms with persistent sets of orbits are considered. We
shall consider an extension of this sort of persistence in the set of geodesic flows and
show how this will reflect on the topology and the global geometry of the manifold.

9.1. Ck-C-shadowing property.

Definition 9.2. The geodesic flow φt : T1M −→ T1M of a complete Riemannian man-
ifold (M, g) satisfies the Ck-C-shadowing property if there exists a Ck neighborhood
of (M, g) flow such that the orbits of the geodesic flow φht of any metric (M,h) in the
neighborhood can be C-shadowed by orbits of φt. Namely, given x ∈ M , there exist
y ∈M , and a continuous surjective function ρx : R −→ R with ρx(0) = 0 such that

d(φt(y), φhρx(t)(x)) ≤ C,
for every t ∈ R.

The analogies with Definition 9.1 are clear, although we are considering flows instead
of homeomorphisms and the constant C might not be small, as the term ”persistent”
suggests.

Definition 9.3. The geodesic flow φt : T1M −→ T1M satisfies the lifted Ck-C-
shadowing property if there exists an open neighborhood of (M, g) in the Ck topology

such that for each metric (M,h) in the neighborhood, the lift in ˜T1M of each orbit of

the lifted Ck-close geodesic flow φ̃ht of (M̃, h̃) can be C-shadowed by an orbit of the

lifted flow φ̃t in the above sense.

The Ck-C-shadowing property implies the lifted Ck-C-shadowing property if C is
small enough. The lifted shadowing property is based on Morse’s work about globally
minimizing geodesics in the universal covering of compact surfaces with genus greater
than one [92]. The work of Morse implies that the lifts of geodesics of a compact surface
without conjugate points and genus greater than one are C-shadowed by the geodesics of
metric of constant negative curvature −1, where C depends on the metric in the surface.
So the geodesic flow of such a compact surface without conjugate points satisfies the
L-shadowing property for every L ≥ L0 in the family of geodesic flows without conjugate
points, where L0 is a constant depending on the surface.

Morse’s shadowing generalizes to a compact manifold (M, g) without conjugate points
whose universal covering is a visibility manifold. Indeed, the fundamental group of M
is Gromov hyperbolic according to [110], so the universal covering (M̃, M̃) is a Gromov

hyperbolic space itself. This means that quasi-geodesics of (M̃, g̃) are shadowed by
geodesics [51], and since each two metrics in M are equivalent the lifts of geodesics of

any metric in M are shadowed by the geodesics of (M̃, g̃).
All the above considerations lead to many conjectures linking the Ck-C-shadowing

property with ”hyperbolic” global geometry and topology. M. Bonk [17] showed that
a complete geodesic metric space is Gromov hyperbolic if and only if for every A,B,
there exist C = C(A,B) such that every A,B-quasi-geodesic of the space is contained
in a tubular neighborhood of radius C of a geodesic. So we might guess that the Ck-C-
shadowing property would imply Gromov hyperbolicity of the universal covering. How-
ever, the Ck-C-shadowing property is weaker than the shadowing of all quasi-geodesics,
since it requires the Ck-C-shadowing of geodesics which arise from perturbations of the
given metric.

The next subsection contains some results illustrating what happens.
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9.2. Shadowing, Gromov hyperbolicity and Preissmann’s property. The dis-
cussion in the previuos subsection was the basis of the following results by the author,
which were published in a series of journals (Ergodic Theory and Dyn. sys. [115] (1999),
[116] (2000), Bull. Braz. Math. Soc. [117] (1999), Discrete and Continuous Dynamical
Systems [119] (2006)).

Theorem 9.4. Let (M, g) be a compact manifold without conjugate points, let r(M) be
the injectivity radius. Then we have:

(1) If (M, g) has non-positive curvature, the lifted C∞-C-shadowing property for
the geodesic flow implies that every abelian subgroup of the fundamental group
is infinite cyclic.

(2) If (M, g) has non-positive curvature and is analytic, then the lifted C∞-C-
shadowing property implies that the fundamental group is Gromov hyperbolic.

(3) If (M̃, g̃) is a quasi-convex space, and C ≤ 1
5r(M), the C∞-C-shadowing prop-

erty implies that every abelian subgroup of the fundamental group is infinite
cyclic.

A discrete group G is said to have the Preissmann property if every abelian sub-
group is infinite cyclic. The definition is clearly based on the celebrated Preissmann’s
theorem for the fundamental group of manifolds with negative curvature. Item (2) is so
far the closest we get to Gromov hyperbolicity assuming the C∞-C-shadowing property.

The proof of item (2) in brief is as follows: By Eberlein’s work [40] the universal
covering of a compact manifold with non-positive curvature is a visibility manifold if
and only if there is no flat, totally geodesic plane in the universal covering. If the metric
is analytic, a beautiful result due to Bangert and Schröeder [9] implies that the existence

of a flat plane in M̃ implies that there exists a immersed flat torus in the manifold M .
Using some ideas of Mather theory we then show that a flat metric in the torus does not
have the lifted C∞-C-shadowing property and using the global geometry of non-positive
curvature manifolds we extend this to the universal covering. We conclude that the lifted
C∞-C-shadowing property implies that there is no flat plane in M̃ and therefore, (M, g)
is a visibility manifold. Finally, we know that visibility manifolds without focal points
are Gromov hyperbolic [110].

Bangert-Schöeder theorem is only known for analytic non-positively curved manifolds.
So we cannot apply this theorem to show items (1) and (3). Nevertheless, we succeed
in showing that the C∞-C-shadowing property implies the Preissmann’s property. The
proof of item (1) is by contradiction: suppose that the fundamental group has an abelian
subgroup that is not infinite cyclic. Then there exists a flat immersed torus in the
manifold by the geometry of manifolds of non-positive curvature. So the second part of
the proof of item (2) leads to a contradiction: the geodesic flow does not have the lifted
C-shadowing property. The proof of item (3) is more subtle and we refer to the reader
to [119], [120] for details.

Many interesting questions remain open: Does the Ck-C-shadowing property (lifted
or not) for geodesic flows of compact manifolds without conjugate points imply Gromov
hyperbolicity? Does the Preissmann property in the fundamental group of compact
manifolds without conjugate points implies Gromov hyperbolicity? If we replace the
shadowing property by topological stability would it be possible to extend the above
results?
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10. Are Expansive geodesic flows in the closure of Anosov dynamics?

Lewowicz’s results about expansive dynamics in low dimensional manifolds show how
close these systems are to hyperbolic systems. Moreover, there are many natural ways
to modify a hyperbolic system in order to get an expansive, non-hyperbolic one. A sort
of converse of this statement is the subject of the section: are all expansive systems in
the closure of hyperbolicity? Namely, given an expansive system there exists a certain
topology in the set of flows and a sequence of hyperbolic systems (structurally stable)
such that they approach the expansive system in this topology? In the category of
geodesic flows some partial answers arise from the theory of evolution equations. We
shall restrict ourselves to the theory of surfaces.

The Ricci flow for surfaces is a curve (M, gt) of Riemannian metrics of a surface M
defined by the following partial differential equation:

∂gt
∂t

= −2Kt · gt,

where Kt is the Ricci curvature of the surface, that is the Gaussian curvature actually.
The Ricci flow theory comes from relativity, it would give the path to deform a metric
in order to get the ”best” metric in a manifold. The word ”best” refers to spaces with
symmetries or constant curvature. The works of Hamilton [?], [?] for surfaces and three-
spheres with positive Ricci curvature showed that the Ricci flow was a powerful tool to
find metrics of constant curvature. The Ricci flow on compact surfaces with genus
greater than one tends to a metric of constant negative curvature, in the sphere case it
tends to a metric of positive constant curvature. Perelman [98], [16] used the Ricci flow
to show the famous Poincaré conjecture: a compact, simply connected three manifold is
diffeomorphic to the sphere. The solution of this problem led to the classification of three
manifolds after the work of Thurston [127]. All these results concern the asymptotic
evolution of the Ricci flow, while we are rather looking at boundary points in the set of
metrics. Indeed, since Anosov geodesic flows are persistent and expansive, we would like
to consider expansive, non-Anosov geodesic flows in (M, g) and show that there exists
a curve gt of metrics such that g0 = g and such that (M, gt) is Anosov for short time t.

What we know is the following:

Lemma 10.1. Compact surfaces of non-positive curvature and genus greater than one
are in the closure of surfaces of negative curvature.

The proof of this result relies on the application of the Maximum principle for para-
bolic equations (see for instance [103]) applied to the Ricci flow. A complete argument
can be found in [59]. Lemma 10.1 seems to encourage the use of the Ricci flow to study
surfaces without conjugate points, however a control of the curvature sign of gt becomes
extremely difficult if the surface (M, g) has regions of positive curvature. Without an ac-
curate control over the regions of positive curvature to show that there are no conjugate
points seems to be out of reach.

Other evolution flows have been considered in the literature in the last 15 years,
this time arising from magnetic field theory. The so called Ricci-Yang-Mills flow
considers the coupled evolution of a Riemannian metric (M, g) and a smooth function
m : M −→ R that plays in physics the role of a Lorentz force, according to the following
equations:
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∂gt
∂t

= (m2
t − 2Kt) · gt,(1a)

∂mt

∂t
= 4tmt + 2Ktmt −m3

t .(1b)

The scalar function m is also called the magnetic potential. The occurrence of terms
which depend on the derivatives of m has a short term effect on the sign of the derivative
of the curvature. Indeed, in a paper by D. Jane and the author [59], it is proved that
given a compact surface (M, g) with genus greater than one, and a magnetic potential
m that is subharmonic in the complement of a small ball of negative curvature, then
the Ricci-Yang-Mills flow shrinks the regions of positive curvature and decreases the
curvature in these regions. Combining this fact and subtle properties of Jacobi fields in
surfaces without focal points we show the following result:

Theorem 10.2. Compact surfaces without focal points such that the region of positive
curvature consists of a finite number of ”isolated” bubbles are in the closure of Anosov
metrics.

A bubble is a region of positive curvature that is simply connected, whose boundary
has zero curvature, and whose closure is surrounded by a thin annulus of negative
curvature. Many examples of surfaces without conjugate points are obtained in this
way through surgery.

Notice that neither in Lemma 10.1 nor in Theorem 10.2 the assumption of expan-
siveness of the geodesic flow was considered. This shows that in the case of surfaces,
we might expect not only that expansive geodesic flows are in the closure of Anosov
metrics, but that every metric without conjugate points is in the closure as well.

11. Quotient spaces

The last section of the survey is somehow related to the previous one. In a paper
by J. Lewowicz and R. Ures, On Smale diffeomorphisms close to pseudo-Anosov maps,
[73] (2001), they consider quotient spaces of maps which are close to pseudo-Anosov as
expansive models of such systems up to semi-conjugacy. Applying this idea they show
that expansive homeomorphisms which are in the closure of pseudo-Anosov maps in
the C0 topology are in fact conjugate to such maps. These quotient spaces have finite
topological dimension (Mañé [82]) and the quotient dynamics inherits the topology of
the initial dynamics (namely, isotopy to a Smale diffeomorphism implies transitivity,
density of periodic orbits, etc).

The idea of an expansive quotient as a model dynamics up to semi-conjugacy suits
well in the theory of compact surfaces without conjugate points and higher genus. Stable
and unstable sets always exist, they are the stable and unstable horospheres respectively.
And although the dynamics might not be expansive the saturation by the flow of these
sets gives rise to two continuous foliations of the unit tangent bundle by Lipschitz codi-
mension one submanifolds: the center stable and the center unstable foliations. This
fact follows essentially from the work of Morse [92] and the divergence of geodesic rays
in the universal covering of surfaces without conjugate points proved by Green [49]. We
can lift the foliations to the unit tangent bundle of the universal covering and get a pair
of foliations by embeddings of the plane. The intersection of a lifted stable leaf with a
lifted unstable leaf might not be a single orbit as in the expansive case, but the structure
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of such intersections is quite nice. In the case of surfaces without focal points, the inter-
section of a center stable leaf with a center unstable leaf is a union of flat strips, which
have many strong topological properties. In a work in progress with A. De Carvalho we
show,

Theorem 11.1. If (M, g) is a compact surface without focal points, the quotient Σ of
T1M by flats is a 3-dimensional manifold and the quotient φ̄t : Σ −→ Σ of the geodesic
flow φt is semi-conjugate to φt by a time-preserving map.

The existence of non-time-preserving semi-conjugacies between geodesic flows of com-
pact surfaces without conjugate points and Anosov geodesic flows is well known since the
works of M. Gromov and E. Ghys [47]. Theorem 11.1 tells us that there is an expansive,
time preserving model for the dynamics of the geodesic flow of the surface. Because the
quotient of T1M by flats eliminates precisely the non-expansive subset of the initial dy-
namics. A rough idea of the proof is the following: according to the work of Morse [92],
expansiveness is lost precisely when there are strips in the universal covering foliated by
geodesics. The structure of strips in surfaces with no focal points is, like in non-positive
curvature geometry, quite simple: they are flat and its union is a set of empty interior.
Moreover, each strip is contractible to any one of the geodesics in it. General topology of
low dimensional manifolds, the semi-continuity of the flat strips and the trivial topology
of the strips yield that the quotient of T1M obtained by identifying the orbits in a strip
with just one of them is homeomorphic to T1M and carries a continuous expansive flow.

We think that Theorem 11.1 may be extended to compact surfaces without conjugate
points and certain manifolds without conjugate points in higher dimensions. However,
the proof in those cases might be more technical than the proof of Theorem 11.1 since
the structure of the non-expansiveness set of the flow might exhibit more complicated
geometric features.
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[85] Mañé, R.: On a theorem of Klingenberg, In: M. I. Camacho, M. J. Paćıfico, F. Takens (Ed.),
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EXPANSIVE MEASURES

A. ARBIETO, C. A. MORALES

Abstract. This survey is about expansive measures, namely, Borel probability

measures for which the dynamical balls up to some prefixed radio have measure
zero. Some properties dealing with ergodicity, variational principle, pressure, hete-

roclinic points etc will be considered.

The object of study in this survey, namely, the expansive measures, is motivated by the
old definition of expansive system due to Utz [46] (bijective case) and Eisenberg [14]
(general case). More precisely, we say that a map (resp. bijective map) f : X → X of a
metric space X is positively expansive (resp. expansive) if it has an expansivity constant,
i.e., a positive number ε with the property that if x, y ∈ X and d(fn(x), fn(y)) ≤ ε for
all n ∈ N (resp. n ∈ Z), then x = y.

The concept of expansivity althouth simple has been very successful in the theory
of dynamical systems. For instance, [50] proved that the set of points doubly asymp-
totic to a given point for expansive homeomorphisms is at most countable. Moreover,
a homeomorphism of a compact metric space is expansive if it does in the complement
of finitely many orbits [51]. In 1972 Sears proved the denseness of expansive homeo-
morphisms with respect to the uniform topology in the space of homeomorphisms of a
Cantor set [42]. An study of expansive homeomorphisms using generators is given in [7].
Goodman [18] proved that every expansive homeomorphism of a compact metric space
has a (nonnecessarily unique) measure of maximal entropy and Bowen [5] added specifi-
cation to obtain unique equilibrium states. In another direction, [40] studied expansive
homeomorphisms with canonical coordinates and showed in the locally connected case
that sinks or sources cannot exist. Two years later, Fathi characterized expansive home-
omorphisms on compact metric spaces as those exhibiting adapted hyperbolic metrics
[16] (see also [41] or [12] for more about adapted metrics). Using this he was able to
obtain an upper bound of the Hausdorff dimension and upper capacity of the underly-
ing space using the topological entropy. In [26] it is computed the large deviations of
irregular periodic orbits for expansive homeomorphisms with the specification property.
The C0 perturbations of expansive homeomorphisms on compact metric spaces were
considered in [9]. Besides, the multifractal analysis of expansive homeomorphisms with
the specification property was carried out in [45]. We can also mention [8] in which it
is studied a new measure-theoretic pressure for expansive homeomorphisms.

From the topological viewpoint we can mention [35] and [38] proving the existence of
expansive homeomorphisms in the genus two closed surface, the n-torus and the open
disk. Analogously for compact surfaces obtained by making holes on closed surfaces
different from the sphere, projective plane and Klein bottle [24]. In [22] it was proved
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that there are no expansive homeomorphisms of the compact interval, the circle and the
compact 2-disk.

On the other hand, on of the most important result in this direction, namely, the
classification of expansive homeomorphisms on closed surfaces, was obtained indepen-
dently by Lewowicz and Hiraide [28], [20]. In particular, they proved that there are no
expansive homeomorphism in the 2-dimensional sphere. Mañé proved in [32] that a com-
pact metric space exhibiting expansive homeomorphisms must be finite dimensional and,
further, every minimal set of such homeomorphisms is zero dimensional. Previously he
proved that the C1 interior of the set of expansive diffeomorphisms of a closed manifold
is composed by pseudo-Anosov (and hence Axiom A) diffeomorphisms. In 1993 Vieitez
[47] obtained results about expansive homeomorphisms on closed 3-manifolds including
the denseness of the topologically hyperbolic periodic points does imply constant di-
mension of the stable and unstable sets. As a consequence a local product property was
obtained for such homeomorphisms. He also obtained that expansive homeomorphisms
on closed 3-manifolds with dense topologically hyperbolic periodic points are both sup-
ported on the 3-torus and topologically conjugated to linear Anosov isomorphisms [48].
A nice account of the theory of expansive systems can be found in [10].

In light of these results it was natural to consider another notions of expansiveness.
For example, G-expansiveness, continuouswise and pointwise expansiveness were defined
in [11], [23] and [39] respectivelly. We also have the notion of entropy-expansiveness
introduced by Bowen [4] in order to compute the metric and topological entropies for
certain homeomorphisms.

The present authors were motivated by these results and considered the analogous
concept but now involving Borel measures µ in X. As a motivation observe that a map
(resp. bijective map) f : X → X is positively expansive (resp. expansive) if and only if
there is ε > 0 such that,

{y ∈ X : d(fn(x), fn(y)) ≤ ε,∀n ∈ N (resp. ∀n ∈ Z)} = {x}, ∀x ∈ X.
This suggests the folowing definition:

Definition 1. Let f : X → X be a measurable map (resp. measurable bijective map) of
X. A Borel measure µ of X is a positively expansive measure (resp. expansive measure)
of f if there is ε > 0 such that,

µ({y ∈ X : d(fn(x), fn(y)) ≤ ε,∀n ∈ N (resp. ∀n ∈ Z)}) = 0, ∀x ∈ X.
Hereafter all maps or bijections will be measurable (with respect to the Borel σ-

algebra). Let us present some remarks related to the above concept.

Remark 2. Every positively expansive measure of a given bijective map is also an
expansive measure of it (but the converse is false in general). Every positively expansive
or expansive measure is nonatomic, i.e., has no point of positive mass. Conversely, if f
is a positively expansive map (resp. an expansive bijection), then every nonatomic Borel
measure is positively expansive (resp. expansive) for f .

For Borel probability measures it is possible to put the following equivalence.

Lemma 3. A Borel probability measure µ of a compact metric space f is a positively
expansive (resp. expansive) measure of a map (resp. bijective map) f : X → X if and
only if there is ε > 0 such that

µ({y ∈ X : d(fn(x), fn(y)) ≤ ε,∀n ∈ N (resp. ∀n ∈ Z)}) = 0, for µ-a.e. x ∈ X.
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We then call expansivity constant of a Borel probability measure any constant ε
satisfying the conclusion of either Definition 1 or Lemma 3.

Let us present a list of examples.

Example 4. As is well known [37], every complete separable metric space which either
is uncountable or has no isolated points exhibits nonatomic Borel probability measures.
It follows that every positively expansive map (or expansive bijection) in such a space
has an expansive measure.

Example 5. There are expansive homeomorphisms on certain compact metric spaces
with no expansive measures.

Proof. Indeed, consider the map p(x) = x3 in R and define X = {0, 1,−1} ∪ {pn(c) :
n ∈ N, c ∈ {− 1

2 ,
1
2}}. We have that X is an infinite (but countable) compact metric

space with the induced metric d(x, y) = |x − y|. Observe that there are no nonatomic
Borel probability measures in X since every non-isolated set of X must be contained in
{−1, 0, 1}. Defining f(x) = p(x) for x ∈ X we obtain an expansive homeomorphism f
which is not µ-expansive for every Borel probability measure µ. �

Further examples of homeomorphisms without expansive measures can be obtained
as follows. Recall that an isometry of a metric space X is a homeomorphism f such
that d(f(x), f(y)) = d(x, y) for all x, y ∈ X. We use the following notation (for bijective
maps),

Γδ(x) = Γfδ (x) = {y ∈ X : d(fn(x), fn(y)) ≤ ε,∀n ∈ Z}.
Example 6. Every isometry of a separable metric space has no expansive measures. In
particular, the identity map in these spaces (or the rotations in R2 or translations in
Rn) has no such measures.

Proof. Suppose by contradiction that there is an isometry f of a separable metric space
X with some expansive measure µ. Since f is an isometry we have Γδ(x) = B[x, δ],
where B[x, δ] denotes the closed δ-ball around x. If δ is an expansivity constant of
f , then µ(B[x, δ]) = µ(Γδ(x)) = 0 for all x ∈ X. Nevertheless, since X is separable
(and so Lindelof), we can select a countable covering {C1, C2, · · · , Cn, · · · } of X by
closed subsets such that for all n there is xn ∈ X such that Cn ⊂ B[xn, δ]. Thus,
µ(X) ≤∑∞n=1 µ(Cn) ≤∑∞n=1 µ(B[xn, δ]) = 0 which is a contradiction. This proves the
result. �
Example 7. Endow Rn with a metric space with the Euclidean metric. Then, the
Lebesgue measure Leb in Rn is an expansive measure of a linear isomorphism f : Rn →
Rn if and only if f has eigenvalues of modulus less than or bigger than 1.

Proof. Since f is linear we have Γδ(x) = Γδ(0) + x thus Leb(Γδ(x)) = Leb(Γδ(0)) for
all x ∈ Rn and δ > 0. If f has eigenvalues of modulus less than or bigger than 1, then
Γδ(0) is contained in a proper subspace of Rn which implies Leb(Γδ(0)) = 0 thus Lebis
an expansive measure. �
Example 8. There are no expansive measures for any homeomorphism of a compact
interval I. In the circle S1 the only homeomorphism with expansive measures are the
Denjoy ones.

Recall that a subset Y ⊂ X is invariant if f(Y ) = Y .

Example 9. A homeomorphism f has an expansive measure µ if and only if there is an
invariant borelian set Y of f for which the restriction f/Y has some expansive measure.
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Proof. We only have to prove the only if part. Assume that f/Y has an expansive

measure ν in Y . Fix δ > 0. Since Y is invariant we have either Γfδ/2(x) ∩ Y = ∅
or Γfδ/2(x) ∩ Y ⊂ Γ

f/Y
δ (y) for some y ∈ Y . Therefore, either Γfδ/2(x) ∩ Y = ∅ or

µ(Γfδ/2(x)) ≤ µ(Γ
f/Y
δ (y)) for some y ∈ Y where µ is the Borel probability of X defined

by µ(A) = ν(A ∩ Y ). From this we obtain that for all x ∈ X there is y ∈ Y such

that µ(Γfδ/2(x)) ≤ ν(Γ
f/Y
δ (y)). Taking δ as an expansivity constant of f/Y we obtain

µ(Γfδ/2(x)) = 0 for all x ∈ X thus f is µ-expansive with expansivity constant δ/2. �

The next example implies that the property of having expansive measures is a con-
jugacy invariant. Given a Borel measure µ in X and a homeomorphism φ : X → Y we
denote by φ∗(µ) the pullback of µ defined by φ∗(µ)(A) = µ(φ−1(A)) for all borelian A.

Example 10. Let µ be an expansive measure of a homeomorphism f : X → X of a
compact metric space X. If φ : X → Y is a homeomorphism of compact metric spaces,
thenφ∗(µ) is an expansive measure of φ ◦ f ◦ φ−1.

Proof. Clearly φ is uniformly continuous so for all δ > 0 there is ε > 0 such that

Γφ◦f◦φε (y) ⊂ φ(Γfδ (φ−1(y))) for all y ∈ Y . This implies

φ∗(µ)(Γφ◦f◦φε (y)) ≤ µ(Γfδ (φ−1(y))).

Taking δ as the expansivity constant of µ we obtain that ε is also an expansivity constant
φ∗(µ). �

For the next example recall that a periodic point of a map f : X → X is a point
x ∈ X such that fn(x) = x for some n ∈ N+ (the minimum of which is the so-called
period denoted by np). The nonwandering set of f is the set Ω(f) formed by those
points x ∈ X such that for every neighborhood U of x there is n ∈ N+ satisfying
fn(U)∩U 6= ∅. Clearly a periodic point belongs to Ω(f) but not every point in Ω(f) is
periodic. If X = M is a closed (i.e. compact connected boundaryless) manifold and f is
a diffeomorphism we say that an invariant set H is hyperbolic if there are a continuous
invariant tangent bundle decomposition THM = EsH ⊕ EuH and positive constants K,
λ > 1 such that

‖Dfn(x)/Esx‖ ≤ Kλ−n and m(Dfn(x)/Eux ) ≥ K−1λn,
for all x ∈ H and n ∈ IN (m denotes the co-norm operation in M). We say that f is
Axiom A if Ω(f) is hyperbolic and the closure of the set of periodic points.

Example 11. Every Axiom A diffeomorphism with infinite nonwandering set of a closed
manifold has expansive measures.

Proof. Consider an Axiom A diffeomorphism f of a closed manifold. It is well known
that there is a spectral decomposition Ω(f) = H1 ∪ · · · ∪Hk consisting of finitely many
disjoint homoclinic classes H1, · · · , Hk of f (see [19] for the corresponding definitions).
Since Ω(f) is infinite we have that H = Hi is infinite for some 1 ≤ i ≤ k. As is well
known f/H is expansive. On the other hand, H is compact without isolated points
since it is a homoclinic class. It follows that f/H has an expansive measure, so, f also
has an expansive measure by Example 9. �

In the sequel we present some results about expansive measures. To state them we
need some basic definitions.
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For any map f : X → X and p ∈ X we define the stable set of p by

W s(p) =
{
x ∈ X : lim

n→∞
d(fn(x), fn(p)) = 0

}
.

A stable class is a subset equals to W s(p) for some p ∈ X.
Let µ be a Borel probability measure of X. If f is Borel measurable, we say that µ is

invariant if µ ◦ f−1 = µ and ergodic if every invariant measurable set of f has measure
zero or one. The entropy of µ with respect to f is defined by

hµ(f) = sup



− lim

n→∞
1

n

∑

ξ∈Pn−1

µ(ξ) log(µ(ξ)) : P is a finite partition of X



 ,

where Pn is the pullback partition of P under fn (see [49] for details).
Our first result is the following.

Theorem 12. The stable classes of a continuous map of a compact metric space have
measure zero with respect to any positively expansive measure.

On the other hand, if f is continuous we define its topological entropy by

h(f) = sup

{
lim
n→∞

1

n
log(N(αn)) : α is an open cover of X

}

where αn is the pullback of α under fn and N(αn) is the cardinality of a finite subcover
with minimal cardinality of αn for all n ∈ N (see [49] for details).

Recall also that the recurrent set of f is defined by R(f) = {x ∈ X : x ∈ ω(x)} where
ω(x) is the omega-limit set

ω(x) =

{
y ∈ X : y = lim

k→∞
fnk(x) for some sequence nk →∞

}
.

(Notation ωf (x) will indicate dependece on f). Following [17] we say that f is Lyapunov
stable on a subset A ⊂ X if for any x ∈ A and any ε > 0 there is a neighborhood U(x)
of x such that d(fn(x), fn(y)) < ε whenever n ≥ 0 and y ∈ U(x) ∩ A. Notice that this
definition is implied by the corresponding one in [43]. We have our second result.

Theorem 13. A continuous map with positive topological entropy of a compact metric
space cannot be Lyapunov stable on its recurrent set.

In the invertible case we also define the alpha-limit set α(x) = αf (x) = ωf−1(x). We
then say that x ∈ X is a heteroclinic point if both α(x) and ω(x) reduce to periodic
orbits. Our third result deals with the measure of the set of heteroclinic points with
respect to ergodic measures with positive entropy.

Theorem 14. The set of heteroclinic points of a homeomorphism of a compact metric
space has measure zero with respect to any expansive measure.

Following Definition 2.1 in [40] for every map f : X → X and every point x ∈ X we
define the local stable set for δ ≥ 0 by

W s(x, δ) = {y ∈ X : d(fn(x), fn(y)) ≤ δ for all n ∈ N}.
In the invertible case we also define the local unstable set for δ ≥ 0 by

Wu(x, δ) = {y ∈ X : d(f−n(x), f−n(y)) ≤ δ for all n ∈ N}.
In such a case we say that x ∈ X is a sink of f if Wu(x, δ) = {x} for some δ > 0.
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Following [4] we say that an invertible map f has canonical coordinates if for every
ε > 0 there is δ > 0 such that W s(x, δ) ∩ Wu(y, δ) 6= ∅ whenever d(x, y) ≤ δ. Our
last result is about the measure of the set of sinks, for invertible maps with canonical
coordinates, with respect to ergodic invariant measures with positive entropy:

Theorem 15. The set of sinks of any homeomorphism with canonical coordinates on a
compact metric space has zero measure with respect to any expansive measure.

Let µ be a Borel probability measure of X. If f is Borel measurable, we say that µ is
invariant if µ ◦ f−1 = µ and ergodic if every invariant measurable set of f has measure
zero or one. The entropy of µ with respect to f is defined by

hµ(f) = sup



− lim

n→∞
1

n

∑

ξ∈Pn−1

µ(ξ) log(µ(ξ)) : P is a finite partition of X



 ,

where Pn is the pullback partition of P under fn (see [49] for details).
Based on the fundamental result by Brin and Katok [6] we can prove the following

result.

Theorem 16. Every ergodic invariant measure with positive entropy of a continuous
map on a compact metric space is positively expansive.

Let us recall the notion of topological pressure [49]. Given a continuous map f : X →
X of a compact metric space X and T : X → R we define

Sn(f, T )(x) =
n−1∑

i=0

T (f i(x)).

We call a subset E ⊂ X (n, ε)-separated for a given (n, ε) ∈ N× R+ if for every pair of
points x 6= y in E there is and integer 0 ≤ i ≤ n− 1 such that d(f i(x), f i(y)) ≥ ε. Let
s(n, ε) the maximal cardinality of any (n, ε)-separated subset E. Define

Z(f, T, ε, n) = sup

{∑

x∈E
eSn(f,T )(x) : E is (n, ε)-separated

}
.

The topological pressure of T with respect to f is defined by

P (f, T ) = lim
ε→0

lim sup
n→∞

1

n
logZ(T, f, ε, n).

The variational principle [49] says that

P (f, T ) = sup

{
hµ(f) +

∫

X

Tdµ : µ ∈Me(f)

}
,

where Me(f) denotes the set of ergodic invariant measures of f . Combining this with
Theorem 16 we obtain the following:

Theorem 17. If f : X → X and T : X → R are continuous maps, then

P (f, T ) = sup

{
hµ(f) +

∫

X

Tdµ : µ ∈Mpex(f)

}
,

where Mpex(f) denotes the set of positively expansive measures of f .

An analogous statement was announced by T. Fisher in his recent talk [15]. More
consequences of Theorem 16 and the above results are given below.
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Corollary 18. The stable classes of a continuous map of a compact metric space have
measure zero with respect to any ergodic invariant measure with positive entropy.

Corollary 19. A continuous map with positive topological entropy of a compact metric
space has uncountably many stable classes.

Corollary 20. A continuous map with positive topological entropy of a compact metric
space cannot be Lyapunov stable on its recurrent set.

Corollary 21. The set of heteroclinic points of a homeomorphism of a compact met-
ric space has measure zero with respect to any ergodic invariant measure with positive
entropy.

Corollary 22. The set of sinks of any homeomorphism with canonical coordinates on
a compact metric space has zero measure with respect to any ergodic invariant measure
of positive entropy.

Let us now use the notion of positively expansive measure to study the chaoticity in
the sense of Li and Yorke [30]. Recall that if δ ≥ 0 a δ-scrambled set of f : X → X is a
subset S ⊂ X satisfying

(1) lim inf
n→∞

d(fn(x), fn(y)) = 0 and lim sup
n→∞

d(fn(x), fn(y)) > δ

for all different points x, y ∈ S.

Theorem 23. A continuous map of a Polish space carrying an uncountable δ-scrambled
set for some δ > 0 also carries positively expansive measures.

Proof. Let X a Polish space and f : X → X be a continuous map carrying an uncount-
able δ-scrambled set for some δ > 0. Then, by Theorem 16 in [3], there is a closed
uncountable δ-scrambled set S. As S is closed and X is Polish we have that S is also
a Polish space with respect to the induced metric. As S is uncountable we have from
[37] that there is a nonatomic Borel probability measure ν in S. Let µ be the Borel
probability induced by ν in X, i.e., µ(A) = ν(A ∩ S) for all Borelian A ⊂ X. We
shall prove that this measure is expansive. If x ∈ S and y ∈ Φ δ

2
(x) ∩ S we have that

x, y ∈ S and d(fn(x), fn(y)) ≤ δ
2 for all n ∈ N therefore x = y by the second inequality

in (1). We conclude that Φ δ
2
(x) ∩ S = {x} for all x ∈ S. As ν is nonatomic we obtain

µ(Φ δ
2
(x)) = ν(Φ δ

2
(x) ∩ S) = ν({x}) = 0 for all x ∈ S. On other hand, it is clear that

every open set which does not intersect S has µ-measure 0 so µ is supported in the
closure of S. As S is closed we obtain that µ is supported on S. We conclude that
µ(Φ δ

2
(x)) = 0 for µ-a.e. x ∈ X, so, µ is expansive by Lemma 3. �

A continuous map is Li-Yorke chaotic if it has an uncountable 0-scrambled set. Until
the end M will denote either the interval I = [0, 1] or the unit circle S1.

Corollary 24. Every Li-Yorke chaotic map in M carries positively expansive measures.

Proof. Theorem in p. 260 of [13] together with theorems A and B in [27] imply that
every Li-Yorke chaotic map in I or S1 has an uncountable δ-scrambled set for some
δ > 0. Then, we obtain the result from Theorem 23. �

It follows that there are continuous maps with zero topological entropy in the circle
exhibiting expansive invariant measures. This leads to the question whether the same
result is true on compact intervals. The following consequence of the above corollary
gives a partial positive answer for this question.
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Example 25. There are continuous maps with zero topological entropy in the interval
carrying positively expansive measures.

Indeed, by [21] there is a continuous map of the interval, with zero topological entropy,
exhibiting a δ-scrambled set of positive Lebesgue measures for some δ > 0. Since sets
with positive Lebesgue measure are uncountable we obtain an expansive measure from
Theorem 23.

Another interesting example is this.

Example 26. The Lebesgue measure is an ergodic invariant measure with positive en-
tropy of the tent map f(x) = 1 − |2x − 1| in I. Therefore, this measure is positively
expansive by Theorem 16.

It follows from this example that there are continuous maps in I carrying expansive
measures µ with full support (i.e. supp(µ) = I). These maps also exist in S1 (e.g. an
expanding map). Now, we prove that Li-Yorke and positive topological entropy are
equivalent properties among these maps in I. But previously we need a result based on
the following well-known definition.

A wandering interval of a map f : M → M is an interval J ⊂ M such that fn(J) ∩
fm(J) = ∅ for all different integers n,m ∈ N and no point in J belongs to the stable set
of some periodic point.

Lemma 27. If f : M → M is continuous, then every wandering interval has measure
zero with respect to every expansive measure.

Proof. Let J a wandering interval and µ be an expansive measure with expansivity
constant ε. To prove µ(J) = 0 it suffices to prove Int(J) ∩ supp(µ) = 0 since µ is
nonatomic. As J is a wandering interval one has limn→∞ |fn(J)| = 0, where | · | denotes
the length operation. From this there is a positive integer n0 satisfying

(2) |fn(J)| < ε, ∀n ≥ n0.
Now, take x ∈ Int(J). Since f is clearly uniformly continuous and n0 is fixed we can
select δ > 0 such that B[x, δ] ⊂ Int(J) and |fn(B[x, δ])| < ε for 0 ≤ n ≤ n0. This
together with (2) implies |fn(x) − fn(y)| < ε for all n ∈ N therefore B[x, δ] ⊂ Φε(x)
so µ(B[x, δ]) = 0 since ε is an expansivity constant. Thus x 6∈ supp(µ) and we are
done. �

From this we obtain the following corollary.

Corollary 28. A continuous map with expansive measures of the circle or the interval
has no wandering intervals. Consequently, a continuous map of the interval carrying
expansive measures with full support is Li-Yorke chaotic if and only if it has positive
topological entropy.

Proof. The first part is a direct consequence Lemma 2 while, the second, follows from
the first since a continuous interval map without wandering intervals is Li-Yorke chaotic
if and only if it has positive topological entropy [44]. �

Now we turn our attention to smooth ergodic theory. The motivation is the well-
known fact that a diffeomorphism restricted to a hyperbolic basic set is expansive. In
fact, it is tempting to say that every hyperbolic ergodic measures of a diffeomorphism
is positively expansive (or at least expansive) but the Dirac measure supported on a
hyperbolic periodic point is a counterexample. This shows that some extra hypotheses
are necessary for a hyperbolic ergodic measure to be positively expansive. Indeed, by
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the results above, we only need to recognize which conditions imply positive entropy.
Let us state some basic definitions in order to present our result.

Assume that X is a compact manifold and that f is a C1 diffeomorphism. We
say that point x ∈ X is a regular point whenever there are positive integers s(x) and
{λ1(x), · · · , λs(x)(x)} ⊂ IR such that for every v ∈ TxM \ {0} there is 1 ≤ i ≤ s(x) such
that

lim
n→∞

1

n
log ‖Dfn(x)v‖ = λi(x).

An invariant measure µ is called hyperbolic if there is a measurable subset A with
µ(A) = 1 such that λi(x) 6= 0 for all x ∈ A and all 1 ≤ i ≤ s(x).

On the other hand, the Eckmann-Ruelle conjecture [2] asserts that every hyperbolic
ergodic measure µ is exact-dimensional, i.e., the limit below

d(x) = lim
r→0+

µ(B(x, r))

r

exists and is constant µ-a.e. x ∈ X. This constant is the so-called dimension of µ.
With these definitions we can state the following corollary.

Theorem 29. Let f be a C2 diffeomorphism of a compact manifold.

(1) Every hyperbolic ergodic measure of f which either has positive dimension or is
absolutely continuous with respect to Lebesgue is positively expansive.

(2) If f has a nonatomic hyperbolic ergodic measure, then f also has a positively
expansive ergodic invariant measure.

Proof. Let us prove (1). First assume that the measure has positive dimension. As
noticed in [2] p. 761 Theorem C′ p. 544 in [29] implies that if the entropy vanishes,
then the stable and unstable dimension of the measure also do. In such a case we have
from Theorem F p. 548 in [29] that the measure has zero dimension, a contradiction.
Therefore, the measure has positive entropy and then we are done by Theorem 16.

Now assume that the measure is absolutely continuous with respect to the Lebesgue
measure. Then, it is nonatomic so the argument in the proof of Theorem 4.2 p. 167 in
[25] implies that it has at least one positive Lyapunov exponent. Therefore, the Pesin
formula (c.f. p. 139 in [25]) implies positive entropy so we are done by Theorem 16.

To prove (2) we only have to see that Corollary 4.2 in [25] implies that every diffeo-
morphism as in the statement of (2) has positive topological entropy. Then, we are done
by the variational principle (e.g. [49] or Theorem 17). �

Detailed proofs of some of the above results will appear in [1]. The concept of expan-
sive measure has been generalized to measurable spaces in [34].
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HYPER-EXPANSIVE HOMEOMORPHISMS

ALFONSO ARTIGUE

Abstract. A homeomorphism on a compact metric space is said hyper-expansive

if every pair of different compact sets are separated by the homeomorphism in the
Hausdorff metric. We characterize such dynamics as those with a finite number of

orbits and whose non-wandering set is the union of the repelling and the attracting

periodic orbits. We also give a characterization of compact metric spaces admiting
hyper-expansive homeomorphisms.

1. Introduction

It is an important goal in topological dynamics to understand the global behavior
of expansive homeomorphisms. In light of the work of J. Lewowicz and K. Hiraide of
expansive homeomorphisms of surfaces (see [2, 5]) it seems that the key point is to
determine the topological properties of stable sets. On manifolds of arbitrary dimension
it is proved in the above mentioned papers that the topological dimension of stable sets
is positive (i.e., contains non-trivial connected sets) and smaller than the dimension of
the manifold (i.e., there are no stable points). But it seems that more technology is
needed in order to understand the topological structure of such sets.

A proof of the cited results is based in the following tool. Take an arc or a continuum
on the manifold, iterate it with the homeomorphism and consider an accumulation
point in the Hausdorff metric on compact subsets. So, it seems that is of interest to
consider the dynamics of sets instead of single points. This fact was noticed by H. Kato,
who introduced the notion of continuum-wise expansiveness. Consider f : X → X a
homeomorphism on a compact metric space. We say that f is continuum-wise expansive
if there is δ > 0 such that if C ⊂ X is a compact connected set (i.e., continuum) such
that diam(fnC) < δ for all n ∈ Z then C is a singleton.

One can try the following definition: a homeomorphism is compact-wise expansive if
there is δ > 0 such that if C ⊂ X is compact and diam fn(C) < δ for all n ∈ Z then C
is a singleton. But it is easy to see that this is equivalent with expansiveness. One just
has to notice that diam({x, y}) = dist(x, y) and that every non-trivial compact set has
at least two different points. Expansiveness is also equivalent with what could be called
set-wise expansiveness (with analogous definition and proof). It is interesting to remark
that open-wise expansiveness is some kind of sensitive dependence on initial conditions.

Given a compact metric space we consider the space of all compact subsets A ⊂ X.
That space is called the hyperspace of X and is denoted as 2X . The topology of 2X is
defined by the Hausdorff metric distH defined as

distH(A,B) = inf{ε > 0 : A ⊂ Bε(B) and B ⊂ Bε(A)}
for all A,B ∈ 2X . As usual Bε(A) denotes the set ∪x∈ABε(x) where Bε(x) = {y ∈ X :
dist(x, y) < ε}. The hyperspace has very nice properties. For example, it is known that
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2X inherits the compactness of X. Also, if X is connected then 2X is arc-wise connected

(see [8]). So, it is natural to extend the action of f to 2X , simply as f̂ : 2X → 2X defined

by f̂(A) = f(A). It gives a homeomorphism as can be easily verified. Some relationships

are known between the dynamics of f and f̂ . For example, if f has positive topological

entropy then f̂ has infinite topological entropy (see Proposition 6 in [1]).
The purpose of the present note is to study the expansiveness of the induced map

f̂ , that is what we call hyper-expansiveness of f . Notice that hyper-expansiveness is a
stronger condition than expansiveness. The following facts are known:

• if a compact metric space admits an expansive homeomorphism then its topo-
logical dimension is finite (see [6]) and

• if dimtopX > 0 then dimtop 2X = ∞ (this fact was first proved in [7], see also
[8] Theorem 1.95).

Hence, if 2X admits an expansive homeomorphism then dimtopX = 0.
It is known that expansiveness does not imply hyper-expansiveness. Indeed, in [1] it

is noticed that the shift map is not hyper-expansive (this can be deduced from the fact
that the shift map has infinite periodic points) while the shift map itself is expansive.
Those remarks on hyper-expansiveness were rediscovered in [9] (Proposition 2.23 and
Example 2.24). We give a simple characterization of hyper-expansiveness, statements
and proofs are in the following Section.

Another important problem in topological dynamics is to determine what spaces
admit expansive homeomorphisms. In [4] this problem is solved for countable com-
pact spaces. As we will see, spaces admiting a hyper-expansive homeomorphism are
countable. In this note we also give a characterization of compact spaces admiting
hyper-expansive homeomorphisms.

In terms of the hyperspace, expansiveness can be characterized as follows. Let F1 =

{{x} : x ∈ X} ⊂ 2X be the space of singletons. Notice that F1 is f̂ -invariant, in fact

f̂ : F1 → F1 is conjugated with f : X → X. By definition we have that f is expansive

if and only if F1 is an isolated set for f̂ , i.e., there is an open set U of 2X such that

F1 = ∩n∈Zf̂nU .
I would like to thank Damián Ferraro, Mario González and Ignacio Monteverde for

useful conversations on these topics, José Vieitez for his corrections in the preliminary
version of the note and the referee for his or her remarks.

2. Hyper-expansiveness

Let (X,dist) be a compact metric space.

Definition 2.1. A homeomorphism f : X → X on a compact metric space is hyper-

expansive if f̂ : 2X → 2X is expansive, that is, there is δ > 0 such that if distH(fnA, fnB) <
δ for all n ∈ Z, with A and B compact subsets of X, then A = B.

We need some definitions. Given a point p ∈ X we say that it is (Lyapunov) stable
if for all ε > 0 there is δ > 0 such that if dist(x, p) < δ then dist(fnx, fnp) < ε for
all n ≥ 0. A point p is said to be unstable if it is stable for f−1. We say that p is
asymptotically stable if it is stable and there is γ > 0 such that if dist(x, p) < γ then
dist(fnx, fnp) → 0 as n → ∞. If p is an asymptotically stable periodic orbit then the
orbit of p is said to be an attractor. A repeller is an attractor for f−1. Notice that
isolated periodic points are stable and unstable by definition. Let us denote

• Ωf the set of non-wandering points, i.e., x ∈ Ωf if for all ε > 0 there is n > 0
such that fn(Bεx) ∩Bεx 6= ∅,
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• Perr the set of repeller periodic points and Pera the set of attracting periodic
points.

Now we can state the main result of this note.

Theorem 2.2. A homeomorphism f : X → X is hyper-expansive if and only if f has a
finite number of orbits and Ωf = Perr ∪ Pera.

Remark 2.3. It is easy to see that every expansive homeomorphism has a finite number
of fixed points. Also, every compact f -invariant set K ⊂ X (i.e., f(K) = K) is a fixed

point of f̂ . So, if f is hyper-expansive then f has a finite number of compact invariant
sets (in particular, it has finitely many periodic points).

A compact f -invariant set K ⊂ X is said to be minimal if for all x ∈ K the orbit
{x, fx, . . . , fnx, . . . } is dense in K.

Lemma 2.4. If f : X → X is hyper-expansive and K ⊂ X is minimal then K is finite
(i.e., a periodic orbit).

Proof. Minimality implies that for all ε > 0 there is n ≥ 0 such that for all x ∈ X the set
Onx = {x, fx, . . . , fnx} is ε-dense in K (i.e., for all y ∈ K there is j ∈ {0, 1, . . . , n} such
that dist(y, f jx) < ε). Therefore, f j(Onx) is ε-dense for all j ∈ Z because f j(Onx) =

On(f jx). If ε is an expansive constant for f̂ then distH(f j(Onx), f j(K)) < ε for all
j ∈ Z. Then K = Onx and K is finite. �
Remark 2.5. In the previous proof the expansiveness was contradicted with two sets
K1 ⊂ K2. Notice that distH(A,B) ≥ distH(A,B ∪ A), so f is hyper-expansive if and

only if there is δ > 0 such that if A ⊂ B, A,B ∈ 2X and distH(f̂nA, f̂nB) < δ for all
n ∈ Z then A = B.

We have that if f is hyper-expansive then f has a finite number of periodic points.
Eventually taking a power of f we can suppose that every periodic point is a fixed point.
Recall that if a homeomorphism is expansive then its non-trivial powers are expansive
too. In the following Lemma we will need the next well known result.

Remark 2.6. If f is expansive and p is a stable (unstable) periodic point then p is
an attractor (repeller). It can be proved as follows. Without loss of generality we can
suppose that p is a fixed point. By contradiction suppose that p is stable but it is not
asymptotically stable. Let δ > 0 be an expansive constant of f . Therefore, there is a
point q ∈ Bδ(p) such that fnq ∈ Bδ(p) for all n ≥ 0 but the ω-limit set of q is not {p}.
So p and a point p′ ∈ ω(q), p′ 6= p, contradict the expansiveness of f .

Lemma 2.7. If f is hyper-expansive then every fixed point of f is an attractor or a
repeller.

Proof. By contradiction suppose that p is a fixed point of f that is neither attractor nor
repeller. Since p is not an attractor, p is not stable (Remark 2.6). So, there is ε > 0
and a sequence xn such that xn → p as n→∞ and for some kn > 0, fkn(xn) /∈ Bε(p).
Suppose that for all k < kn, fk(xn) ∈ Bε(p). Assume that an = fkn−1(xn) converges
to a ∈ closBε(p). It is easy to see that f j(a)→ p as j → −∞ and a 6= p.

Similarly, using that p is not unstable, one can prove that there is b 6= p such that

f j(b) → p as j → ∞. Let δ > 0 be an expansive constant for f̂ . Take n ≥ 0 such that
fm(b), f−m(a) ∈ Bδ(p) for all m ≥ n. Let A = {fn(b), f−n(a)} and B = A ∪ {p}. So,
A 6= B and distH(fnA, fnB) < δ for all n ∈ Z. That contradicts the expansiveness of

f̂ . �
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Now we prove our main result.

Proof. (of Theorem 2.2) Direct. Suppose that f is hyper-expansive. We have proved
that there is a finite number of periodic points. So, eventually taking a power of f we
can suppose that every periodic point is in fact a fixed point. If there are only fixed
points, there is nothing to prove (X is finite). So, suppose that x ∈ X is not a fixed
point. Consider the ω-limit set ω(x). It is a compact invariant set, therefore it contains
a minimal set, say K. We have proved that every minimal set is a periodic orbit, so, it
is a fixed point K = {p}. It is easy to see that ω(x) = {p}, since p must be an attractor.
In particular x is a wandering point. Then, we have proved that Ω(f) = Pera ∪ Perr.

Now we will prove that there is a finite number of orbits. It is easy to see that for
all ε > 0 there is N ≥ 0 such that if x /∈ Bε(Ω(f)) then f jx, fkx ∈ Bε(Ω(f)) if j ≤ −N
and k ≥ N .

If f has an infinite number of orbits and ε > 0 is smaller than an expansive constant

for f̂ , then X \ Bε(Ω(f)) is a compact infinite set. So, there are x, y /∈ Bε(Ω(f)) and
p, q ∈ Ω(f) such that ω(x) = ω(y) = {p} and α(x) = α(y) = {q}. Then, if dist(x, y) is
small, this two points contradicts the expansiveness of f (and hyper-expansiveness too).
This contradiction proves that there is a finite number of orbits.

Converse. Again, eventually taking a power of f , we can assume that every periodic
point of f is a fixed point. Let δ1 > 0 be such that ∩n≥0fn(Bδ1(Pera)) = Pera and
∩n≤0fn(Bδ1(Perr)) = Perr. Take x1, . . . , xn one point of each wandering orbit of f .
Let δ2 > 0 be such that Bδ2(xi) = {xi} for all i = 1, . . . , n. We will show that δ =

min{δ1, δ2} is an expansive constant for f̂ . Let A,B be two compact sets such that
distH(fnA, fnB) < δ for all n ∈ Z. If there is a wandering point x such that x ∈ A \B
then there is k ∈ Z and i ∈ {1, . . . , n} such that fkx = xi. So, distH(fkA, fkB) > δ2.
This contradiction proves that the wandering points of A and B coincide. If A 6= B
then there is a fixed point p ∈ A\B (similarly for p ∈ B \A). Without loss of generality
suppose that p is a repeller. Since p /∈ B then there is ε > 0 such that Bε(p) ∩ B = ∅.
Take n such that Bδ1(p) ∩ fnB = ∅. Since p ∈ fnA for all n ∈ Z, we have that
distH(fnA, fnB) > δ1, wich is a contradiction. So f is hyper-expansive. �

A simple consequence of the previous result is that if X admits a hyper-expansive
homeomorphism then X is countable. As we will see, the converse is not true. Let

Iso(X) = {x ∈ X : there is ε > 0 such that Bε(x) ∩X = {x}}
and

Lim(X) = X \ Iso(X).

The cardinality of a set A is denoted as |A|.
Theorem 2.8. A compact metric space X admits a hyper-expansive homeomorphism if
and only if 2 ≤ |Lim(X)| <∞ or Lim(X) = ∅ (i.e., X is finite).

Proof. By Theorem 2.2 we have that Lim(X) ⊂ Ω(f) that is because wandering points
must be isolated. So, Lim(X) is finite. If X is infinite, there must be at least one
attractor and one repeller, so Lim(X) ≥ 2.

In order to prove the converse notice that if the set of limit points is finite then X
is countable. Consider an infinite countable space X (the finite case is trivial). Since
every infinite continuum is uncontable, we have that dimtop(X) = 0. It is known that if
dimtop(X) ≤ n then X is homeomorphic to a compact subset of R2n+1, see Theorem V2
in [3]. So, without loss of generality, we can assume that X ⊂ R. Let p1 < · · · < pn ∈ X,
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n ≥ 2, be the limit points of X. We can also suppose that X ⊂ [p1, pn] and for all ε > 0
we have that

• X ∩ (pj , pj + ε) 6= ∅ for all j = 1, . . . , n− 1 and
• X ∩ (pj − ε, pj) 6= ∅ for all j = 2, . . . , n

Define Ij = X ∩ (pj , pj+1) for j = 1 . . . , n− 1. Now we define f : X → X as follows:

• f(pj) = pj for all j = 1, . . . , n,
• if x ∈ Ij and j is odd then f(x) is the first point of X at the right of x and
• if x ∈ Ij and j is even then f(x) is the first point of X at the left of x.

In this way pj is a repeller fixed point if j is odd and it is an attractor if j is even. So,
by Theorem 2.2 we have that f is hyper-expansive. �

Since hyper-expansiveness is a very strong condition, we have that most homeomor-
phisms satisfy the following result.

Corollary 2.9. If f : X → X is a homeomorphism of a compact metric space X and
|Lim(X)| = ∞ then for all ε > 0 there are two different compact sets A,B ⊂ X such
that

distH(fnA, fnB) < ε, for all n ∈ Z.
It is a simple consequence of our previous result. It holds for example if X is a

manifold of positive dimension, a non-trivial connected space or a Cantor set.
Let us now give some examples and final remarks.

Example 2.10. Let X = {0} ∪ {1/n : n ∈ N}. Since X has just one limit point we
have that X does not admit hyper-expansive homeomorphisms, but it is easy to see that
it admits an expansive one.

Countable compact spaces admiting expansive homeomorphisms can be characterized
as follows. Recall that Limλ+1(X) = Lim(Limλ(X)), Lim1(X) = Lim(X) and

Limλ(X) =
⋂

α<λ

Limα(X)

for every limit ordinal number λ. The limit degree of X is the ordinal number d(X) = λ

if Limλ(X) 6= ∅ and Limλ+1(X) = ∅. In [4] (Theorem 2.2) it is shown that a countable
compact space X admits an expansive homeomorphism if and only if d(X) is not a limit
ordinal number.

Remark 2.11. Applying Theorem 2.8 we have that X admits a hyper-expansive home-
omorphism if and only if d(X) ≤ 1 and |Lim(X)| 6= 1.

It seems to be of interest to provide an example of a countable compact space do not
admiting expansive homeomorphisms.

Example 2.12. Given A ⊂ R we say that (a, b) ∈ A × A is an adjacent pair if there
are no points of A in the open interval (a, b). The set of adjacent pairs is denoted as

Adj(A) = {(a, b) ∈ A×A : a < b, (a, b) ∩A = ∅}.
Let A0 = {0} ∪ {1/n : n ∈ N} and

An+1 = An ∪
⋃

(a,b)∈Adj(An∩[0,1/n])
{a+ (b− a)/m : m ∈ N}.

Define X = ∪∞n=0An. It is easy to see that it is a compact set and it is countable by
construction. Notice that d(X) is the first infinite ordinal number and therefore it is
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a limit ordinal number. To see that it does not admit an expansive homeomorphism
notice that if f : X → X is a homeomorphism then Limλ(X) is an f -invariant set for
all ordinal number λ. Now notice that for all ε > 0 there is a finite ordinal number
λ such that Limλ(X) ⊂ [0, ε] and Limλ(X) is an infinite set. Therefore, every pair of

different points x, y ∈ Limλ(X) contradict the ε-expansiveness of f . Since ε is arbitrary
we have that X does not admit expansive homeomorphisms.
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[6] R. Mañé, Expansive homeomorphisms and topological dimension, Trans. of the AMS, 252, 313–319,
(1979).

[7] S. Mazurkiewicz, Sur le type de dimension de l’hyperespace d’un continu, C. R. Soc. Sc. Varsovie,

24, 191–192, (1931).
[8] S. Nadler Jr., Hyperspaces of Sets, Marcel Dekker Inc. New York and Basel (1978).

[9] P. Sharma and A. Nagar, Topological dynamics on hyperspaces, Applied general topology, 11, 1–19,

(2010).

E-mail address: aartigue@fing.edu.uy
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INVARIANT MEASURES FOR RANDOM TRANSFORMATIONS

EXPANDING ON AVERAGE

JOCHEN BRÖCKER AND GIANLUIGI DEL MAGNO

Abstract. The thermodynamic formalism for random transformations expanding
on average is revisited. We consider the associated random transfer operators with

Hölder continuous random potentials, and prove a random version of the Ruelle–

Perron–Frobenius Theorem. This result allows us to construct random invariant
measures for the transformations considered. These measures are ergodic, and enjoy

fiberwise exponential decay of correlations. As a method of proof, we construct

a family of cones of positive functions for which the transfer operator is a strict
contraction. Application of a random fixed point theorem then yields a maximal

random eigenvalue and eigenvector of the transfer operator.

September 28, 2013

1. Introduction

Let (Ω,F ,P) be a probability space with the σ-algebra F endowed with an automor-
phism T : Ω → Ω preserving the probability P. Furthermore, let M be a separable
and complete metric space with its Borel algebra B. A discrete time random dynamical
system acting on (M,B) and driven by (Ω,F ,P, T ) is a family {φn}n∈N of measurable
transformations φn : Ω×M →M enjoying the cocycle property

φn+k(ω, x) = φk(Tnω, φn(ω, x))

for ω ∈ Ω, x ∈ M and k, n ∈ N. In this paper, we consider random dynamical systems
generated by a single measurable transformation φ : Ω×M →M . This means that

φn(ω, ·) = φ(Tn−1ω, ·) ◦ · · · ◦ φ(ω, ·)
for ω ∈ Ω and n ∈ N. Such a system will be denoted by φ rather than by {φn}n∈N.

A measure µ on the product space Ω×M is called φ-invariant if µ is invariant for the
transformation Ω×M 3 (ω, x) 7→ (Tω, φ(ω, x)), and the marginal of µ on Ω is equal to
P. If the family {µω}ω∈Ω of measures on M denotes the disintegration of µ with respect
to P, then the φ-invariance of µ is equivalent to the property that φ(ω, ·)∗µω = µTω for
P-a.e. ω ∈ Ω.

When φ(ω, ·) : M → M is continuos for each ω ∈ Ω, a standard approach for
constructing φ-invariant measures with interesting properties consists in studying the
family {Lφ,γ(ω)}ω∈Ω of operators on the space of continuous functions C(M) defined
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Key words and phrases. Random Dynamical Systems, Thermodynamic Formalism, Transfer
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by

(Lφ,γ(ω)ϕ)(x) =
∑

y∈φ(ω,·)−1(x)

eγ(ω,y)ϕ(y)

for ω ∈ Ω, x ∈ M , ϕ ∈ C(M) and a measurable function γ : Ω ×M → (0,+∞) such
that γ(ω, ·) ∈ C(M) for each ω ∈ Ω.

In this paper, we further assume that M is a connected compact Riemannian man-
ifold, and that φ(ω, ·) : M → M is surjective and a local diffeomorphism expanding
on average. Precise definitions are postponed until Section 2. Under these hypotheses,
we prove a Ruelle–Perron–Frobenius Theorem (RPFT) for the random operator Lφ,γ .
For a detailed account on RPFTs, we refer the reader to the excellent monograph [2].
Roughly speaking, our RPFT states that there exists a triple (Λ, h, ν) consisting of a
measurable function Λ : Ω → (0,+∞), a measurable function h : Ω ×M → (0,+∞),
and a family ν = {νω}ω∈Ω of measures on M such that for P-a.e. ω ∈ Ω,

Lφ,γ(ω)h(ω, ·) = Λ(ω)h(Tω, ·),
L∗φ,γ(ω)νTω = Λ(ω)νω,

where L∗φ,γ(ω) is the dual operator of Lφ,γ(ω) acting on Borel measures on M . This
results can be considered as the random counterpart of the classical Perron–Frobenious
Theorem, with Λ and h playing the roles of the maximal eigenvalue and eigenvector of the
random operator Lφ,γ , respectively. As the Perron–Frobenius Theorem allows to prove
the existence of stationary measures for finite state Markov chains, so the RPFT will
allow us to prove that the measure µ whose disintegration on P is given by the measures
µω = h(ω, ·)νω is φ-invariant. We then show that µ enjoys fiberwise exponential decay
of correlations, and is ergodic for the transformation (ω, x) 7→ (Tω, φ(ω, x)).

If the potential is given by γ(ω, x) = − log |detDxφ(ω, ·)|, then the transfer operator
Lφ,γ(ω) is the usual Frobenius–Perron operator associated to the random map φ(ω, ·).
In this case, we further show that the measures µω are all absolutely continuous with
respect to the Riemannian volume m.

The proof of our RPFT consists of three major steps. Firstly, we show that under our
assumptions on the system φ, the operators Lφ,γ(ω) preserve certain cones consisting of
positive Hölder continuous functions. By equipping these cones with Hilbert’s projective
metric, we show that the operators Lφ,γ(ω) are contractions. It was shown first by
Birkhoff that a linear map preserving a cone equipped with Hilbert’s projective metric
is a contraction [5, 7]. The existence of the function h is then proved employing a
Fixed Point Theorem for random Lipschiz maps contracting on average, which is a
generalization of a theorem of Bougerol [4]. Finally, closely following an argument of
Birkhoff (see also [10]), we prove the existence of the measures νω.

Results similar to those presented in this paper were already obtained by several
authors. Ferrero and Schmitt considered the case of subshifts of finite type with random
potential [10]. Their results were then extended by Bogenschütz and Gundlach to the
case of random subshifts [3]. Finally, Kifer examined the symbolic transformations of
Bogenschütz and Gundlach, and the case of random maps expanding on average [13]
(see also [12, 11]), the latter being essentially the subject of the present paper. Thus,
our results are to some extent not original, and a comparison with the approach and
results of Kifer is in order.

Kifer obtains the RPFT under essentially the same assumptions as in the present
paper, except that he further requires the function ω 7→ supx∈M |γ(ω, x)| to be P-
integrable. This condition is required to prove that the resulting random invariant
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measures satisfy the celebrated variational principle, something we do not consider here.
On the other hand, we derive the RPFT by proving that, asymptotically as n → +∞,
the operator

1

Λ(Tnω) · · ·Λ(ω)
Lφ,γ(Tnω) ◦ · · · ◦ Lφ,γ(ω)

behaves like a projector onto the 1-dimensional subspace of C(M) generated by h(Tnω, ·)
for P-a.e. ω ∈ Ω. This implies, in particular, fiberwise exponential decay of correlations.
This is stronger than the corresponding result by Kifer, which provides exponential
decay of correlations only for a random subsequence with positive density [13].

As far as the difference between the proofs is concerned, we both use families of cones
consisting of positive Hölder continuous functions, and Hilbert’s projective metrics to
prove the existence of the function h. The difference between the two proofs stands in the
difference between the cones and their use. We construct a family of cones {C(ω)}ω∈Ω

which is invariant under {Lφ,γ(ω)}ω∈Ω, that is,

Lφ,γ(ω)C(ω) ⊂ C(Tω) for P-a.e. ω ∈ Ω,

and furthermore, this inclusion is strict in the sense that the projective diameter of
Lφ,γ(ω)C(ω) in C(Tω) is bounded from above by a proper random variable on Ω. Our
approach also differs from Kifer’s in the proof of the existence of the family of measures
ν. Whereas Kifer’s uses a Krylov–Bogoliubov type argument, we exploit properties of
the Hilbert projective metric. We follow [10], where an argument originally devised by
Birkhoff for deterministic operators [5] is extended to the random case.

The paper is organized as follows. In Section 2, we return to the definition of the
main mathematical objects studied in this paper: random dynamical systems, invariant
measures and random transfer operators. In Section 3, we formulate our main results in
Theorems 3.1-3.3. As already explained, these theorems are proved by using Hilbert’s
projective metric on cones and a Fixed Point Theorem for random maps. The latter is
proved in Section 4. That section further contains other results on the uniqueness and
measurability of the random fixed point, which might be of independent interest. In
Section 5, we introduce Hilbert’s projective metric on cones and recall Birkhoff’s results
on transformations preserving cones. We also give a detailed proof of the completeness
of Hilbert’s projective metric, which we were not able to find in the literature. Finally,
Section 6 contains the proofs of Theorems 3.1-3.3. Because of their length, these proofs
are split into several propositions.

2. Main definitions and statement of results

In this section, we define the objects investigated in this paper: random dynamical
systems, invariant measures and random transfer operators.

2.1. Random dynamical systems. The notion of random dynamical system intro-
duced below coincides essentially with the one of a discrete time random dynamical
system generated by a random map φ as in Arnold’s book [1]. The difference between
the two definitions is that ours does not assume the map φ to be measurable. Later on,
we will impose more restrictive conditions on our random dynamical systems.

Let (Ω,F ,P) be a probability space together with an automorphism T : Ω → Ω
preserving the probability P. We will always assume that the abstract dynamical system
(Ω,F ,P, T ) is ergodic. Let X be a set, and suppose that φ is a transformation from
Ω×X to X. At this stage, we do not impose any condition on X and φ.
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The iterations φn : Ω×X → X of the transformation φ are defined as follows

φn(ω, x) =

{
x if n = 0,

φ(Tn−1ω, ·) ◦ · · ·φ(Tω, ·) ◦ φ(ω, x) if n > 0.

If φ(ω, ·) : X → X is a bijection for every ω ∈ Ω, then we can also define φn for n < 0
as follows

φn(ω, ·) = (φ−n(Tnω, ·))−1
= φ(Tnω, ·)−1 ◦ · · · ◦ φ(T−1ω, ·)−1 for ω ∈ Ω.

We refer to the case when φ(ω, ·) is a bijection as the invertible case.
It follows immediately from their definition, that the maps {φn} satisfies the cocycle

property :

φn+m(ω, x) = φn(Tmω, ·) ◦ φm(ω, x) for ω ∈ Ω, x ∈ X and m,n ≥ 0.

In the invertible case, the cocycle property holds for every m,n ∈ Z.
The sequence of transformations {φn}n≥0 in the invertible case and the sequence of

transformations {φn}n∈Z in the non-invertible case are both called a random dynamical
system on X over (Ω,F ,P, T ) generated by φ. To avoid a cumbersome terminology, we
will often avoid mentioning the set X and the dynamical system (Ω,F ,P, T ), and simply
refer to {φn} as the random dynamical system φ.

A random dynamical system φ defines a skew-product F : Ω×X → Ω×X by setting

(ω, x) 7→ (Tω, φ(ω, x)) for ω ∈ Ω and x ∈ X.
We say that F is the skew-product associated to φ. Note that, conversely, every skew-
product transformation defines a random dynamical system. Therefore, a skew-product
provides an alternative way to describe a random dynamical system.

2.2. Invariant measures. Suppose now that X is a compact metric space with its
Borel σ-algebra X , and that the transformation φ : (Ω ×X,F ⊗ X ) → (X,X ) is mea-
surable. Then, of course, the skew-product F associated to φ is measurable as well.

Let πΩ be the natural projection of Ω×X onto Ω. We say that a probability measure
µ on (Ω×X,F ⊗ X ) is φ-invariant if the following conditions are satisfied

(1) µ is invariant under F , i.e., F∗µ = µ,
(2) πΩ∗µ = P.

We also say that a φ-invariant probability µ is ergodic if µ is ergodic for the skew-
product F .

Because X is compact metric, it is separable. It follows that a probability µ on
(Ω×X,F ⊗ X ) admits a disintegration {µω} with respect to P that is P-almost surely
unique [1, Proposition 1.4.3]. This means that up to a set of zero P-measure, there exists
a unique family {µω} of nonnegative set functions on X such that

(1) ω 7→ µω(A) is measurable for every A ∈ X ,
(2) µω is a probability on (X,X ) for P-a.e. ω ∈ Ω,
(3) for every B ∈ F ⊗ X , we have

µ(B) =

∫

Ω

∫

X

IB(ω, x)dµω(x)dP(ω),

where IB is the characteristic function of B.

Under our assumptions on (Ω,F ,P, T ) and X, it turns out that a probability µ on
(Ω ×X,F ⊗ X ) is φ-invariant if and only if φ(ω, ·)∗µω = µTω for P-a.e. ω ∈ Ω (see [1,
Theorem 1.4.5]).
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2.3. Differentiable random transformations. Let M be a compact connected Rie-
mannian manifold. We denote by ‖ · ‖ and d the norm and the distance, respectively,
generated by the Riemannian metric. We also denote by B the Borel σ-algebra of M
and by m the volume measure on M , which is normalized so that m(M) = 1. Given
a measurable function ϕ : M → R that is integrable with respect to m, the expression
‖ϕ‖1 denotes the integral

∫
M
|ϕ(x)|dm(x), i.e., the L1-norm of ϕ.

As usual, C(M) denotes the collection of all real continuous functions on M . Endowed
with the sup norm ‖ · ‖∞, the space C(M) is a Banach algebra with respect to the
pointwise multiplication. The set of strictly positive continuous functions on M is
denoted by C+(M). A central role in our analysis is played by the subset of C(M)
consisting of Hölder functions. Let Cα(M) be the set of all real Hölder continuous
functions with exponent 0 < α ≤ 1. If ϕ ∈ Cα(M), we say that ϕ is α-Hölder, and its
Hölder constant |ϕ|α is the smallest constant a ≥ 0 such that |ϕ(x)−ϕ(y)| ≤ a ·d(x, y)α

for every x, y ∈ M . The set of strictly positive α-Hölder functions on M is denoted by
Cα+(M).

The results obtained in this paper concern random dynamical systems generated by
measurable maps φ : (Ω×X,F ⊗ X )→ (X,X ) with the following properties:

(1) X = M and X = B,
(2) φ(ω, ·) is a surjective local C1 diffeomorphism of M for every ω ∈ Ω.

We call such a map φ a random local diffeomorphism of M .
Observe that every local diffeomorphism ψ from a connected smooth manifold M

to itself is an N -covering map of M with N being the number of preimages ψ−1(x) of
any point x ∈ M , which is independent of x (see [15, Proposition 2.19]). This means
that for every x ∈ M , there exists a connected open set U containing x such that ψ
maps diffeomorphically every connected component of ψ−1(U) onto U . In particular,
an N -covering map is surjective. The constant N is called the degree of ψ.

2.4. Random transfer operators. A random potential on M is a measurable function
γ : Ω×M → R. We say that a random potential γ on M is of class Cα with 0 ≤ α ≤ 1
if γ(ω, ·) ∈ Cα(M) for every ω ∈ Ω. The term ‘potential’ has its origin in statistical
mechanics where the transfer operator approach to the study of translation invariant
states originated (for more details, see [2] and further references therein).

The random transfer operator Lφ,γ(ω) : C(M) → C(M) associated to the random
local diffeomorphism φ and the continuous (i.e., of class C0) random potential γ is given
by

(Lφ,γ(ω)ϕ)(x) =
∑

y:φ(ω,y)=x

eγ(ω,y)ϕ(y) for ω ∈ Ω, x ∈M and ϕ ∈ C(M).

It is not hard to see that, under our assumptions, Lφ,γ(ω) is a positive bounded linear
operator on C(M). Positivity means that Lφ,γ(ω)ϕ ≥ 0 whenever ϕ ∈ C(M) with
ϕ ≥ 0. Note that if γ(ω, x) = − log |detDxφ(ω, ·)|, then Lφ,γ(ω) is the Perron-Frobenius
operator of the transformation φ(ω, ·) : M →M .

The Riesz Representation Theorem [19] states that the dual space of C(M) is isomor-
phic to the spaceM(M) of regular signed Borel measures on M . We adopt the notation
ν(ϕ) to denote the integral

∫
M
ϕ(x)dν(x) with ν ∈M(M) and ϕ being a bounded mea-

surable function on M . Then the dual operator L∗φ,γ(ω) :M(M)→M(M) of Lφ,γ(ω)
is defined through

(L∗φ,γ(ω)ν)(ϕ) = ν(Lφ,γ(ω)ϕ) for ν ∈M(M) and ϕ ∈ C(M).
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We also introduce another operator L̂φ,γ(ω) that represents a normalization of Lφ,γ(ω)

on C+(M). Namely, let L̂φ,γ(ω) : C+(M)→ C+(M) be the operator given by

L̂φ,γ(ω)ϕ =
1

‖Lφ,γ(ω)ϕ‖∞
· Lφ,γ(ω)ϕ for ω ∈ Ω and ϕ ∈ C+(M).

The iterates of the operator Lφ,γ(ω) are defined as follows

Ln,φ,γ(ω) =

{
IdC(M) if n = 0,

Lφ,γ(Tn−1ω) ◦ · · · ◦ Lφ,γ(ω) if n > 0.

The iterates L̂n,φ,γ(ω) of the operator L̂φ,γ(ω) are defined in a similar fashion. Whenever

there is no risk of confusion, we will often drop the subscripts φ and γ in Lφ,γ and L̂φ,γ
for simplicity’s sake.

3. Main results

In this section, we line out the assumptions made throughout the whole paper, and
formulate our main results in Theorems 3.1 and 3.2.

Suppose that φ is a random local diffeomorphism of a manifold M , and that γ is a
random potential on M of class Cα with 0 < α ≤ 1. For every ω ∈ Ω, the quantity

σ(ω) = min
x∈M
‖(Dxφ(ω, ·))−1‖−1

is the least expansion coefficient of φ(ω, ·). Since φ(ω, ·) is a local diffeomorphism, σ(ω)
is strictly positive for every ω ∈ Ω. Define

b(ω) = max{|γ(ω, ·)|α, 1} for ω ∈ Ω.

The separability of M implies that the functions σ and b are measurable, as will be
shown in Lemma 6.6. We further impose on φ and γ the following conditions:

C1 (Expansion on average): The random map ω 7→ φ(ω, ·) expands on aver-
age, i.e., log σ(ω) ∈ L1(P) and∫

Ω

log σ(ω)dP(ω) > 0.

C2 (Integrability): log b ∈ L1(P).

In fact, condition C2 can be weakened somewhat. It is enough to assume that b is
a measurable and tempered function, see the comments immediately after Lemma 6.2.
Note further that b and σ depend on the choice of the metric on M .

We are now ready to formulate our main results. Their proofs follows from the series
of results proved in Section 6. The symbol 1 denotes the characteristic function of M .

Theorem 3.1. Let φ be a random local diffeomorphism on a manifold M , and let γ be
a random potential on M of class Cα with 0 < α ≤ 1. Suppose that φ and γ satisfy
conditions C1 and C2. Then there exist a constant ξ ∈ [−∞, 0), a full P-measure T -
invariant set Ω0 ⊂ Ω, a measurable function h : Ω ×M → R, a family ν = {νω}ω∈Ω0

of finite regular Borel measures on B and a measurable function Λ : Ω0 → (0,+∞) such
that for every ω ∈ Ω0 and ϕ ∈ Cα+(M), we have

(1) h(ω, ·) ∈ Cα+(M) and ‖h(ω, ·)‖∞ = 1,
(2) L(ω)h(ω, ·) = Λ(ω)h(Tω, ·),
(3) L∗(ω)νTω = Λ(ω)νω,
(4) νω(h(ω, ·)) = 1,
(5) Ω0 ∈ ω 7→ νω(A) is measurable for every A ∈ B,
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(6) lim supn→+∞ n−1 log ‖L̂n(T−nω)1− h(ω, ·)‖∞ ≤ ξ,

(7) lim supn→+∞ n−1 log ‖L̂n(ω)ϕ− h(Tnω, ·)‖∞ ≤ ξ.

Furthermore, the quadruple (Ω0,Λ, h, ν) is unique in the following sense. If there exist

another quadruple (Ω̃0, Λ̃, h̃, ν̃) formed by a full P-measure T -invariant set Ω̃0 ⊂ Ω, a

measurable function h̃ : Ω ×M → R, a family ν̃ = {ν̃ω}ω∈Ω̃0
of finite regular Borel

measures on B and a measurable function Λ̃ : Ω̃0 → (0,+∞) satisfying conclusions

(1)-(5), then h̃(ω) = h, Λ̃(ω) = Λ(ω) and ν̃ω = νω for every ω ∈ Ω̃0 ∩ Ω0.

Let (Ω0,Λ, h, ν) be the quadruple derived in the previous theorem. We define Λn(ω) =
Λ(Tn−1ω) · · ·Λ(ω) for ω ∈ Ω0 and n > 0, We also define a probability measure µ on
F ⊗M by specifying its disintegration {µω}ω∈Ω0 on P,

µω = h(ω, ·)νω for ω ∈ Ω0.

Finally, given ϕ ∈ Cα(M) and ψ : M → R measurable and bounded, we define the
random correlation function of ϕ and ψ as follows

Cn(ω, ϕ, ψ) =

∫

M

ϕ(ω, x)ψ(ω, φn(ω, x))dµω(x)

−
∫

M

ϕ(ω, x)dµω(x)

∫

M

ψ(ω, x)dµTnω(x) for ω ∈ Ω0 and n > 0.

Theorem 3.2. Suppose that the hypotheses of Theorem 3.1 are satisfied, and let (ξ,Ω0,Λ, h, ν)
be the quintuple obtained in Theorem 3.1. Then for every ω ∈ Ω0, every ϕ ∈ Cα(M)
and every function ψ : M → R measurable and bounded, we have

(1) lim supn→+∞ n−1 log ‖Λn(ω)−1Ln(ω)ϕ− νω(ϕ)h(Tnω, ·)‖∞ ≤ ξ,
(2) lim supn→+∞ n−1 log |Cn(ω, ϕ, ψ)| ≤ ξ,
(3) the probability µ is φ-invariant and ergodic.

As already detailed in the introduction, Theorems 3.1 and 3.2 constitute a random
generalization of the classical Ruelle–Perron–Frobenius Theorem. Note that conclu-
sion (6) of Theorem 3.1 provides information as to how the eigenfunction h is con-

structed, namely as the limit of the sequence {L̂n(T−nω)1}n∈N. The second part of
conclusion (6) of Theorem 3.1 gives a related but slightly different result, namely that

all forward orbits of the form {L̂n(ω)ϕ}n∈N with ϕ ∈ Cα+(M) are asymptotically at-
tracted by the orbit {h(Tnω, .)}n∈N with exponential speed of convergence. Finally,
conclusion (1) of Theorem 3.2 states that the iterates of the operator L(ω) asymptoti-
cally behave like a projector onto the eigenfunction h.

If γ(ω, x) = − log |detDxφ(ω, ·)| in Theorems 3.1 and 3.2, then the random transfer
operator L(ω) becomes the usual Frobenius–Perron operator associated to the random
map φ(ω, ·). In this case, the measures {µω}ω∈Ω0

are all absolutely continuous with
respect to the Riemannian volume m. Of course, to guarantee that such a potential γ
is of class Cα, we may assume that φ(ω, ·) ∈ C1+α(M) for all ω ∈ Ω.

Theorem 3.3. Suppose the transformation φ(ω, ·) is of class C1+α(M) for every ω ∈ Ω,
and the random potential is given by γ(ω, x) = − log |detDxφ(ω, ·)|. Then the probabil-
ities µω defined in (10) are absolutely continuous with respect to m. It follows that the
probability µ is absolutely continuous with respect to P×m. Moreover, µ is the unique
F -invariant probability with this property.
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4. A random fixed point theorem for Lipschitz maps

In this section, we present a random fixed point theorem building on a result of
Bougerol [4, Theorem 3.1]. This theorem can be regarded as a random version of Ba-
nach’s contracting principle. We consider here random dynamical systems generated by
Lipschitz continuous transformations fulfilling certain growth hypotheses (assumptions
A1 and A2). We then investigate several properties of the random fixed point, namely
measurability, uniqueness, and temperedness. The last property plays an important
role in the proof of Theorem 3.1. For the sake of brevity, this section will not contain
any proofs, as our fixed point theorem is but a technical device used in the proof of
Theorem 3.1. Further to this, the proofs provide little additional insight with regards
to the main theme of this paper.

4.1. Lipschitz random maps. Let φ be random dynamical system on a set X. In
this section, we dot not assume that φ is smooth. Instead, we assume that there exist
a collection {Xω}ω∈Ω of subsets of X and a complete metric dω on each Xω such that
φ(ω,Xω) ⊆ XTω and the transformation φ(ω, ·)|Xω : (Xω, dω)→ (XTω, dTω) is Lipschitz
for every ω ∈ Ω. We call φ a Lipschitz random dynamical system. In the invertible case,
we assume that φ(ω,Xω) = XTω and that the inverse transformation φ(ω, ·)−1|XTω :
(XTω, dTω)→ (Xω, dω) is Lipschitz as well.

For every ω ∈ Ω and n ≥ 0, denote by ρn(ω) the Lipschitz constant of φ(ω, ·)|Xω , i.e.,

ρn(ω) = sup

{
dTnω (φn(ω, x), φn(ω, y))

dω (x, y)
: x, y ∈ Xω and x 6= y

}
.

Note that in the invertible case, this definition makes sense also for n < 0. In that case,
we further define

rn(ω) = inf

{
dTnω (φn(ω, x), φn(ω, y))

dω (x, y)
: x, y ∈ Xω and x 6= y

}
.

From the cocycle property of {φn} and the definition of ρn and rn, we obtain several
relations linking ρn and rn. These are displayed in the next lemma, whose proof is left
to the reader.

Lemma 4.1. Let φ be an invertible Lispchitz random dynamical system. Then for every
ω ∈ Ω and every m,n ∈ Z, we have

(1) ρ−n(Tnω) · rn(ω) = 1,
(2) rm(ω) · ρn(Tmω) ≤ ρn+m(ω),
(3) rm+n(ω) ≤ rn(Tmω) · ρm(ω),
(4) ρn+m(ω) ≤ ρn(Tmω) · ρm(ω).

4.2. Tempered functions. We now introduce the concept of a tempered function.
Contrary to the commonly used definition (for example, see [1, Definition 4.1.1]), we do
not require the function to be measurable.

Definition 4.2. We say that a function f : Ω → (0,+∞) is tempered with respect to
(Ω,F ,P, T ) if

(1) lim
n→±∞

1

|n| log+ f(Tnω) = 0 for a.e. ω ∈ Ω.

Remark 1. If f is measurable and log+ f ∈ L1(P), then a straightforward application
of the Borel-Cantelli lemma shows that f is tempered (see [1, Proposition 4.1.3]).
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The next lemma gives an equivalent characterisation of tempered functions; see for
example [1, Proposition 4.3,.3] for a proof.

Lemma 4.3. Suppose that f : Ω → (0,+∞) is a tempered function. Then for every
ε > 0, there exists a function Cε : Ω → (0,+∞) such that for P-a.e. ω ∈ Ω and every
m ∈ Z, we have

(1) f(ω) ≤ Cε(ω),
(2) Cε(T

mω) ≤ Cε(ω)eε|m|.

Moreover, if f is measurable, then Cε is measurable as well.

4.3. The random fixed point theorem. Let φ be a Lipschitz random dynamical
system. Before stating our random fixed point point theorem, we formulate a series of
conditions.

A1 (Non–uniform contraction): There exists a constant β ∈ [−∞, 0) such that
for P-a.e. ω ∈ Ω, we have
• lim supn→+∞

1
n log ρn(ω) ≤ β,

• lim supn→+∞
1
n log ρn(T−nω) ≤ β.

A2 (Temperedness): There exist a map x0 : Ω→ X such that
• x0(ω) ∈ Xω for every ω ∈ Ω,
• the function ω 7→ dω

(
x0(ω), φ(T−1ω, x0(T−1ω))

)
is tempered.

A3 (Measurability): The set X is equipped with a metric d such that
• d|Xω ≤ dω for every ω ∈ Ω. This implies that the topology generated by
d on Xω is not stronger than the one generated by the metric dω for every
ω ∈ Ω,
• the transformation φ : (Ω × X,F ⊗ X ) → (X,X ) is measurable with X

being the Borel σ-algebra of X generated by d.

Remark 2. Suppose that each function ρn : Ω → [0,+∞) is measurable and that∫
Ω

log+ ρ1(ω)dP(ω) < +∞. Since the process {log ρn}n≥0 is subadditive, an easy appli-
cation of the Subadditive Ergodic Theorem shows that assumption A1 is satisfied.

We are now ready to formulate our random fixed point theorem.

Theorem 4.4. Let φ be a Lipschitz random dynamical system satisfying assumptions
A1 and A2. Let β < 0 be the constant in assumption A1. Then there exist a full P-
measure T -invariant set Ω1 ⊂ Ω and a map Z : Ω→ X (random fixed point) such that
for every ω ∈ Ω1, we have

(1) Z(ω) ∈ Xω,
(2) lim supn→+∞

1
n log dω (Z(ω), φn(T−nω, x0(T−nω))) ≤ β,

(3) Z(Tn+1ω) = φ(Tnω,Z(Tnω)) for every n ∈ Z,
(4) lim supn→+∞

1
n log dTnω(Z(Tnω), φn(ω, x)) ≤ β for every x ∈ Xω.

Remark 3. Suppose that X = R and φ(ω, x) = a(ω)x + b(ω) for x ∈ R with a :
Ω → (0,+∞) and b : Ω → R. Such an affine random dynamical system φ is of course
Lipschitz. If φ satisfies Conditions A1 and A2, then Theorem 4.4 applies to φ (see also
[1, Chapter 5]).

We now address the issue of the measurability and the uniqueness of the random
fixed point Z obtained in Theorem 4.4.

Corollary 1. Let φ be a Lipschitz random dynamical system satisfying Conditions A1-
A3, and assume that the map x0 : Ω → X in assumption A2 is measurable. Then the
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map Z : Ω → X given by Theorem 4.4 is measurable, and is the only measurable map
(up to a set of P-measure zero) satisfying conclusions (1) and (3) of Theorem 4.4.

Finally, we provide sufficient conditions for the function ω 7→ dω(x0(ω), Z(ω)) to be
tempered. We start with the following remark.

Remark 4. Let φ be an invertible Lipschitz random dynamical system. Suppose that
that there exist a constant β ∈ R such that for P-a.e. ω ∈ Ω, we have

(2) lim
n→±∞

1

n
log rn(ω) = lim

n→±∞
1

n
log ρn(ω) = β.

Then Lemma 4.1 implies that ρ−n(T−nω) = 1/r−n(ω) for n ∈ Z. Hence, it is immediate
to see that the hypotheses 2 together with the extra assumption that β < 0 implies
assumption A1.

Proposition 1. Let φ be an invertible Lipschitz random dynamical system satisfying
the hypotheses of Remark 4 with β < 0 and assumption A2. Then the conclusions of
Theorem 4.4 hold. Moreover, if Z : Ω → X is the map as in Theorem 4.4, then the
function ω 7→ dω(x0(ω), Z(ω)) is tempered, and Z is the unique map (up to a set of
P-measure zero) with this property satisfying conclusions (1) and (3) of Theorem 4.4.

5. Hilbert’s projective metric

In this section, we recall the essential definitions and properties concerning Hilbert’s
projective metric on cones, which plays a very important role in our proof of Theorem 3.1.
For a more complete account on the subject, the reader is referred to [2, 5, 7, 17, 18, 20].

5.1. Hilbert’s metric on cones. Let (B, | · |) be a real normed space with the topology
induced by the norm | · |. A subset C of B \{0} is called a cone if λϕ ∈ C for every ϕ ∈ C
and every λ > 0. We say that the cone C is convex if λϕ + µψ ∈ C for every ϕ,ψ ∈ C
and every λ, µ > 0. We say that C is closed if C ∪ {0} is closed.

Any convex cone C defines a partial ordering on B by the rule ϕ � ψ with ϕ,ψ ∈ B
if and only if ψ−ϕ ∈ C ∪ {0}. If C is also closed, then � is continuous, i.e., if ϕn, ψ ∈ B
such that ψ � ϕn for every n > 0 and limn→+∞ ϕn = ϕ, then ψ � ϕ.

We say that two elements ϕ,ψ of a convex cone C are comparable and write ϕ ∼ ψ if
and only if λϕ � ψ � µϕ for some λ, µ > 0. The relation ∼ is an equivalence relation,
and the equivalence classes of C are called components of C. We denote by Cψ the
component of C containing the element ψ ∈ C. A component of C has all the property
of the cone C except possibly the closedness.

The Hilbert metric θ on a convex cone C is defined as follows. Let

a(ϕ,ψ) = sup{λ > 0 : λϕ � ψ},
b(ϕ,ψ) = inf{µ > 0 : ψ � µϕ}.

Then for any pair ϕ,ψ ∈ C, define

(3) θ(ϕ,ψ) =

{
log b(ϕ,ψ)

a(ϕ,ψ) if ϕ ∼ ψ,
+∞ otherwise.

It is easy to check that the restriction of θ to each component Cψ of C with ψ ∈ C is a
pseudo-metric, and the restriction of θ to the set {ϕ ∈ Cψ : |ϕ| = 1} is a metric.
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5.2. Birkhoff’s contraction coefficient. Let (C1, θ1) and (C2, θ2) be convex cones of
the real normed spaces (B1, |·|1) and (B2, |·|2), respectively, with their respective Hilbert
metrics. Suppose that L : B1 → B2 is a linear transformation such that LC1 ⊂ C2. Then
it can be shown that the restriction of L to C1 is a contraction with respect to θ1 and
θ2 [20, Section 2.1], i.e.

θ2(Lϕ,Lψ) ≤ θ1(ϕ,ψ) for ϕ,ψ ∈ C1.
The next result is due originally to Birkhoff [7, Lemma 1, Section 4], and shows that

L is a strict contraction if the diameter of LC1 is finite.

Proposition 2. Suppose that D = sup{θ2(Lϕ,Lψ) : ϕ,ψ ∈ C1} is finite, then

(4) θ2(Lϕ,Lψ) ≤ tanh

(
D

4

)
θ1(ϕ,ψ) for ϕ,ψ ∈ C1.

For the proof of this proposition, see [20, Proposition 2.3]. The factor tanh(D/4) is
called the Birkhoff coefficient of L.

5.3. Completeness of Hilbert’s metric. We now turn our attention to the critical
issue of the completeness of the Hilbert metric.

Let C be a convex cone of the real normed space (B, | · |). We say that C is normal if
there exists A > 0 such that |ψ| ≤ A|ϕ| whenever 0 � ψ � ϕ.

A mapping K : C → (0,+∞) is called a functional on the cone C. We say that a
functional K on C is continuous if K is continuous with respect to the topology induced
on C by the norm | · | of B. A functional K on C is called monotone if K(λϕ) = λK(ϕ)
for every λ > 0 and every ϕ ∈ C, and K(ψ) ≤ K(ϕ) whenever 0 � ψ � ϕ.

The proof of the next lemma is but a minor refinement of the proof of [17, Lemma
1.3] (see also [18, Relation (1.20a)]).

Lemma 5.1. Let C be a convex closed cone of a real normed space (B, | · |). Suppose
that C is normal and that there exists a monotone functional K on C. Let A > 0 be the
constant as in the definition of a normal cone. If ϕ,ψ ∈ C and K(ϕ) = K(ψ) = 1, then

|ϕ− ψ| ≤ (1 + 2A)
(
eθ(ϕ,ψ) − 1

)
min{|ϕ|, |ψ|}.

We can state in what sense Hilbert’s metric is complete. Note that in the following
proposition, we strengthen our assumptions, as we now require that (B, | · |) is a Banach
space, and that the monotone functional K is continuous. The proof is essentially [6,
Theorem 5].

Proposition 3. Let C be a convex closed cone of a real Banach space (B, | · |). Suppose
that C is normal and K is a continuous monotone functional on C. Let ψ ∈ C, and let
Σ = {ϕ ∈ Cψ : K(ϕ) = 1}. Then the pair (Σ, θ|Σ) is a complete metric space.

5.4. Cones of Hölder continuous functions. We now apply the results of the previ-
ous subsection to a special family of cones, which are used in the proof of Theorem 3.1.
The notation here is as in Subsection 2.3.

Let M be a connected compact smooth Riemannian manifold, and consider the Ba-
nach space (C(M), ‖ · ‖∞). For every t ≥ 0, let

C(t) = {ϕ ∈ C+(M) : ϕ(x) ≤ etd(x,y)αϕ(y) for x, y ∈M}
be the set of all continuous functions on M whose logarithm is an α-Hölder function
with Hölder constant less or equal than t. One can easily check that each C(t) is a



INVARIANT MEASURES FOR RANDOM DYNAMICAL SYSTEMS 89

closed convex cone of (C(M), ‖·‖∞) and a subset of Cα+(M). Indeed, we have Cα+(M) =⋃
t≥0 C(t).
The Hilbert projective metric θt on C(t) is given by

θt(ϕ,ψ) = log


sup
x 6=y
u6=v

etd(x,y)αϕ(x)− ϕ(y)

etd(x,y)αψ(x)− ψ(y)
· e

td(u,v)αψ(u)− ψ(v)

etd(u,v)αϕ(u)− ϕ(v)




for ϕ,ψ ∈ C(t). For a proof, see [2, Theorem 2.1].
Let �t be the partial ordering on C(M) generated by C(t). We will simply write �

when there is no danger of ambiguity.

Corollary 2. Let ψ ∈ C(t), and define Σ(k) = {ϕ ∈ Cψ(t) : ‖ϕ‖k = 1} for k = 1,∞.
Then

(1) ‖ϕ1 − ϕ2‖∞ ≤ 3
(
eθt(ϕ1,ϕ2) − 1

)
min{‖ϕ1‖∞, ‖ϕ2‖∞} for ϕ1, ϕ2 ∈ Σ(k) for each

k = 1,∞,
(2) ‖ϕ1 − ϕ2‖1 ≤ 3

(
eθt(ϕ1,ϕ2) − 1

)
for ϕ1, ϕ2 ∈ Σ(1),

(3) (Σ(k), θt|Σ(k)) is a complete metric space for each k = 1,∞.

Proof. This follows easily from Lemma 5.1 and Proposition 3. �

Denote by 1 the characteristic function on M . Clearly, 1 ∈ C(t) for every t ≥ 0. The
next lemma shows that the cone C(s) is contained in C1(t) (the connected component of
C containing 1) for every 0 ≤ s < t. The proof can be found (with minor modifications)
in [20].

Lemma 5.2. Let ϕ ∈ C(δt) for some t ≥ 0 and 0 < δ < 1. Then

θt(1, ϕ) ≤ log
1 + δ

1− δ + (diamM)αtδ.

6. Proof of Theorems 3.1-3.3

Let φ be a random local diffeomorphism on a manifold M , and let γ be a random
potential on M of class Cα with 0 < α ≤ 1. We also assume that φ and γ satisfy
Conditions C1 and C2. In this section, we prove Theorem 3.1. The main idea of the
proof is to look at the random dynamical system generated by the random transfer
operator L = Lφ,γ , and apply Theorem 4.4 to it. Since the proof is quite long, we split
it into several parts. The notation used throughout this section is as in Sections 2-5.

6.1. Preliminaries. In this subsection, we give a precise definition of the random dy-
namical system generated by L, and obtain some preliminary results required for the
proof of Theorem 3.1. Let {C(t)}t≥0 be the family of cones defined in Subsection 5.4.

Lemma 6.1. Suppose that ϕ ∈ C(t) with t ≥ 0. Then

(5) L(ω)ϕ ∈ C
(
t+ b(ω)

σα(ω)

)
for ω ∈ Ω.

Proof. see [20]. �

By Condition C1, we can choose 0 < δ < 1 such that

β := − log δ − α
∫

Ω

log σ(ω)dP(ω) < 0.
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Now, consider the transformation q : Ω× R→ R given by

q(ω, t) =
t+ b(ω)

δσα(ω)
for ω ∈ Ω and t ∈ R.

This map q generates a random dynamical system on R that is measurable, invertible
and Lipschitz. Indeed, using the notation introduced in Section 2, for every ω ∈ Ω, we
have

• Xω = X = R,
• dω = d is the Euclidean metric,
• rn(ω) = ρn(ω) = δ−n(σ(ω) · · ·σ(Tn−1ω))−1 for n ∈ Z.

Denote by qn the n-iterates of q as in Subsection 2.1.

Lemma 6.2. The random dynamical system q satisfies the hypotheses of Remark 4 as
well as assumptions A2 and A3.

Proof. Assumption A3 is trivially satisfied. Next, it is easy to see that {log ρn}n∈Z is
an additive process, and log ρn ∈ L1(P) as a consequence of condition C1. The Birkhoff
Ergodic Theorem then implies that

lim
n→±∞

1

n
log ρn(ω) =

∫

Ω

log ρ1(ω)dP(ω)

= − log δ − α
∫

Ω

log σ(ω)dP(ω)

= β for P-a.e. ω ∈ Ω.

The same conclusion is obviously true for rn so that q satisfies the hypotheses of Re-
mark 4.

We now show that q satisfies assumption A2 with x0 ≡ 0. Clearly 0 ∈ Xω =
R for every ω. So what remains to do is to show that the function ω 7→ q(ω, 0) =
b(ω)δ−1σ(ω)−α is tempered. To see this, note that

(6) log+(q(ω, 0)) ≤ log
1

δ
+ log+ b+ log− σ,

and log− σ as well as log+ b are in L1(P) by conditions C1 and C2, respectively. Tem-
peredness of q(·, 0) therefore follows by Remark 1. This completes the proof. �

We gather from the proof that the condition C2 is only needed to ensure the tem-
peredness of b, in order to show that q(·, 0) is tempered. But this would follow already
if instead of condition C2 we merely demand that b is tempered (the measurability of
b was needed as well to show that q is is measurable). Indeed, if b and 1/σ are tem-
pered (the latter because log+(1/σ) = log− σ ∈ L1(P)), we can apply Lemma 4.3 to
these quantities to show that q is tempered as well. Remark 4 applies to q and so the
hypotheses of Remark 4 imply assumption A1. By Lemma 6.2, we then see that The-
orem 4.4, Remark 3, Corollary 1 and Proposition 1 all apply to q, and we obtain the
next proposition.

Proposition 4. There exist a full P-measure T -invariant set Ω1 ⊂ Ω and a unique
measurable tempered map Z : Ω→ [0,+∞) such that for every ω ∈ Ω1, we have

(1) Z(ω) =
∑+∞
k=1 δ

−k−1
(
σ(T−kω) · · ·σ(T−1ω)

)−α
b(T−kω) > 0,

(2) Z(Tn+1ω) = q(Tnω,Z(Tnω)) for every n ∈ Z,
(3) lim supn→+∞ n−1 log |Z(Tnω)− qn(ω, t)| ≤ β for every t ∈ R.
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The next lemma is an easy consequence of Lemma 6.1, Proposition 4 and Lemma 5.2.

Lemma 6.3. Let Ω1 and Z be as in Proposition 4. Then for every n > 0, we have

(1) Ln(ω)C(t) ⊂ C(δqn(ω, t)) ⊂ C1(qn(ω, t)) for ω ∈ Ω and t ≥ 0,
(2) Ln(ω)C(Z(ω)) ⊂ C(δZ(Tnω)) ⊂ C1(Z(Tnω)) for ω ∈ Ω1.

The following proposition will allow us to reduce the proof of Theorem 3.1 for the
general case ϕ ∈ Cα+(M) to the case ϕ ∈ C(Z(ω)).

Proposition 5. Let Ω1 and Z be as in Theorem 4. Then

(1) for every t ∈ R and P-a.e. ω ∈ Ω1, there exists n > 0 such that δqn(ω, t) <
Z(Tnω);

(2) for every ϕ ∈ Cα+(M) and P-a.e. ω ∈ Ω1, there exists an integer n > 0 such
that Ln(ω)ϕ ∈ C(Z(Tnω)).

Proof. By conclusion (1) of Theorem 4, we can find ε > 0 such that the set

Ω̃ =

{
ω ∈ Ω1 : Z(ω) > ε

δ

1− δ

}

has positive P-measure. Since (Ω,F ,P, T ) is ergodic, there exists a full P-measure set
Ω2 ⊂ Ω1 such that for every ω ∈ Ω2, we can find an increasing sequence of positive
integers {nk(ω)}k>0 such that Tnk(ω)ω ∈ Ω̃ for every k > 0.

Fix ω ∈ Ω2 and t ∈ R. Write nk for nk(ω). By conclusion (3) of Theorem 4, we have

lim
k→+∞

(qnk(ω, t)− Z(Tnkω)) = 0.

Hence, for k sufficiently large,

qnk(ω, t) ≤ Z(Tnkω) + ε.

But since Tnkω ∈ Ω̃, it follows that

qnk(ω, t) ≤ Z(Tnkω) + (
1

δ
− 1)Z(Tnkω) ≤ 1

δ
Z(Tnkω),

which proves conclusion (1) of the proposition.
Since ϕ ∈ Cα+(M), there exists t > 0 such that ϕ ∈ C(t). By Lemma 6.3, we know

that Ln(ω)ϕ ⊂ C(δqn(ω, t)) for every ω ∈ Ω and every n > 0. Conclusion (2) of the
proposition now follows from conclusion (1). �

6.2. The random dynamical system generated by L̂φ,γ. We now show that the

random dynamical system generated by L̂ = L̂φ,γ is Lipschitz. For this claim to make
sense, the first thing to do is to specify the family of metric spaces {(Xω, dω)}ω∈Ω.

Let X be space Banach space (C(M), ‖ · ‖∞). Let Ω1 be the set as in Proposition 4.
Without loss of generality, we can assume that Ω1 = Ω and so that the function Z is
strictly positive everywhere on Ω. Recall that 1 is the characteristic function on M .
Clearly, we have that 1 ∈ C(t) for every t ≥ 0. Let as before C1(t) be the component of
C(t) containing 1. Define

Xω = {ϕ ∈ C1(Z(ω)) : ‖ϕ‖∞ = 1} for ω ∈ Ω.

Denote by θω the Hilbert metric of C(Z(ω)). By Part (3) of Corollary 2, the metric space
(Xω, θω|Xω ) is complete. We will simply write θω instead of θω|Xω . By Lemma 6.3, we

have L(ω)C1(Z(ω)) ⊆ C1(Z(Tω)), and so L̂(ω)Xω ⊆ XTω.

Lemma 6.4. The random dynamical system generated by L̂ is Lipschitz and satisfies
assumptions A1 and A2.
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Proof. Fix ω ∈ Ω. By Lemma 5.2, the diameter of C(δZ(Tω)) computed with respect
to the metric θTω is bounded above by the measurable function

D(ω) := 2 log
1 + δ

1− δ + 2δ (diamM)
α
Z(Tω).

Proposition 2 then implies that L̂(ω) : (Xω, θω) → (XTω, θTω) is a strict contraction

with Lipschitz constant ρ(ω) ≤ tanh(D(ω)/4). This proves that L̂ generates a Lipschitz
random dynamical system.

Now, for every ω ∈ Ω and every n > 0, define

τn(ω) =
n−1∑

j=0

log
(

1− e−D(T jω)
)
.

It is not hard to see that {τn}n>0 and {τn◦T−n)}n>0 are additive processes with respect
to T and T−1, respectively. Moreover, we have τ1 < 0, because Z(ω) < +∞ for ω ∈ Ω.
It follows that we can apply the Subadditivite Ergodic Theorem [14] to the processes
{τn}n>0 and {τn ◦ T−n)}n>0. Let

ξ =

∫

Ω

τ1(ω)dP(ω) =

∫

Ω

log
(

1− e−D(ω)
)

dP(ω) ∈ [−∞, 0).

Since T and T−1 are ergodic, the Subadditive Ergodic Theorem implies that

lim
n→+∞

τn(T−nω)

n
= lim
n→+∞

τn(ω)

n

= inf
n>0

1

n

∫

Ω

τn(ω)dP(ω)

≤
∫

Ω

τ1(ω)dP(ω)

= ξ for P-a.e. ω ∈ Ω.

(7)

From the inequality tanh(t/4) ≤ (1− e−t) for t ≥ 0, it follows immediately that

log ρn(ω) ≤
n−1∑

j=0

log

(
tanh

(
D(T jω)

4

))
≤ τn(ω).

This together (7) implies that for P-a.e. ω ∈ Ω, we have

lim sup
n→+∞

1

n
log ρn(ω) ≤ ξ and lim sup

n→+∞

1

n
log ρn(T−nω) ≤ ξ,

which is assumption A1.
To complete the proof, we prove that assumption A2 is satisfied with x0 ≡ 1. Note

that 1 ∈ Xω for every ω ∈ Ω. By Lemma 5.2, we have ω → θω(1, L̂(T−1ω)1) ≤ D(ω).
Since Z is tempered, also D is tempered as can be shown using Lemma 4.3. Thus we
see that ω → θω(1, L̂(T−1ω)1) is tempered as well. �

We are now going to discuss assumption A3. Note that A3 is not needed in the random
fixed point theorem 4.4 proper, but rather in Corollary 1 to prove the measurability of
the fixed point. In the present situation, this required proving the measurability of L̂
as a mapping from Ω× C(M) to C(M), and we would obtain the measurability of the
fixed point Z as a function from Ω to C(M). All of this though would make sense only if
we had measurable structures on C(M), which we are not going to implement. Rather,
we will demonstrate the ‘measurability of the fixed point’ in the sense that Z(ω)(x) is
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measurable as a function from Ω×M to R. The property proved in Lemma 6.5 together
with the conclusion of Lemma 6.6 will be sufficient for this purpose.

Lemma 6.5. Let γ be a continuous random potential on M . Then the function (ω, x) 7→
(Lφ,γ(ω)ϕ(ω, ·))(x) is measurable for every measurable function ϕ : Ω ×M → R such
that ϕ(ω, ·) ∈ C(M) for every ω ∈ Ω.

Proof. Let γ̂(ω, x) = − log |detDxφ(ω, ·)| for every ω ∈ Ω and x ∈ M . Also, for every
pair of functions ϕ and γ as in the hypotheses of the lemma, define

ϕ̃(ω, x) = eγ(ω,x)−γ̂(ω,x)ϕ(x, ω) for ω ∈ Ω and x ∈M.

It is easy to see that γ̂ and ϕ̃ are both measurable and γ̂(ω, ·), ϕ̃(ω, ·) ∈ C(M) for every
ω ∈ Ω. In other words, γ̂ and ϕ̃ satisfy the hypotheses of the lemma. Next, we observe
that

Lφ,γ(ω)ϕ = Lφ,γ̂(ω)ϕ̃.

If we write ϕ̃ = ϕ̃+ − ϕ̃− with ϕ̃± = (|ϕ̃| ± ϕ)/2 ≥ 0, then Lφ,γ̂(ω)ϕ̃ = Lφ,γ̂(ω)ϕ̃+ −
Lφ,γ̂(ω)ϕ̃− by the linearity of Lφ,γ̂(ω). To prove the lemma, we can therefore assume
without loss of generality that γ = γ̂ and ϕ ≥ 0.

Let ϕ be as in the hypotheses of the lemma, and suppose that ϕ ≥ 0. Define

Qω(B) =

∫

M

IB(x)(Lφ,γ̂(ω)ϕ(ω, ·))(x)dm(x) for B ∈ B.

Since Lφ,γ̂(ω) is the standard Frobenius–Perron operator of the map φ(ω, ·), it follows
thatQω(B) =

∫
M
IB(φ(ω, x))ϕ(ω, x)dm(x). Since the function (ω, x) 7→ IB(φ(ω, x))ϕ(ω, x)

is non-negative and measurable, ω 7→ Qω(B) is measurable for every B ∈ B by Fubini’s
Theorem. Let Br(x) be the ball of M with center at x ∈ M and of radius r > 0. We
claim that

lim
r→0+

Qω(Br(x))

m(Br(x))
= (Lφ,γ̂(ω)ϕ(ω, ·))(x) for ω ∈ Ω and x ∈M.

Indeed, since Lφ,γ̂(ω)ϕ(ω, ·) ∈ C(M), for every ε > 0, there exists r > 0 such that
|(Lγ̂(ω)ϕ(ω, ·))(x)− (Lφ,γ̂(ω)ϕ(ω, ·))(y)| < ε provided that y ∈ Br(x). Hence,

∣∣∣∣(Lφ,γ̂(ω)ϕ(ω, ·))(x)− 1

m(Br(x))

∫

M

IB(x)(Lφ,γ̂(ω)ϕ(ω, ·))(y)dm(y)

∣∣∣∣

=
1

m(Br(x))

∣∣∣∣
∫

M

IB(x) ((Lφ,γ̂(ω)ϕ(ω, ·))(x)− (Lφ,γ̂(ω)ϕ(ω, ·))(y)) dm(y)

∣∣∣∣

≤ 1

m(Br(x))

∫

M

IB(x) |(Lφ,γ̂(ω)ϕ(ω, ·))(x)− (Lφ,γ̂(ω)ϕ(ω, ·))(y)|dm(y)

< ε.

Now, since ω 7→ Qω(Br(x))/m(Br(x)) is measurable for every r > 0 and x ∈ M , the
function ω 7→ (Lφ,γ̂(ω)ϕ(ω, ·))(x) is measurable for every x ∈ M . Finally, the joint-
measurability of (ω, x) 7→ (Lφ,γ̂(ω)ϕ(ω, ·))(x) follows from the continuity of the function
Lφ,γ̂(ω)ϕ(ω, ·) for every ω ∈ Ω (see e.g. [9, Theorem 4.2.2]). �

Lemma 6.6. Suppose that ϕ : Ω×M → R is a measurable function such that ϕ(ω, ·) ∈
C(M) for every ω ∈ Ω. Then the function ω 7→ ‖ϕ(ω, ·)‖k is measurable for k ∈ {1,∞}.
Further, if ϕ(ω, ·) ∈ Cα(M) for every ω ∈ Ω, then ω 7→ |ϕ|α is measurable.
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Proof. The case k = 1 follows directly from Fubini’s Theorem. For the case k =∞, note
that the manifold M admits a dense sequence {xn}n>0 of points. Since ϕ is measurable,
so is each function ω 7→ |ϕ(ω, xn)|. But since ϕ(ω, ·) is continuous for ω ∈ Ω, we have
‖ϕ(ω, ·)‖∞ = supn>0{Ln(ω)} for ω ∈ Ω. Thus ω 7→ ‖ϕ(ω, ·)‖∞ is the supremum of
measurable functions and hence measurable. The case of the Hölder norm | · |α works
analogously. �

6.3. Random fixed point.

Proposition 6. Let φ be a random local diffeomorphism on a manifold M , and let γ be
a random potential on M of class 0 < α ≤ 1. Suppose that φ and γ satisfy conditions
C1 and C2. Let ξ ∈ [−∞, 0) be the constant as in the proof of Lemma 6.4. Then there
exist a full P-measure T -invariant set Ω0 ⊂ Ω, a measurable function h : Ω ×M → R
and a measurable function Λ : Ω→ (0,+∞) such that for every ω ∈ Ω0, we have

(1) h(ω, ·) ∈ Cα+(M) and ‖h(ω, ·)‖∞ = 1,

(2) lim supn→+∞ n−1 log ‖h(ω, ·)− L̂n(T−nω)1‖∞ ≤ ξ,
(3) L(ω)h(ω, ·) = Λ(ω)h(Tω, ·),
(4) lim supn→+∞ n−1 log ‖h(Tnω, ·)− L̂n(ω)ϕ‖∞ ≤ ξ for ϕ ∈ Cα+(M).

Proof. Lemma 6.4 allows to apply Theorem 4.4 to the random dynamical system L̂.
Thus, there exist a full P-measure T -invariant set Ω0 ⊂ Ω and a function h : Ω×M → R
such that for every ω ∈ Ω0, we have

(i) h(ω, ·) ∈ Xω,

(ii) lim supn→+∞ n−1 log θω(h(ω, ·), L̂n(T−nω)1) ≤ ξ,
(iii) L̂n(ω)h(ω, ·) = h(Tnω, ·) for every n ∈ Z,

(iv) lim supn→+∞ n−1 log θTnω(h(Tnω, ·), L̂n(ω)ϕ) ≤ ξ for ϕ ∈ Xω.

Conclusions (1)-(4) of the proposition are straightforward consequences of statements
(i)-(iv) above. Indeed, conclusion (1) is just statement (i). Conclusion (2) follows from
(ii) and the second part of Corollary 2. To prove conclusion (3), we define Λ(ω) =
‖L(ω)h(ω, ·)‖∞ for every ω ∈ Ω, and then use (iii). Conclusion (4) for ϕ ∈ Xω follows
from (iv) and the second part of Corollary 2. Conclusion (4) is then extended to every
ϕ ∈ Cα+(M) by using the second part of Proposition 5.

To complete the proof, we have to show that h and Λ are measurable. Let gn(ω, x) =
(L(T−nω)1)(x) for ω ∈ Ω, x ∈ M and n > 0. By Lemma 6.5, each function gn is
measurable. Using Lemma 6.6, we obtain that also ω 7→ ‖gn(ω, ·)‖∞ is measurable.
Hence, hn(ω, x) := gn(ω, x)/‖gn(ω, ·)‖∞ is measurable as well. Now, by conclusion (2),
the sequence {hn(ω, ·)}n>0 converges uniformly to h(ω, ·) for ω ∈ Ω0. Therefore, hn
converges pointwise to h on Ω0 ×M , and so the restriction h|Ω0×M is measurable. By
construction of h (see the proof of Theorem 4.4) and our choice x0(ω, ·) = 1, it follows
that h(ω, ·) = 1 for Ω \Ω0. We conclude that h is measurable on the entire set Ω×M .
Note that this implies that conclusion (1) holds actually for every ω ∈ Ω.

It remains to show that Λ is measurable. Since h is measurable, Lemma 6.5 im-
plies that (ω, x) 7→ (L(ω)h(ω, ·))(x) is measurable. Moreover, since h(ω, ·) ∈ C(M)
is continuous for every ω ∈ Ω, also L(ω)h(ω, ·) is continuous for every ω ∈ Ω. This
means that (ω, x) 7→ (L(ω)h(ω, ·))(x) satisfies the hypotheses of Lemma 6.6, and so Λ
is measurable. �

In the next lemma, we prove the uniqueness of h and Λ.
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Lemma 6.7. Suppose that h, h̃ : Ω ×M → R and Λ, Λ̃ : Ω → (0,+∞) are measurable
functions that satisfy conclusions (1) and (3) of Proposition 6 on full P-measure sets

Ω0, Ω̃0 ⊂ Ω. If h also satisfies conclusion (4) of Proposition 6, then h̃(ω, ·) = h(ω, ·)
and Λ̃(ω) = Λ(ω) for P-a.e. ω ∈ Ω.

Proof. Suppose that h̃(ω, ·) and h(ω, ·) differ on a positive P-measure subset of Ω0 ∩ Ω̃0.

Since h(ω, ·) and h̃(ω, ·) are both continuous for every ω ∈ Ω0 ∩ Ω̃0, we must have

P
({
ω ∈ Ω0 ∩ Ω̃0 :

∥∥∥h(ω, ·)− h̃(ω, ·)
∥∥∥
∞
> 0
})

> 0.

It is then not difficult to see that there exists ε > 0 such that the set

Ω̂ =
{
ω ∈ Ω0 ∩ Ω̃0 :

∥∥∥h(ω, ·)− h̃(ω, ·)
∥∥∥
∞
> ε
}
,

has positive P-measure. Now, since Ω0 ∩ Ω̃0 is a full P-measure set, and T is ergodic, we
can find ω ∈ Ω0 ∩ Ω̃0 and an increasing sequence {nj}j>0 such that Tnjω ∈ Ω̂ for every

j > 0. On the other hand, since h̃ satisfies conclusions (1) and (3) of Proposition 6 on

Ω̃0, conclusion (4) of Proposition 6 implies that the sequence ‖h(Tnjω, ·)− h̃(Tnjω, ·)‖∞
vanishes as j → +∞. Putting all together, we obtain the contradiction

ε <
∥∥∥h(Tnjω, ·)− h̃(Tnjω, ·)

∥∥∥
∞
< ε,

for j sufficiently large. Hence, h̃(ω, ·) = h(ω, ·) for P-a.e. ω ∈ Ω.
The uniqueness of Λ is an obvious consequence of the uniqueness of h. Indeed, from

conclusion (2) of Proposition 6, it follows that Λ(ω) = ‖L(ω)h(ω, ·)‖∞ = ‖L(ω)h̃(ω, ·)‖∞ =

Λ̃(ω) for every ω ∈ Ω0 ∩ Ω̃0. �

6.4. Random measures. Let Ω0, h,Λ and ξ be as in Proposition 6, and define Λn(ω) =
Λ(Tn−1ω) · · ·Λ(ω) for ω ∈ Ω and every n > 0.

The proof of the next proposition, which we will skip, closely follows the proof of [10,
Theorem 2], which is based on a deterministic version of that theorem originally due to
Birkhoff [5, Lemma 3].

Proposition 7. Under the same hypotheses of Proposition 6, there exists a family
{νω}ω∈Ω0 of positive functions on Cα+(M) such that for P-a.e. ω ∈ Ω0, we have

(8) lim sup
n→+∞

1

n
log

∥∥∥∥
1

Λn(ω)
Ln(ω)ϕ− νω(ϕ)h(Tnω, ·)

∥∥∥∥
∞
≤ ξ for ϕ ∈ Cα+(M).

Lemma 6.8. Let {νω}ω∈Ω0
be the family of functions as in Proposition 7. Then

(1) νω(h(ω, ·)) = 1 for ω ∈ Ω0,
(2) νTω(L(ω)ϕ) = Λ(ω)νω(ϕ) for ω ∈ Ω0 and ϕ ∈ Cα+(M),
(3) ω 7→ νω(ϕ) is measurable for every ϕ ∈ Cα+(M).

Proof. Fix ω ∈ Ω0. To prove conclusion (1), use the fact that λn(ω, h(ω, ·)) = 1, and
then pass to the limit as n → +∞. Next, observe that Ln+1(ω)ϕ = Ln(Tω)(L(ω)ϕ).
Then using the definition of λn and Λn, we deduce that the largest A > 0 for which
Aλn+1(ω)Λn+1(ω)h(Tn+1ω, ·) is a lower bound of Ln+1(ω) is simultaneously equal to
λn+1(ω, ϕ) and to λn(Tω,L(ω)ϕ)/Λ(ω). By passing to the limit as n→ +∞, we obtain
conclusion (2). This argument makes sense, because the invariance of Ω0 guarantees
that Tω ∈ Ω0.

Proposition 7 implies that νω(ϕ) = limn→+∞ ‖Ln(ω)ϕ‖∞/Λn(ω). Since we know
that Λn is measurable by Proposition 6, to prove conclusion (3), it suffices to prove that
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ω 7→ ‖Ln(ω)ϕ‖∞ is also measurable. But this is so because of Lemma 6.6, and the fact
ω 7→ Ln(ω)(ϕ) is measurable by Lemma 6.5. �

Proposition 8. Each function νω with ω ∈ Ω0 extends uniquely to a positive bounded
linear functional on the Banach space (C(M), ‖ · ‖∞). Furthermore, Proposition 7 ex-
tends to all ϕ ∈ Cα(M), and Lemma 6.8 extends to all ϕ ∈ C(M).

Proof. Fix ω ∈ Ω0. First of all, we prove that νω is linear on Cα+(M), which means
that νω(cϕ) = cνω(ϕ) for ϕ ∈ Cα+(M) and c > 0, and νω(ϕ1 + ϕ2) = νω(ϕ1) + νω(ϕ2)
for ϕ1, ϕ2 ∈ Cα+(M). It follows easily from the definitions of λn and ζn that λn is
superlinear, i.e.,

• λn(ω, cϕ) = cλn(ω, ϕ) for ϕ ∈ Cα+(M) and c > 0,
• λn(ω, ϕ1 + ϕ2) ≥ λn(ω, ϕ1) + λn(ω, ϕ2) for ϕ1, ϕ2 ∈ Cα+(M),

and ζn is sublinear, i.e.,

• ζn(ω, cϕ) = cζn(ω, ϕ) for ϕ ∈ Cα+(M) and c > 0,
• ζn(ω, ϕ1 + ϕ2) ≤ ζn(ω, ϕ1) + ζn(ω, ϕ2) for ϕ1, ϕ2 ∈ Cα+(M).

Let ϕ,ϕ1, ϕ2 ∈ Cα+(M), and let c > 0. By definition of νω, we have

cλn(ω, ϕ) ≤ νω(cϕ) ≤ cζn(ω, ϕ),

λn(ω, ϕ1) + λn(ω, ϕ2) ≤ νω(ϕ1 + ϕ2) ≤ ζn(ω, ϕ1) + ζn(ω, ϕ2).

Thus, passing to the limit as n→ +∞, we obtain

νω(cϕ) = cνω(ϕ),

νω(ϕ1 + ϕ2) = νω(ϕ1) + νω(ϕ2).

Next, we extend νω from Cα+(M) to C(M), and we do it in two steps: first, we extend
νω from Cα+(M) to Cα(M) and then from Cα(M) to C(M). The argument is standard,
but we include it anyway for the sake of completeness.

Step 1. Observe that given ϕ ∈ Cα(M), we can write ϕ = ϕ+ − ϕ−, where ϕ± =
(|ϕ| ± ϕ)/2. We extend the functional νω to the whole space Cα(M), by defining

ν̂ω(ϕ) = νω(ϕ+ + d)− νω(ϕ− + d) for every ϕ ∈ Cα(M),

where d is a positive constant which makes sure that the argument of νω is in Cα+(M). We
leave it to the reader to show with the help of the linearity of νω on Cα+(M) that ν̂ does
not depend on d. We now prove that ν̂ω is linear on Cα(M). Let ϕ,ϕ1, ϕ2 ∈ Cα(M),
and let c ∈ R. To prove that ν̂ω(cϕ) = cν̂ω(ϕ), first note that (cϕ)± = cϕ± when c > 0.
Therefore,

ν̂ω(cϕ) = νω((cϕ)+ + d)− νω((cϕ)− + d)

= νω

(
c

(
ϕ+ +

d

c

))
− νω

(
c

(
ϕ− +

d

c

))

= c

(
νω

(
ϕ+ +

d

c

)
− νω

(
ϕ− +

d

c

))

= cν̂ω(ϕ).

The case of c < 0 is similar, noting that (cϕ)± = −cϕ∓ in this situation. Since 0± = 0,
we immediately see that ν̂ω(cϕ) = 0 when c = 0. Now, let ψ = ϕ1 + ϕ2. It is easy to
check that ψ+ − ψ− = ϕ+

1 − ϕ−1 + ϕ+
2 − ϕ−2 , or equivalently that

ψ+ + ϕ−1 + ϕ−2 = ψ− + ϕ+
1 + ϕ+

2 .
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Adding a constant d > 0 to each term of the previous equality, all the functions become
elements of Cα+(M). We then apply νω and use its linearity on Cα+(M) to obtain

νω(ψ+ + d) + νω(ϕ−1 + d) + νω(ϕ−2 + d)

= νω(ψ− + d) + νω(ϕ+
1 + d) + νω(ϕ+

2 + d)

Rearranging the terms and using the definition of ν̂, we finally get ν̂ω(ψ) = ν̂ω(ϕ1) +
ν̂ω(ϕ2), showing that ν̂ω is linear on Cα(M).

Note that the extension ω 7→ ν̂ω(ϕ) is measurable for every ϕ ∈ Cα(M), because so
are ω 7→ νω(ϕ± + d) by conclusion (3) of Lemma 6.8.

We now prove that ν̂ω is bounded on Cα(M) endowed with the norm ‖ · ‖∞. First,
suppose that ϕ ∈ Cα(M) with 0 6= ϕ ≥ 0. Then

ν̂ω(ϕ) = νω(ϕ+ d)− νω(d)

≤ ‖ϕ‖∞
(
νω

(
1 +

d

‖ϕ‖∞

)
− νω

(
d

‖ϕ‖∞

))

= ‖ϕ‖∞ν̂ω(1).

This conclusion remains trivially true when ϕ = 0. Now, let ϕ ∈ Cα(M). By the
previous conclusion and the obvious fact that ‖ϕ±‖∞ ≤ ‖ϕ‖∞, we obtain

|ν̂ω(ϕ)| ≤ |ν̂ω(ϕ+ − ϕ−)|
≤ |ν̂ω(ϕ+)|+ |ν̂ω(ϕ−)|
≤ 2‖ϕ‖∞ν̂ω(1).

Therefore, the functional ν̂ω is bounded. In the following, we drop the hat on ν̂.
Step 2. Since the Banach space (C(M), ‖ · ‖∞) is the completion of the real normed

space (Cα(M), ‖ · ‖∞) by the Stone-Weierstrass Theorem, the functional νω extends
uniquely to a bounded linear functional on (C(M), ‖ · ‖∞). The extended functional,
which we keep denoting by νω, is positive. Indeed, suppose that ϕ ∈ C(M) with ϕ ≥ 0.
Let {ϕn}n>0 be a sequence of elements of Cα(M) such that ϕn → ϕ uniformly on M
as n→ +∞. Next, define

ψn = ϕn +

(
‖ϕ− ϕn‖∞ +

1

n

)
1 for n > 0.

It is easy to see that ψn ∈ Cα+(M) and ψn → ϕ uniformly on M as n→ +∞. Since νω is
positive on Cα+(M) and continuous, it follows at once that νω(ϕ) = limn→+∞ νω(ψn) ≥ 0.

We now prove the measurability of ω 7→ νω(ϕ) for every ϕ ∈ C(M). So let ϕ ∈
C(M). From Step 2, we know that there exists a sequence ϕn ∈ Cα(M) such that
νω(ϕ) = limn→+∞ νω(ϕn), and from Step 1, we know that ω 7→ νω(ϕn) is measurable
for every n > 0. We can then conclude that ω 7→ νω(ϕ) is measurable as well.

At this point, it is not hard to see that by the linearity of the operator L(ω) and
the extended functional νω, Proposition 7 extends to all ϕ ∈ Cα(M), and Lemma 6.8
extends to all ϕ ∈ C(M). �

Proposition 9. The family of functionals {νω}ω∈Ω0
is the unique family of positive

bounded linear functionals on (C(M), ‖·‖∞) satisfying conclusions (1)-(3) of Lemma 6.8
for every ϕ ∈ C(M).

Proof. We argue by contradiction. Suppose that the exist another full P-measure T -
invariant set Ω1 ⊂ Ω and another family of positive bounded linear functionals {ν̃ω}ω∈Ω̃0
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on C(M) satisfying conclusions (1)-(3) of of Lemma 6.8 for every ϕ ∈ C(M), and
furthermore suppose that if

Ω1 = {ω ∈ Ω0 ∩ Ω̃0 : d(ν̃ω, νω) > 0},
where d(ν̃ω, νω) = sup{|ν̃ω(ϕ) − νω(ϕ)| : ϕ ∈ C(M) and 0 ≤ ϕ ≤ 1}, then P(Ω1) > 0.
We observe that the measurability of the set Ω1 is a consequence of the measurability
of the function ω 7→ d(ν̃ω, νω), which can be proved by an argument exploiting the
separability of (C(M), ‖ ·‖∞) similarly to the argument used in the proof of Lemma 6.6.

Since h(ω, ·) ∈ Cα+(M), the norm ‖1/h(ω, ·)‖∞ is finite for ω ∈ Ω. This implies
immediately that 1 ≤ ‖1/h(ω, ·)‖∞h(ω, ·), and therefore ν̃ω(1) ≤ ‖1/h(ω, ·)‖∞ for ω ∈
Ω1. Moreover, ω 7→ 1/h(ω, ·) satisfies the hypotheses of Lemma 6.6, and so ω 7→
‖1/h(ω, ·)‖∞ is measurable. As a consequence, we see that there exists a bound H > 0

and a positive P-measure subset Ω̂ ⊂ Ω1 such that ‖1/h(ω, ·)‖∞ < H for every ω ∈ Ω̂.

Hence, ν̃ω(1) ≤ H for ω ∈ Ω̂.
Now let ω ∈ Ω1. Since Cα(M) is dense in C(M), the fact that P(Ω1) > 0 implies that

we can find ϕ ∈ Cα(M) such that ν̃ω(ϕ) 6= νω(ϕ). Write ϕ = νω(ϕ)h(ω, ·) +ψ with ψ =
ϕ−νω(ϕ)h(ω, ·) ∈ Cα(M). Since ν̃ω(h(ω, ·)) = 1, it follows that ν̃ω(ϕ) = νω(ϕ)+ ν̃ω(ψ).
But ν̃ω(ϕ) 6= νω(ϕ), and hence ν̃ω(ψ) 6= 0. On the other hand, νω(ψ) = 0.

Using the part of Proposition 8 which extends conclusion (2) of Lemma 6.8 to all
C(M), we obtain

|ν̃ω(ψ)| =
∣∣∣∣

1

Λn(ω)
L∗n(ω)ν̃Tnω(ψ)

∣∣∣∣

=

∣∣∣∣ν̃Tnω
(

1

Λn(ω)
Ln(ω)ψ

)∣∣∣∣

≤ ν̃Tnω(1)

∥∥∥∥
1

Λn(ω)
Ln(ω)ψ

∥∥∥∥
∞

for n > 0.

(9)

Since T is ergodic, the point ω ∈ Ω1 can be chosen in such a way that there exists a
divergent subsequence {nk}k>0 such that Tnkω ∈ Ω̂ for every k > 0. This fact together
with (9) implies that

|ν̃ω(ψ)| ≤ H
∥∥∥∥

1

Λnk(ω)
Lnk(ω)ψ

∥∥∥∥
∞

for k > 0.

Passing to the limit as k → +∞, and using the part of Proposition 8 which extends
conclusion (2) of Proposition 6 to the entire set Cα(M), we obtain ν̃ω(ψ) = 0. But this
is a contradiction, and so ν̃ω = νω for P-a.e. ω ∈ Ω0 ∩ Ω1. �

In the next corollary, we will use the Riesz Representation Theorem to prove that
each functional νω is a regular Borel Measure. Furthermore, we recall the properties
of νω obtained previously, and prove that family {νω}ω∈Ω0 has the property of being
measurable, i.e., the function ω 7→ νω(A) is measurable for every A ∈ B.

Corollary 3. The family functional {νω}ω∈Ω0 has the following properties:

(1) νω is a regular Borel measure on M for ω ∈ Ω0,
(2) νω(h(ω, ·)) = 1 for ω ∈ Ω0,
(3) L∗(ω)νTω = Λ(ω)νω for ω ∈ Ω0,
(4) ω 7→ νω(A) is measurable for every A ∈ B.

Proof. Property (1) follows from Proposition 8 and the Riesz Representation Theorem
[19]. Property (2) is precisely conclusion (1) of Lemma 6.8. Property (3) is just the
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extension of conclusion (2) of Lemma 6.8 to all ϕ ∈ C(M) (see Proposition 8), once we
have noticed that L∗(ω)νTω(ϕ) = νTω(L(ω)ϕ) for every ϕ ∈ C(M).

It remains to prove Property (4). First of all, we observe that since the manifold
M is compact and connected, the topology of M has a countable base, and the space
(C(M), ‖·‖∞) is separable. Let V be an open subset of M . By the Riesz Representation
Theorem (see [19, Theorem 2.14]), we have νω(V ) = sup{νω(ϕ) : 0 ≤ ϕ ≤ IV }, where
IV is the characteristic function of V . Since C(M) is separable, there exists a sequence
of continuous functions {ϕn}n>0 with 0 ≤ ϕn ≤ IV such that νω(V ) = supn νω(ϕn).
The extension of conclusion (3) of Lemma 6.8 to all ϕ ∈ C(M) (see Proposition 8) then
implies that ω 7→ νω(V ) is measurable. Now, let A ∈ B. Since νω is regular for ω ∈ Ω0

, we have νω(A) = inf{νω(V ) : A ⊂ V ⊂ M and V is open}. Since the topology of M
has a countable base, we can find a sequence of open subsets {Vn}n>0 of M such that
νω(A) = infn>0 νω(Vn). But each ω 7→ νω(Vn) is measurable, and so ω 7→ νω(A) is
measurable as well. This completes the proof. �

6.5. Invariant measure. Let us define a new family {µω}ω∈Ωo of non-negative set
functions on (M,B) by

(10) µω(A) =

∫

A

h(ω, x)dνω(x) for ω ∈ Ω0 and A ∈ B.

From Corollary 3, it follows immediately that µω is a regular Borel probability on M ,
and from conclusion (iv) of Corollary 3 and [8, conclusion (i) of Proposition 3.3], it
follows that ω 7→ µω(A) is measurable for every A ∈ B.

Now, define

µ(B) =

∫

Ω

∫

X

IB(ω, x)dµω(x)dP(ω) for B ∈ F ⊗ B,

By using a monotone class argument, one can show that µω is a probability on (Ω ×
M,F⊗B) whose marginal on Ω is P (see [8, conclusion (ii) of Proposition 3.3]). Moreover,
{µω}ω∈Ω0 is the disintegration of µ with respect to P (see [8, Proposition 3.6]).

Proposition 10. The probability µ is φ-invariant.

Proof. It is clear that πΩ∗µ = P, and since Ω0 is a full P-measure T -invariant set of Ω,
it suffices to prove that φ(ω, ·)∗µω = µTω for ω ∈ Ω0.

Fix ω ∈ Ω0 and ϕ ∈ C(M). By definition of µω, we have

φ(ω, ·)∗µω(ϕ) = µω (ϕ(φ(ω, ·))) = νω (h(ω, ·) · ϕ(φ(ω, ·))) .
Using conclusion (3) of Corollary 3, we obtain

νω (h(ω, ·) · ϕ(φ(ω, ·))) =
1

Λ(ω)
L∗(ω)νTω (h(ω, ·) · ϕ(φ(ω, ·)))

=
1

Λ(ω)
νTω (L(ω)(h(ω, ·) · ϕ(φ(ω, ·)))

=
1

Λ(ω)
νTω (ϕ · L(ω)h(ω, ·)) .

Finally, conclusion (3) of Proposition 6 implies that

1

Λ(ω)
νTω (ϕ · L(ω)h(ω, ·)) = νTω(ϕ · h(Tω, ·)) = µTω(ϕ).

Hence, φ(ω, ·)∗µω(ϕ) = µTω(ϕ), and the proof is complete. �
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6.6. Exponential decay of correlations. Let ϕ1, ϕ2 : Ω ×M → R be measurable
functions such that ϕ1(ω, ·) ∈ Cα(M) and that ϕ2(ω, ·) is bounded for every ω ∈ Ω0.
For every ω ∈ Ω0 and n > 0, we define the random correlation function of ϕ1 and ϕ2 as
follows

Cn(ω, ϕ1, ϕ2) =

∫

M

ϕ1(ω, x)ϕ2(ω, φn(ω, x))dµω(x)

−
∫

M

ϕ1(ω, x)dµω(x)

∫

M

ϕ2(ω, x)dµTnω(x).

In the next proposition, we prove that the random correlation function Cn(ω, ϕ1, ϕ2)
decays exponentially fast for P-a.e. ω ∈ Ω.

Proposition 11. Let ϕ1 and ϕ2 as above, and let ξ < 0 be the constant as Proposition 6.
Then

lim sup
n→+∞

1

n
log |Cn(ω, ϕ1, ϕ2)| ≤ ξ for ω ∈ Ω0.

Proof. Fix ω ∈ Ω0. Then

|Cn(ω, ϕ1, ϕ2)|

=

∣∣∣∣
∫

M

h(ω, x)ϕ1(ω, x)ϕ2(ω, φn(ω, x))dνω(x)

−
∫

M

h(ω, x)ϕ1(x)dνω(x)

∫

Ω

h(Tnω, x)ϕ2(ω, x)dνTnω(x)

∣∣∣∣

=

∣∣∣∣
∫

M

1

Λn(ω)
Ln(ω)(h(ω, ·)ϕ1(ω, ·)ϕ2(ω, φn(ω, ·)))(x)dνTnω(x)

−
∫

M

h(ω, x)ϕ1(ω, x)dνω(x)

∫

M

h(Tnω, x)ϕ2(ω, x)dνTnω(x)

∣∣∣∣

=

∣∣∣∣
∫

M

ϕ2(ω, x)
1

Λn(ω)
Ln(ω)(h(ω, ·)ϕ1(ω, ·))(x)dνTnω(x)

−
∫

M

h(ω, x)ϕ1(ω, x)dνω(x)

∫

M

h(Tnω, x)ϕ2(ω, x)dνTnω(x)

∣∣∣∣

=

∣∣∣∣
∫

M

ϕ2(ω, x)

(
1

Λn(ω)
Ln(ω)(h(ω, ·)ϕ1(ω, ·))(x)

−h(Tnω, x)

∫

M

h(ω, x)ϕ1(ω, x)dνω(x)

)
dνTnω(x)

∣∣∣∣
≤ ‖ϕ2(ω, ·)‖∞

×
∥∥∥∥

1

Λn(ω)
Ln(ω)(h(ω, ·)ϕ1(ω, ·))− νω(h(ω, ·)ϕ1(ω, ·))h(Tnω, ·)

∥∥∥∥
∞
.

The second equality is obtained by using the part of Proposition 8 relative to the exten-
sion of conclusion (2) of Proposition 6.8. We now observe that ‖ϕ2(ω, ·)‖∞ is finite by
hypothesis, and that h(ω, ·)ϕ1(ω, ·) ∈ Cα(M) because h(ω, ·) ∈ Cα(M) by Proposition 6
and ϕ1(ω, ·) ∈ Cα(M) by hypothesis. To obtain the wanted conclusion, we just need
to apply the part of Proposition 8 about the extension of Proposition 7 to the function
ϕ = h(ω, ·)ϕ1(ω, ·). �
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6.7. Ergodicity. We now prove that the measure µ is ergodic.

Proposition 12. The measure µ is ergodic.

Proof. To prove that µ is ergodic, we can show that either µ(A) = 0 or µ(A) = 1 for
every F -invariant set A ∈ F ⊗ B. It is quite easy to see that such a set A is completely
characterized by the relation

(11) φ(ω, ·)−1ATω = Aω for every ω ∈ Ω0.

Therefore, to prove that µ is ergodic, we can equivalently show that either µω(Aω) = 0
for P-a.e. ω ∈ Ω0, or µω(Aω) = 1 for P-a.e. ω ∈ Ω0.

LetA ∈ F⊗B be an F -invariant set. Using relation (11) and the fact that φ∗(ω, ·)µTω =
µω for ω ∈ Ω0, we obtain

µω(Aω) = µω(φ(ω, ·)−1ATω)

= φ∗(ω, ·)µTω(ATω)

= µTω(ATω) for ω ∈ Ω0,

(12)

which shows that the function ω 7→ µω(Aω) is T -invariant. The measurability of this
function follows from [8, Proposition 3.3]. Since T is ergodic, we can conclude that there
exists a constant c ∈ [0, 1] such that µω(Aω) = c for P-a.e. ω ∈ Ω0.

It remains to show that c is equal to either 0 or 1. Fix ω ∈ Ω0 and ϕ ∈ Cα(M).
Using relations (11) and (12), we get

µω (ϕ(IAω − µω(Aω))) = µω(ϕIAω )− µω(ϕ)µω(Aω)

= µω(ϕIATnω ◦ φn(ω, ·))− µω(ϕ)µTnω(ATnω)

for every n > 0. The same calculations as in the proof of Proposition 11 give

µω(ϕIATnω ◦ φn(ω, ·))− µω(ϕ)µTnω(ATnω) = ‖ITnAω‖∞

·
∥∥∥∥

1

Λn(ω)
Ln(ω)(h(ω, ·)ϕ(ω, ·))− νω(h(ω, ·)ϕ(ω, ·))h(Tnω, ·)

∥∥∥∥
∞
,

which together Proposition 8 (the part regarding the extension of Proposition 7) shows
that

lim
n→+∞

(µω(ϕIATnω ◦ φn(ω, ·))− µω(ϕ)µTnω(ATnω)) = 0.

Hence,

µω(ϕ(IAω − µω(Aω))) = 0 for all ϕ ∈ Cα(M).

Since Cα(M) is dense in C(M), we can finally conclude that

µω(Aω) = IAω (x) µω-a.e. x ∈M,

and so c ∈ {0, 1}. This completes the proof. �

6.8. Absolutely continuous invariant measure. We now consider the special situ-
ation when the random potential is given by γ(ω, x) = − log |detDxφ(ω, ·)| for ω ∈ Ω
and x ∈ M . For such a potential, the operator L(ω) is the usual Perron–Frobenius op-
erator associated the transformation φ(ω, ·), and it is easy to check that L∗(ω)m = m,
or equivalently that

(13) ‖L(ω)ϕ‖1 = ‖ϕ‖1 for ϕ ∈ L1(m) with ϕ ≥ 0.
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Proposition 13. Suppose the transformation φ(ω, ·) is of class C1+α(M) for every
ω ∈ Ω, and the random potential is given by γ(ω, x) = − log |detDxφ(ω, ·)|. Then the
probabilities µω defined in (10) are absolutely continuous with respect to m. It follows
that the probability µ is absolutely continuous with respect to P×m.

Proof. Let (Ω0,Λ, h, ν) be the quadruple obtained in Proposition 6 for the random
potential γ introduced above. Write as before Λn(ω) = Λ(Tn−1ω) · · ·Λ(ω) for ω ∈ Ω0

and n > 0. From (13) and conclusion (3) of Proposition 6, we get

Λn(ω) =
‖h(ω, ·)‖1
‖h(Tnω, ·)‖1

.

It follows that

‖h(Tnω, ·)‖1
‖h(ω, ·)‖1

· ‖Ln(ω)ϕ‖1 − νω(ϕ)‖h(ω, ·)‖1

≤
∥∥∥∥

1

Λn(ω)
Ln(ω)ϕ− νω(ϕ)h(Tnω, ·)

∥∥∥∥
1

≤
∥∥∥∥

1

Λn(ω)
Ln(ω)ϕ− νω(ϕ)h(Tnω, ·)

∥∥∥∥
∞
.

Since ‖Lωϕ‖1 = ‖ϕ‖1 by (13), Proposition 7 implies that

(14) lim
n→+∞

‖h(Tnω, ·)‖1
‖h(ω, ·)‖1

|‖ϕ‖1 − νω(ϕ)‖h(ω, ·)‖1| = 0.

Since T is ergodic, using an argument similar to that one in the proof of Lemma 6.7,
one can show that for P-a.e. ω ∈ Ω0, there exist ε > 0 and a divergent sequence of
positive integers {nk}k>0 such that ‖h(Tnkω, ·)‖1/‖h(ω, ·)‖1 > ε for every k > 0. This
fact combined with (14) implies that

νω(ϕ) =
1

‖h(ω, ·)‖1
‖ϕ‖1 for P-a.e. ω ∈ Ω0 and ϕ ∈ Cα+(M).

By Proposition 8, this measure has unique extension to C(M), which is clearly given by

νω(ϕ) =
1

‖h(ω, ·)‖1

∫

M

ϕ(x)dm(x) for ϕ ∈ C(M).

We can then conclude that

µω =
h(ω, ·)
‖h(ω, ·)‖1

m and µ =
h(ω, ·)
‖h(ω, ·)‖1

P×m,

which completes the proof. �

In the next proposition, we show that µ is the only F -invariant probability measure
that is absolutely continuous with respect to P×m.

Proposition 14. Under the hypotheses of Proposition 13, the probability µ is the unique
F -invariant probability that is absolutely continuous with respect to P×m.

Proof. Suppose that µ̃ is an F -invariant probability measure that is absolutely contin-
uous with respect to P×m. Let g be the Radon-Nikodym derivative of µ̃ with respect
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to P×m. Given a bounded measurable function ψ : Ω×M → R, the F -invariance of µ̃
implies that

µ̃(ψ) =
1

n

n−1∑

k=0

µ̃(ψ) = µ̃

(
1

n

n−1∑

k=0

ψ ◦ F k
)

= (P×m)

(
g · 1

n

n−1∑

k=0

ψ ◦ F k
)

for n > 0.

(15)

The probability µ is ergodic by Proposition 12, and so

(16) lim
n→+∞

1

n

n−1∑

k=0

ψ ◦ F k = µ(ψ) µ-a.e. on Ω×M.

From the proof of Proposition 13, we know that the Radon-Nikodym derivative of µ
with respect to P ×m is equal to h(ω, x)/‖h(ω, ·)‖1 for (P ×m)-a.e. (ω, x) ∈ Ω ×M .
Since h(ω, ·) is strictly positive for P-a.e. ω ∈ Ω, it is easy to see that P ×m � µ. In
other words, the probabilities P ×m and µ are equivalent. We can then conclude that
limit (16) holds almost everywhere with respect to P×m as well. Next, note that

∣∣∣∣∣g ·
1

n

n−1∑

k=0

ψ ◦ F k
∣∣∣∣∣ ≤ ‖ψ‖∞ · g ∈ L

1(P×m).

This fact together with (16) allows us to apply the Dominated Convergence Theorem
to the integral in (15) and obtain

µ̃(ψ) = (P×m)(µ(ψ)) = µ(ψ).

Since the function ψ is arbitrary, we infer that µ̃ = µ. �
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THE BOUNDARY OF A DIVISIBLE CONVEX SET

MICKAËL CRAMPON

Abstract. We try to describe the boundary of a divisible convex set at an infini-
tesimal level. The geodesic flow of the Hilbert metric is the main tool in this study,

because its asymptotic exponential behaviour (Lyapunov exponents) is related to
the shape of the boundary of the convex set.

1. Introduction

I have studied in [Craar] the local asymptotic behaviour of the geodesic flow of Hilbert
metrics. It naturally led me to introduce what seems to be a new regularity property of
convex functions. I gave it the not-so-good name of approximate regularity.

Definition 1.1. Let U be an open convex subset of Rn−1 and f : U −→ R a C1 strictly
convex function. For x0 ∈ U and small v ∈ Rn−1, define fx0(v) = f(x0 + v)− f(x0)−
dx0f(v). We say that the function f is approximately regular at the point x0 ∈ U if,
for all v ∈ Rn−1, the limit

lim
t→0

log(fx0(tv) + fx0(−tv))

log t

exists.

The property is here defined for strictly convex C1 functions but it has a trivial ex-
tension to general convex functions. The main result of [Craar] about this property is
the following decomposition theorem, that I proved using the geodesic flow of Hilbert
metrics:

Theorem 1.2 ([Craar], Theorem 6.1). Let f : U −→ R be a C1 strictly convex function.
The following propositions are equivalent:

(i) f is approximately regular at the point x0 ∈ U ;
(ii) there exist 1 6 p 6 n− 1, a splitting Rn−1 = ⊕p

i=1Gi and numbers +∞ > α1 >
· · · > αp > 1 such that for all v ∈ Gi,

lim
t→0

log(fx0(tvi) + fx0(−tvi))

log t
= αi;

(iii) there exist 1 6 p 6 n − 1,a filtration {0} = H0  H1  · · ·  Hp = Rn−1 and
numbers +∞ > α1 > · · · > αp > 1 such that, for any vi ∈ Hi rHi−1,

lim
t→0

log(fx0(tvi) + fx0(−tvi))

log t
= αi.

When f is approximately regular at x0, we call the numbers αi the Lyapunov exponents
of f at x0. It will be more convenient in this work to count the Lyapunov exponents
with multiplicities, taking into account the dimension of the subsets Gi. We thus define

The author was partially supported by the Fondecyt project N◦ 3120071 of CONICYT (Chile).
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the vector of Lyapunov exponents α = (αi)i=1···n−1, with α1 > · · · > αn−1 and we say
that f is approximately α-regular at x0.

Apart from the previous theorem, I do not know what else can be said about approxi-
mate regularity. For example, I asked the question to know whether a convex function is
Lebesgue-almost everywhere approximately regular, and to describe the range of possible
Lyapunov exponents. Actually, I do not even know if any convex function is approxi-
mately regular at at least one point.

In this note, I study these questions for the boundary of a divisible convex set for which
lots of properties can be deduced from its numerous symmetries (see section 2.3). As
an example, let us give the following result.

Theorem 1.3. Let Ω ⊂ RPn be a divisible strictly convex set. There exists α =
(αi)i=1···n−1 ∈ Rn−1 such that its boundary ∂Ω is approximately α-regular at Lebesgue-
almost every point. Furthermore, α1 > 2 unless Ω is an ellipsoid.

Acknowledgements: I would like to thank François Ledrappier for shadowing orbits
together.

2. Hilbert geometry and divisible convex sets

2.1. Hilbert geometry. A Hilbert geometry is a metric space (Ω, dΩ) where

• Ω is a properly convex open set of the real projective space RPn, n > 2; properly
means that there exists a projective hyperplane which does not intersect the
closure of Ω, or, equivalently, that there is an affine chart in which Ω appears
as a relatively compact set;

• dΩ is the distance on Ω defined, for two distinct points x, y, by

dΩ(x, y) =
1

2
| log[a, b, x, y]|,

where a and b are the intersection points of the line (xy) with the boundary ∂Ω
(see Figure 1) and [a, b, x, y] denotes the cross ratio of the four points : if we

identify the line (xy) with R ∪ {∞}, it is defined by [a, b, x, y] = |ax|/|bx|
|ay|/|by| .

These geometries had been introduced by Hilbert at the end of the nineteenth century
as examples of spaces where lines are geodesics, which one can see as a motivation for
the fourth of his famous problems: roughly speaking, this problem consisted in finding
all geometries for which lines are geodesics.
When Ω is an ellipsoid, one recovers in this way the Beltrami model of the hyperbolic
space. This is the only case where a Hilbert geometry is Riemannian. Otherwise, it is
only a Finsler space: The Hilbert metric dΩ is generated by a field of norms F on Ω,
the norm F (x, u) of a tangent vector u ∈ TxΩ being given by the formula

F (x, u) =
|u|
2

(
1

|xu+| +
1

|xu−|

)
,

where | . | is an arbitrary Euclidean metric, and u+ and u− are the intersection points
of the line x+ R.u with the boundary ∂Ω (see Figure 1).
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x

y

b

a

xx−

x+

ξ

Figure 1. The Hilbert distance and the Finsler metric

2.2. Horospheres. Assume Ω is strictly convex with C1 boundary. In this case, Buse-
mann functions and horospheres can be defined as in hyperbolic geometry.
The Busemann function based at x ∈ ∂Ω is defined by

bx(z, y) = lim
p→x

dΩ(z, p)− dΩ(y, p), z, y ∈ Ω

which, in some sense, measures the (signed) distance from z to y in Ω as seen from the
point x ∈ ∂Ω.

The horosphere passing through z ∈ Ω and based at x ∈ ∂Ω is the set

Hx(z) = {y ∈ Ω, bx(z, y) = 0}.
Hx(z) is also the limit when p tends to x of the metric spheres S(p, dΩ(p, z)) about p
passing through z. In some sense, the points on Hx(z) are those which are as far from
x as z is.

2.3. Divisible convex sets. Since projective transformations preserve cross-ratios, the
group of projective symmetries of Ω,

Aut(Ω) = {g ∈ PSLn+1(R), g(Ω) = Ω},
is a subgroup of isometries of the Hilbert geometry (Ω, dΩ)

1. A discrete subgroup Γ of
Aut(Ω) acts then properly discontinuously on Ω; by Selberg’s lemma, it contains a finite
index subgroup which has no torsion. The quotient Ω/Γ is thus an orbifold in general,
a manifold if Γ has no torsion.

Definition 2.1. We say that a properly convex open set Ω or the corresponding Hilbert
geometry (Ω, dΩ) is divisible if there exists a discrete subgroup Γ of Aut(Ω) with compact
quotient Ω/Γ.

The first example of divisible convex set is the ellipsoid, that is, the hyperbolic space.
Y. Benoist proved the following alternative in [Ben04].

1It is conjectured that, for most Hilbert geometries, all isometries are projective.
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Theorem 2.2. Let Ω be a divisible convex set, divided by a discrete subgroup Γ of
Aut(Ω). The following properties are equivalent:

• the convex set Ω is strictly convex;
• the boundary ∂Ω is of class C1;
• the Hilbert geometry (Ω, dΩ) is Gromov-hyperbolic;
• the group Γ is Gromov-hyperbolic.

An important argument of duality is used to prove this theorem, that we recall now.
Consider one of the two convex cones C ⊂ Rn+1 whose trace is Ω. The dual convex set
Ω∗ is the trace of the dual cone

C∗ = {f ∈ (Rn+1)∗, ∀x ∈ C, f(x) > 0}.
The set Ω∗ can be identified with the set of projective hyperplanes which do not intersect
Ω: to such a hyperplane corresponds the line of linear maps whose kernel is the given
hyperplane. For example, we can see the boundary of Ω∗ as the set of tangent spaces to
∂Ω. In particular, when Ω is strictly convex with C1 boundary, there is a homeomorphism
between the boundaries of Ω and Ω∗: to the point x ∈ ∂Ω we associate the (projective
class of the) linear map x∗ such that kerx∗ = Tx∂Ω. The group Aut(Ω) acts on the
dual convex set Ω∗ via g.y = (tg)−1(y), g ∈ Aut(Ω).

Lemma 2.3 ([Ben04], Lemme 2.8). Let Γ be a discrete subgroup of Aut(Ω). The action
of Γ on Ω is cocompact if and only if the action of Γ on Ω∗ is also cocompact.

Apart from the ellipsoid, various examples of strictly convex divisible sets have been
given. Some can be constructed using Coxeter groups ([KV67], [Ben06b]), some by
deformations of hyperbolic manifolds (based on [JM87] and [Kos68], see also [Gol90]
for the 2-dimensional case); we should also quote the exotic examples of M. Kapovich
[Kap07] of divisible convex sets in all dimensions which are not quasi-isometric to the
hyperbolic space (Y. Benoist [Ben06b] had already given an example in dimension 4).
Non-strictly convex examples are more difficult to find. The trivial ones are given by
the symmetric spaces of the groups SLn(K) (K being the set of complex, quaternionic or
octonionic numbers2) or by products (see the historical remarks in [Ben03]). The only
other known examples have been constructed by Y. Benoist [Ben06a] and L. Marquis
[Mar10] in dimension 3 using Coxeter groups.

2.4. Properties of the dividing group. Let Ω ⊂ RPn be a properly convex strictly
convex set, divided by a torsion-free discrete group Γ. All elements g ∈ Γ are hyperbolic
isometries of the Hilbert geometry (Ω, dΩ). That means the following.
The element g fixes exactly two points x+

g and x−
g on ∂Ω; the point x+

g is the at-

tractive point of g, x−
g is the repulsive point of g : for any point x ∈ Ω r {x−

g , x
+
g },

limn→±∞ gn(x) = x±
g .

Denote by (ℓi(g))i=0···n the complex eigenvalues of g, counted with multiplicities and
ordered such that |ℓ0(g)| > |ℓ1(g)| > · · · > |ℓn(g)|. The largest and smallest eigenvalues
ℓ0 and ℓn(g) are simple, real and positive, and the points x+

g and x−
g are the correspond-

ing eigenvectors.
Let λi(g) = log |ℓi(g)|, i = 0 · · ·n. The isometry g acts as a translation of length

2In the case of octionions, the only possibility is n = 3.
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1
2 (λn(g)− λ0(g)) on the open segment ]x−

g x
+
g [.

The following result will be crucial to deduce some rigidity results.

Theorem 2.4 (Y. Benoist [Ben00]). Let Ω ⊂ RPn be a properly convex strictly convex
set, divided by a discrete group Γ. The group Γ is Zariski-dense in SLn+1(R), unless Ω
is an ellipsoid.

Recall that the Zariski-closure of a subgroup Γ of SLn+1(R) is the smallest algebraic
subgroup G of SLn+1(R) which contains Γ. We then say that Γ is Zariski-dense in G.
The hypothesis of strict convexity in the last theorem is actually unnecessary, but the
proof in the general case is far more involved [Ben03].
This last theorem will be useful through the following characterization of Zariski-dense
subgroups of semisimple Lie groups, which is also due to Y. Benoist, and that we explain
in the case of the group SLn+1(R). To each element g in SLn+1(R), we associate the
vector log(g) = [λ0(g) : · · · : λn(g)] ∈ RPn and for a subgroup Γ of SLn+1(R), we set

log Γ = {log g, g ∈ Γ}.
Theorem 2.5 (Y. Benoist, [Ben97]). Let Γ be a subgroup of SLn+1(R). If Γ is Zariski-
dense in SLn+1(R), then log Γ has nonempty interior.

3. Curvature of the boundary

3.1. What is curvature. Let us begin with an old theorem of A. D. Alexandrov [Ale39]
about convex functions:

Theorem 3.1. Let f : U ⊂ Rn−1 7−→ R be a convex function defined on a convex

open set U of Rn−1. The Hessian matrix Hess(f) =
(

∂2f
∂i∂j

)
ij

exists Lebesgue almost

everywhere in U .

Let Ω be a bounded convex set of the Euclidean space Rn. It is then possible to compute
the Hessian of its boundary at Lebesgue almost every point x ∈ ∂Ω. We will call a C2

point a point x where this is possible.
The Hessian is a positive symmetric bilinear form on the tangent space Tx∂Ω. It rep-
resents the curvature of the boundary at x. When it is degenerate, that means the
curvature of the boundary is zero in some tangent direction.
The Hessian is a Euclidean notion, but its degeneracy is not. Namely, if Ω is a properly
convex open set of RPn and x a point of ∂Ω, we can choose an affine chart centered at x
and a metric on it and compute the Hessian of ∂Ω at x; its degeneracy does not depend
on the choice of the affine chart and the metric.

We can measure the vanishing of the curvature of ∂Ω in the following way. Fix a smooth
measure λ∗ on the boundary of the dual convex set Ω∗, and call λ its pull-back to ∂Ω.
Then λ can be seen as a measure of the curvature of ∂Ω. It can be decomposed as

λ = λac + λsing ,

where λac is an absolutely continuous measure and λsing is singular with respect to any
Lebesgue measure on ∂Ω. For example, in dimension 2, if ∂Ω is not C1 at some point x
then λ will have an atom at x. The support of λac is the closure of the set of C2 points
with nondegenerate Hessian.
Though Ω is convex, it may happen that λac = 0, that is, λ is singular with respect to
some (hence any) smooth measure on ∂Ω. This is equivalent to the fact that the Hessian
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is degenerate at Lebesgue-almost all C2 point of ∂Ω. We then say that the curvature of
the boundary is supported on a set of zero Lebesgue measure.

3.2. Curvature of the boundary of a divisible convex set. The curvature of the
boundary of a divisible convex set has been investigated by J.-P. Benzécri [Ben60].

Lemma 3.2 (J.-P. Benzécri [Ben60]). Let Xn denote the set of properly convex open
sets of RPn, equipped with the Hausdorff topology. Let Ω ∈ Xn.

• If there exists a C2 point x ∈ ∂Ω with nondegenerate Hessian, then the closure
of the orbit PSLn+1(R) · Ω in Xn contains an ellipsoid.

• If Ω is divisible then the orbit PSLn+1(R) · Ω is closed in Xn.

Proof. These two results are respectively Propositions 5.3.10 and 5.3.3 of [Ben60]. Let
us recall the proofs.
Choose an affine chart and a Euclidean metric on it such that Ω appears as a bounded
convex open set of Rn. Let x be a point of ∂Ω with nondegenerate Hessian. Let E be
the osculating ball of ∂Ω at x. It defines a hyperbolic geometry (E , dE ). Pick a point
y ∈ ∂E distinct from x, and choose a hyperbolic isometry g of E whose attracting fixed
point y and repulsive one x. Now, since ∂E and ∂Ω are tangent up to order 2, it is not
difficult to see that gn · Ω converges to E when n goes to +∞. This proves the first
point.
The second point is a consequence of another result of Benzécri, which says that the
action of PSLn+1(R) on the set Ẋn = {(Ω, x), Ω ∈ Xn, x ∈ Ω} is proper (this is
Théorème 3.2.1 of [Ben60]). Each orbit PSLn+1(R) · (Ω, x) is thus closed. Now, the
orbit PSLn+1(R) · Ω is closed in Xn if and only if the union ∪x∈ΩPSLn+1(R) · (Ω, x)
is closed in Ẋn. Since Ω is divisible, divided, say, by the group Γ, there is a compact
subset K of Ω such that Γ ·K = Ω. So the union⋃

x∈Ω

PSLn+1(R) · (Ω, x) =
⋃

x∈K

⋃

g∈Γ

PSLn+1(R) · (Ω, g(x)) =
⋃

x∈K

PSLn+1(R) · (Ω, x)

is closed in Ẋn. �
More about Benzécri’s contributions can be found in L. Marquis’s survey [Mar13]; the
proof of the second point above is actually taken from it. As a consequence of the last
lemma, we get the following

Proposition 3.3. Let Ω ⊂ RPn be a divisible convex set, and assume Ω is not an
ellipsoid. Then any C2 point has degenerate Hessian. In particular, the curvature of ∂Ω
is supported on a subset of zero Lebesgue measure.

Proof. Assume that the Hessian of ∂Ω is not degenerate at some C2 point. Lemma 3.2
implies that the orbit PSLn+1(R) · Ω is closed and contains an ellipsoid. So Ω itself is
an ellipsoid. �
When the convex set is strictly convex, the geodesic flow of the Hilbert metric allows to
say more about the properties of the boundary. The rest of this paper is dedicated to
this case.

4. The geodesic flow and the boundary

4.1. The geodesic flow. When Ω is strictly convex, the metric space (Ω, dΩ) is uniquely
geodesic, and the geodesics are lines. The geodesic flow is then well defined on the
homogeneous bundle π : HΩ −→ Ω of tangent directions: To find the image by ϕt of a
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point w = (x, [ξ]) ∈ HΩ, consisting of a point and a direction, one follows the geodesic
line cw leaving x in the direction [ξ], and one has ϕt(w) = (cw(t), [c

′
w(t)]).

By projection, this also defines the geodesic flow on HM , the homogeneous bundle of
M = Ω/Γ.
The geodesic flow has the same regularity as the boundary of Ω. So, if Ω is strictly
convex and divisible, by Theorem 2.2, it is a C1 flow. We will denote by X the generator
of the geodesic flow (both on HΩ or HM).

Theorem 4.1 (Y. Benoist, [Ben04]). Let M = Ω/Γ a compact manifold quotient of a
strictly convex set Ω ⊂ RPn. The geodesic flow on HM is an Anosov flow: There exist
a ϕt-invariant splitting of the tangent bundle

THM = R.X ⊕ Eu ⊕ Es

and constants C,α > 0 such that, for any t > 0,

‖dϕt(Zs)‖ 6 Ce−αt‖Zs‖, Zs ∈ Es,

‖dϕ−t(Zu)‖ 6 Ce−αt‖Zu‖, Zu ∈ Eu.

Here the norm ‖ · ‖ denotes an arbitrary Finsler metric on HM ; because HM is
compact, the Anosov property of the flow does not depend on the metric, even if the
constants C and/or a do.
In our situation, the stable and unstable bundles Es and Eu can be geometrically
understood using horospheres. For w ∈ HΩ, define the sets

W s(w) = {v ∈ HΩ | v+ = w+, π(v) ∈ Hw+(π(w))},
and

Wu(w) = {v ∈ HΩ | v− = w−, π(v) ∈ Hw−(π(w))}.
The sets W s(w) and Wu(w) are C1 submanifolds of HΩ and it is not difficult to see
that they are the stable and unstable sets of the geodesic flow (d denotes the distance
generated by ‖ · ‖):

W s(w) = {v ∈ HΩ, lim
t→+∞

d(ϕtw,ϕtv) = 0}

and

Wu(w) = {v ∈ HΩ, lim
t→−∞

d(ϕtw,ϕtv) = 0}.

Both families W s(w), w ∈ HΩ and Wu(w), w ∈ HΩ form a ϕt-invariant foliation of HΩ.
Everything projects down on HM where we will use the same notation. The stable and
unstable bundles are then the tangent spaces to the stable and unstable foliations :
Es(w) = TwW

s(w), Eu(w) = TwW
u(w).

The asymptotic behaviour of the geodesic flow is encoded in the boundary of Ω: When
we look at the behaviour of the norm ‖dϕtZ‖ when t goes to +∞, for some Z ∈ TwHΩ,
we see appearing naturally the graph of the boundary at the extremal point w+. This
observation is at the basis of this work. To illustrate this observation, notice the following
“consequence” of Theorem 4.1:

Proposition 4.2 ([Ben04], Proposition 4.6). The boundary of a divisible strictly convex
set is Cα and β-convex for some 1 < α 6 2, β > 2. In particular, the geodesic flow is
Cα for some α > 1.

To understand the last statement, we recall the following definitions:
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Definition 4.3. Let 1 < α < 2, β > 1 and U an open subset of Rn. A C1-function
f : U ⊂ Rn −→ R is

• of class Cα if, for some constant C > 0,

|f(x)− f(y)− dxf(y − x)| 6 C|x− y|1+ε, x, y ∈ U ;

• β-convex if, for some constant C > 0,

|f(x)− f(y)− dxf(y − x)| > C|x− y|β, x, y ∈ U.

4.2. Approximate regularity and Lyapunov exponents. Recall the following def-
inition:

Definition 4.4. Let Ω ⊂ RPn be a strictly convex set with C1 boundary. A point
w ∈ HΩ is weakly regular if, for any Z ∈ TwHΩr {0}, the limit

χ(Z) = lim
t→±∞

1

t
log ‖dϕt(Z)‖

exists. It is said to be forward or backward weakly regular if the limits exist only when
t goes to +∞ or −∞ (or if both limits differ). The number χ(Z) is called the Lyapunov
exponent of Z.

Because stable and unstable manifolds W s(w) and Wu(w) at w have the same projec-
tion on Ω, there is a symmetry between the action of the flow on stable and unsta-
ble vectors (see for example Lemma 2.3 in [Craar]). In particular, we can see that if
Zs ∈ Es(w), Zu ∈ Eu(w) project on the same vector z ∈ Hw, then

χ(Zu) = 2 + χ(Zs).

The complete behaviour is then encoded in the behaviour of unstable vectors, and we
will be only interested in these vectors by looking at the restriction of the differential dϕt

to the bundle Eu. Because the geodesic flow is an Anosov flow, all Lyapunov exponents
of unstable vectors are positive.
Given a forward weakly regular point w ∈ HΩ, the numbers χ(Z), for any Z ∈ Eu(w),
can take only a finite number 0 < χ1 < · · · < χp of values, which are called the positive
Lyapunov exponents of w. There is then a ϕt-invariant splitting

THΩ = E1 ⊕ · · · ⊕ Ep

along the orbit ϕ.w, called Lyapunov splitting, such that, for any vector Zi ∈ Ei r {0},

lim
t→+∞

1

t
log ‖dϕt(Zi)‖ = χi.

As for the exponents (αi) appearing in the definition of approximate regularity, we will
count the (χi) with multiplicities. We thus have n − 1 positive Lyapunov exponents
(χi)i=1···n−1 ordered as χ1 6 · · · 6 χn. The main result of [Craar] is the following

Theorem 4.5 ([Craar], Theorem 1). Let Ω ⊂ RPn be a strictly convex set with C1

boundary. A point w ∈ HΩ is forward weakly regular if and only if the boundary ∂Ω is
approximately regular at the point w+ = ϕ+∞(w). If 0 6 χ1 6 · · · 6 χn are the positive
Lyapunov exponents of w, then ∂Ω is approximately α-regular with α = (αi)i=1···n−1

given by αi = 2/χi.
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5. The set of approximately regular points and the range of Lyapunov
exponents

Let Ω ⊂ RPn be a divisible strictly convex set. Our interest now will lie on the set
of approximately regular points Λ ⊂ ∂Ω, as well as the set of all possible Lyapunov
exponents

A = {α(x) ∈ Rn−1, x ∈ Λ}.
By projective invariance of the notion of approximate-regularity, the set of approximately
α-regular points of ∂Ω is Γ-invariant, for any vector α. Since the action of Γ on ∂Ω is
minimal, it is either empty (if α 6∈ A) or a dense subset of ∂Ω (if α ∈ A).

5.1. Oseledets’ theorem. The following result is a version of Osedelets’ ergodic mul-
tiplicative theorem [Ose68]:

Theorem 5.1. Let M = Ω/Γ a manifold quotient of a strictly convex set Ω ⊂ RPn
with C1 boundary. Let µ a ϕt-invariant probability measure on HM . The set of weakly
regular points has full µ-measure.

It allows us to deduce the following

Corollary 5.2. Let Ω ⊂ RPn be a divisible strictly convex set. The set A is nonempty
and the set Λ is dense in ∂Ω.

Proof. The set of ϕt-invariant probability measures on HM is nonempty. In particular,
by Oseledets’s theorem, there exists a weakly regular point w ∈ HΩ. By Theorem 4.5,
the boundary ∂Ω is approximately regular at the point w+, so A is nonempty and Λ is
dense in ∂Ω. �

5.2. Hyperbolic isometries and closed orbits. Recall that any element g ∈ Γ is a
hyperbolic isometry of the Hilbert geometry (Ω, dΩ). We use the notation introduced in
section 2.4.
For g ∈ Γ, pick a point w ∈ HΩ such that w− = x−

g , w+ = x+
g . The projection on HM

of the orbit of w under the flow is a closed orbit of the flow, of length 1
2 (λn(g)−λ0(g)).

Two elements g and g′ yield the same closed orbit if and only if they are conjugated.
Conversely, any closed orbit is obtained in this way. In other words: Closed orbits of
the geodesic flow on HM are in bijection with conjugacy classes of Γr {1}.
Proposition 5.3. Let Ω ⊂ RPn be a divisible strictly convex set, divided by a torsion-
free discrete group Γ < Aut(Γ). Let g ∈ Γ. The boundary ∂Ω is approximately α(g)-
regular at the point x+

g , with α(g) = (αi(g))i=1···n−1 given by

(5.1) αi(g) =
1− λn(g)/λ0(g)

1− λi(g)/λ0(g)
.

Proof. In [Cra09], I showed that the positive Lyapunov exponents (χi(g))i=1···n−1 of the
closed orbit corresponding to the (conjugacy class of the) element g ∈ Γ were given by

χi(g) = 2
λ0(g)− λi(g)

λ0(g)− λn(g)
.

Theorem 4.5 gives the result. �

The element g ∈ Γ acts on the dual convex set Ω∗ by g.y = (tg)−1(y). To g ∈ Γ, we
thus associate the isometry g∗ = (tg)−1 ∈ Aut(Ω∗). The dual point to x+

g is the point
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x−
g∗ , at which ∂Ω∗ is approximately α(g∗)-regular, with α(g∗) = (αi(g

∗))i=1···n−1 given
by

αi(g
∗) =

1− λn(g)/λ0(g)

1− λn(g)/λn−i(g)
.

Remark that
1

αn−i(g∗)
+

1

αi(g)
= 1, i = 1 · · ·n− 1.

In general, if ∂Ω is approximately α-regular at some point x with α = (αi)i=1···n−1,
one can expect ∂Ω to be approximately α∗-regular at the dual point x∗ ∈ ∂Ω∗ with
α∗ = (α∗

i )i=1···n−1 satisfying to the previous relation: 1/α∗
n−i+1/αi = 1, i = 1 · · ·n−1..

I was able to prove this fact only for Ω ⊂ RP2 in [Craar].

If Ω is an ellipsoid, then obviously Λ = ∂Ω and A = {2}. This second property is
characteristic of the ellipsoid. (The first one will be treated in section 5.5.)

Corollary 5.4. Let Ω ⊂ RPn be a divisible strictly convex set. The closure A of A has
empty interior if and only if Ω is an ellipsoid.

Proof. Assume Ω is not an ellipsoid. Then, by Theorems 2.4 and 2.5, the set

log Γ = {[λ0(g) : · · · : λn(g)], g ∈ Γ} ⊂ RPn

has nonempty interior.
Now, the set A contains the vectors α(g) = (αi(g)), g ∈ Γ, defined by αi(g) =
1−λn(g)/λ0(g)
1−λi(g)/λ0(g)

. Hence, A contains the image of the well-defined continuous function

log Γ −→ Rn−1

[λ0 : · · · : λn] 7−→ (
1 − λn/λ0

1− λ1/λ0
, · · · , 1− λn/λ0

1− λn−1/λ0
).

This gives the result. �

It is likely that one can replace A by A in the last proposition. A way to prove that
would be to see that the set AM defined in section 5.3 contains the interior of A.

5.3. Ergodic measures. Let Λ(HΩ) be the set of forward weakly regular points of
HΩ, which is obviously Γ-invariant. By Theorem 4.5, the set Λ is given by

Λ = {w+ ∈ HΩ, w ∈ Λ(HΩ)}.
Let M be the set of invariant probability measures of the flow on HM . Each measure
m ∈ M defines by lifting it a measure m̃ on HΩ which is invariant under the actions of
Γ and the flow.
Oseledets’ theorem tells us that, for any m ∈ M, Λ(HΩ) has full m̃-measure, hence
Lyapunov exponents are defined m̃-almost everywhere. If m is an ergodic measure, that
is invariant sets have zero or full measure, then Lyapunov exponents are constant almost
everywhere: to each ergodic measure m we can thus associate its positive Lyapunov ex-
ponents χ1(m) 6 · · · 6 χn−1(m).

We can associate, in a one-to-one way, to each invariant probability measure m on HM
a Γ-invariant Radon measure M = M(m) on the space of oriented geodesics of Ω given
by ∂2Ω = (∂Ω× ∂Ω)r∆, where ∆ = {(x, x), x ∈ ∂Ω} (see [Kai90] for example). If m
is ergodic, Oseledets’ theorem implies that for M -almost all (x, y) ∈ ∂2Ω, the geodesic
from x to y is weakly regular with positive Lyapunov exponents χ1(m) 6 · · · 6 χn−1(m);
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thus, for M -almost all (x, y) ∈ ∂2Ω, the boundary ∂Ω is approximately α(m)-regular at
x, with α(m) = (αi(m)))i=1···n−1 given by

αi(m) =
2

χi(m)
.

The set AM = {α(m), m ∈ M} is an interesting subset of A. As I said before, it might
contain the interior of A.
The diversity of ergodic measures gives an idea of the complexity of the boundary of a
divisible strictly convex set which is not an ellipsoid. Here are some examples.

5.3.1. Closed orbits. The easiest examples of ergodic measures are the Lebesgue mea-
sures lg supported by a closed orbit g, associated to a conjugacy class of a hyperbolic
element g ∈ Γ. The corresponding subset of ∂2Ω of full M(lg)-measure is precisely the
orbit of (x−

g , x
+
g ) under Γ. This has been treated in the previous part.

Denote by MPer = {lg, g ∈ Γ} the set of ergodic measures supported on closed orbits
and define AMPer = {α(m), m ∈ MPer}. It is a consequence of the Anosov clos-
ing lemma that MPer is dense in the set of ergodic measures, so we could expect the
following

Proposition 5.5. Let Ω ⊂ RPn be a divisible strictly convex set. The set AMPer is
dense in AM.

Proof. This is a consequence of a nontrivial result one can find in [Kal11] (Theorem 1.4):
it states that the vector χ(m) associated to an ergodic measure can be approximated by
a sequence of vectors (χ(gn)) with gn ∈ MPer . The vector α(m) is thus approximated
by the sequence (α(gn)). �

5.3.2. Gibbs measures. A Gibbs measure is the equilibrium state of a Hölder continuous
potential f : HM −→ R: it is the unique invariant probability measure µf such that

hµf
+

∫
f dµf = sup{hm +

∫
f dm, m ∈ M}.

The corresponding measure Mf on ∂2Ω can always be written as Mf = FM s
f × Mu

f ,

where F is a continuous function on ∂2Ω, and M s
f and Mu

f are two finite measures on
∂Ω. The three objects are determined by the potential; in particular, Mu

f and M s
f are

given by the Patterson-Sullivan construction, associated to the potentials f and σ ∗ f ,
where σ is the flip map, defined on HΩ by σ(x, [ξ]) = (x, [−ξ]) (see [Cou03] or [Led95]).
Among Gibbs measures is for instance the Bowen-Margulis measure µBM which is the
measure of maximal entropy of the flow, that is, the equilibrium state associated to the
potential f = 0. The corresponding measure MBM is given by

dMBM (ξ+, ξ−) = e2δ(ξ
+|ξ−)odµ2

o(ξ
+, ξ−),

where µo is the Patterson-Sullivan measure at an arbitrary point o ∈ Ω, and (ξ+|ξ−)o is
the Gromov product ξ+ and ξ− based at the point o: we have (ξ+|ξ−)o = 1

2 (bξ−(o, x) +
bξ−(o, x)) for any point x ∈ (ξ−ξ+) (see [Sul79]).
In [Cra09], I had proved that χ+(µBM ) =

∑
χi(µBM ) = n − 1. Thus, we get that µo-

almost every point of ∂Ω is approximately α(µBM )-regular with α(µBM ) = (αi(µBM ))i=1···n−1,
such that (

∑
i 1/αi(µBM ))−1 = 2(n− 1). For example, in dimension 2, µo-almost every

point of ∂Ω is approximately 2-regular. A question I am not able to answer is to know
if, in dimension n > 3, the αi are all equal to 1 if and only if Ω is an ellipsoid.
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5.4. Shape of the boundary at Lebesgue almost every point. The Sinai-Ruelle-
Bowen (SRB) measure µ+ is the equilibrium state associated to the potential

f+ =
d

dt
|t=0 log det dϕ

t
|Eu

.

This potential is Hölder continuous because the geodesic flow is Cα for some α > 1.
The measure µ+ is the only measure whose conditional measures (µ+)u along unstable
manifolds are absolutely continuous.
Closely related to this measure is the “reverse” SRB measure µ− = σ ∗µ+, which is the
equilibrium state of the potential

f− = − d

dt
|t=0 log det dϕ

t
|Es .

The measure µ− is the only invariant measure whose conditional measures along stable
manifolds are absolutely continuous.
In the case of the ellipsoid, µ+, µ− and µBM all coincide, since f+ = f− = 0, and
they are all absolutely continuous; indeed, they coincide with the Liouville measure of
the flow. When Ω is not an ellipsoid, the Zariski-density of the cocompact group Γ
implies via Livschitz-Sinai theorem that there is no absolutely continuous measure (see
[Ben04]). So the three measures are distinct.

The measure µ+ is also the only one which satisfies the equality in the Ruelle inequality
(see [LY85]). Recall that the Ruelle inequality relates the entropy of an invariant measure
m to the sum of positive Lyapunov exponents χ+ of the flow:

hm 6
∫

χ+ dm.

For example, the topological entropy htop of the flow satisfies

htop = hµBM 6 n− 1,

with equality if and only if Ω is an ellipsoid (this is the main result of [Cra09]). The
measures µ+ and µ− have the same entropy hSRB given by

hSRB =

∫
χ+ dµ+ = −

∫
χ− dµ−,

where χ− is the sum of negative Lyapunov exponents. In particular, if Ω is not an
ellipsoid, we have

∫
χ+ dµ+ = hSRB < hµBM < n− 1. Hence the µ+-almost sure value

χ+(µ+) of the sum of positive Lyapunov exponents satisfies χ+(µ+) < n− 1.
The measure µ+ corresponds to the measure M+ on ∂2Ω which can be written M+ =
F+M s × Mu, with Mu absolutely continuous, while the measure µ− corresponds to
M− = F−Mu ×M s. In particular, we have the following

Proposition 5.6. Let Ω ⊂ RPn be a divisible strictly convex set. Then Lebesgue-almost
every point of ∂Ω is approximately α-regular with α = (αi)i=1···n−1 given by

αi =
2

χi(µ+)
.

Since ∂Ω is also Lebesgue almost-everywhere 2-differentiable by Alexandrov’s theorem,
we have that αi 6 2, i = 0 · · ·n − 1. When Ω is an ellipsoid, we have αi(SRB) = 2,
i = 0 · · ·n − 1. Otherwise, the fact that χ+(µ+) < 0 implies that χ1(µ

+) < 1 hence
α1 > 2. In particular, we recover the fact that the curvature of ∂Ω is supported on a
set of zero Lebesgue-measure.
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5.5. The 2-dimensional case. In dimension 2, we can understand better the sets Λ
and A.

5.5.1. The set of approximately regular points. We will see here that the property that
Λ = ∂Ω characteristic of the ellipsoid. This is probably true in higher dimensions but
we would need a more careful approach.

Proposition 5.7. Let Ω ⊂ RP2 be a divisible strictly convex set. If Ω is not an ellipse,
then there is a point of ∂Ω at which ∂Ω is not approximately regular.

To prove this proposition, we will use the specification property of an Anosov flow, that
we recall now (see [KH95]). It roughly means that given a family of pieces of orbits (S
below), there exists an orbit that follows these pieces.
A specification is a family S = (Si)i=0···N , for some N ∈ N∪{+∞}, of pairs Si = (wi, Ii)
with wi ∈ HM , Ii = [ti, Ti], ti < Ti which satisfy ti > Ti−1. For T > 0, we say that
the specification S is T -spaced if ti − Ti−1 > T, i = 1 · · ·N . Given ε > 0, we say
that the orbit of w ∈ HM ε-shadows S if for any i = 0 · · ·N , t ∈ [ti, Ti], we have
d(ϕt(w), ϕt(wi)) 6 ε.

Theorem 5.8. The Anosov flow ϕt : HM −→ HM has the specification property:
given ε > 0, there exists T (ε) such that, for any T (ε)-spaced specification S, there exists
a point w ∈ HM whose orbit ε-shadows S.

We can now give a

Proof of Proposition 5.7. Fix ε > 0, and let T = T (ε) given by the last theorem.
Choose two periodic points w1 and w2 in HM , with distinct positive Lyapunov exponent
χ1 < χ2. This is possible if Ω is not an ellipsoid, by Corollary 5.4. For k > 0, let S′

k be
the specification

S′
k = ((w1, [0, 2

2k ]), (w2, [T + 22
k

, T + 22
k

+ 22
k+1

])).

If S = (wi, [ti, Ti])i=1···N is a specification, we set maxS = TN . For t > 0, we denote
by t + S the specification S = (wi, [t + ti, t + Ti])i=1···N . We set S0 = S′

0, Sk =
T +max(Sk−1) + S′

k, k > 1.We finally define the infinite specification S by

S = (S0, S1, · · · ).
Since S is T -spaced by construction, there is a point w whose orbit ε-shadows S, and,
for Z ∈ Eu, we have

| lim sup
t→−∞

1

t
log ‖dϕtZ‖ − χ2| < η(ε), | lim inf

t→+∞
1

t
log ‖dϕtZ‖ − χ1| < η(ε),

with limε→0 η(ε) = 0. So, if ε is taken so that η(ε) < (χ2−χ1)/27, then w is not forward
weakly regular. Theorem 4.5 implies that the boundary ∂Ω is not approximately regular
at the point w+. �

Proposition 5.7 yields the following

Corollary 5.9. For any n > 2, there exists a C1 strictly convex function f : U ⊂
Rn−1 −→ R which is not approximately regular at some point.

Notice that is possible to construct by hand a function which is not approximately
regular at some point, but this is somehow funny to construct one in this way.
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5.5.2. The range of Lyapunov exponents. We now turn to the study of A which benefits
from the following observation, which has no equivalent in dimension higher than 2. If
µ ∈ M is ergodic, the positive Lyapunov exponent of µ is given by

χ(µ) =

∫
d

dt
|t=0 log ‖dϕt‖ dµ,

hence the application µ −→ χ(µ) is continuous. In this case for example, proposition
5.5 is immediate.

Proposition 5.10. Let Ω ⊂ RP2 be a divisible strictly convex set. Then A is a closed
interval.

Proof. First, remark that AM is the image of the set of ergodic measures by the con-
tinuous application

µ 7−→ α(µ) =
2∫

d
dt |t=0 log ‖dϕt‖ dµ

.

As the set of ergodic measures is compact, AM is compact.
We now see that AM is convex. For that, recall that AMPer is dense in AM. So it
suffices to prove that for any g, g′ ∈ MPer, ε > 0 and λ ∈ [0, 1], we can find gε ∈ MPer

so that

|χ(gε)− (λχ(g) + (1− λ)χ(g′))| < ε.

This is a simple application of the shadowing lemma (a particular case of the specification
property, see [KH95]).
It remains to see that A = AM. Pick a point w ∈ Λ with Lyapunov exponent χ(w).
Consider the measures µT defined for T > 0 by

∫
f dµT =

1

T

∫ T

0

f(ϕtw) dt.

For f = d
dt |t=0 log ‖dϕt‖, we have

lim
T→+∞

1

T

∫
log

d

dt
|t=0‖dϕt‖ dµT = lim

T→+∞
1

T
log ‖dϕT ‖ = χ(w).

Hence, any accumulation point µ of the family (µT )T>0 is an invariant measure such
that χ(µ) = χ(w). �

Remark that, in fact, the same proof would prove that

A = {lim sup
t→+∞

1

t
log ‖dwϕ‖, w ∈ Ω}.
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Géom., pages 97–122. Univ. Grenoble I, 1995.

[LY85] F. Ledrappier and L.-S. Young. The metric entropy of diffeomorphisms. Ann. of Math.,
122:509–574, 1985.

[Mar10] L. Marquis. Espace des modules de certains polyèdres projectifs miroirs. Geom. Dedicata,
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Departamento de Matemática y Ciencia de la Computación, Av. Las Sophoras 173, Universi-
dad de Santiago de Chile, Santiago de Chile



ON THE GEOMETRY OF QUADRATIC MAPS OF THE PLANE

J. DELGADO, J.L. GARRIDO, N. ROMERO, A. ROVELLA, AND F. VILAMAJÓ

Abstract. In this article we give a geometric classification of the set of quadratic

maps of the plane. The fundamental step is the proof that the restriction of the

map to the critical set is injective, from which it follows that there are finitely
many classes of geometrically equivalent maps. In the last sections we apply this

geometric knowledge to obtain some simple dynamical properties of a particular
family of quadratic maps.

1. Introduction

Let Q be the set of quadratic self-mappings of the real plane endowed with the topol-
ogy of coefficients. In [1] it is proved that six parameters are enough to describe an open
and dense subset Qg of Q; in addition, every map in Qg without fixed points has trivial
dynamics. This constitutes a version, for non-invertible mappings, of the well known
Brouwer’s theorem [2], which states that an orientation preserving homeomorphism of
the plane having no fixed points has empty limit sets; on this topic see the article of J.
Franks [4].

This paper is devoted to show a geometric classification of that open and dense set.
We took adventage of this classification to analyze some interesting properties of a real
one-parameter family of endomorphisms on the complex plane. The meaningful concept
in our approach is the geometric equivalence of maps. We recall that two smooth maps
f, g : M → N are (geometrically) equivalent if there exist smooth diffeomorphisms
ϕ : M → M and ψ : N → N such that f ◦ ϕ = ψ ◦ g. A map is stable if it has a
neighborhood consisting of equivalent maps. Clearly ϕ (resp. ψ) carries critical points
(resp. critical values) of g to critical points (resp. critical values) of f ; further, critical
sets of equivalent maps are diffeomorphic.

We briefly describe some other geometric invariants that we will consider throughout
this paper. If f : M → M is a smooth and proper map, then the number of preimages
of every regular point is finite and constant in each connected component of the set of
regular values of f . If the set of regular values of such a map f has k components and
a1 ≤ · · · ≤ ak are the number of preimages in each one of these components, then we say
that f has type (a1, . . . , ak). We also recall that generically real planar maps have only
two kind ofcritical points: folds and cusps, both having simple local canonical forms.
The number of cusp points, the type of the map and the absolute value of the degree of
the map are invariants of geometric equivalence. Each of these invariants is sufficient to
characterize the geometric equivalence classes among the endomorphisms in Qg. This is
a consequence of the following proposition whose proof is contained in lemmas 1 and 2
below.

Proposition 1. The restriction of G ∈ Qg to its critical set is injective.
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In the above referred lemmas it is also proved the existence of just two classes of
geometric equivalent maps in the generic set Qg; in addition, it can be proved that
there exist finitely many classes of geometrically equivalent quadratic maps (see at the
beginning of paragraph 6.1 in section 6). The proof of these lemmas rest on geometrical
objects that represent the set of critical values of quadratic maps in that equivalent
classes: deltoids and hypdeltoids. Deltoids, also called 3-cusped hypocycloids, were
first studied by Euler in 1745 while considering optical problems, they have a simple
parametrization with sine and cosine functions. Dual parametrizations with hyperbolic
sine and cosine functions give rise to a geometrical object that we called hypdeltoids.
The striking property of these curves in our context is that they describe the sets of
critical values and its preimages, which gives an accurate geometric description of maps
in Qg:

Theorem 1. For the open and dense set Qg the following properties hold:

(i) For every G ∈ Qg, the point at ∞ is an attractor.
(ii) Every map in Qg is geometrically stable.

(iii) There exist only two classes, Q+ and Q−, of geometric equivalence in Qg.
(iv) Every G ∈ Q− is of type (2, 4), has degree ±2 and the set of critical points is an

ellipse containing exactly three cusp points.
(v) Every G ∈ Q+ is of type (0, 2, 4), have degree 0 and the set of critical points is a

hyperbola containing exactly one cusp point.

2. The generic set Qg

Consider the set of all real planar maps defined, for every (x, y) ∈ R2, by

G(x, y) = (pxy + ax+ by + k1, rx
2 + sy2 + txy + cx+ dy + k2), (1)

where prs 6= 0. It was proved in [1] that the set of maps affinely conjugated to a map
of this form is open and dense in Q. Let Qg be the set of maps G0 satisfying:

• G0 is affinely conjugated to a map of the form (1);
• The critical set of G0 is either an ellipse or a hyperbola.

It is easy to see that Qg is open and dense in Q. Additionally, note that G0 ∈ Qg
has an ellipse (resp. a hyperbola) as its critical set if, and only if, there is a G as in (1)
with rs < 0 (resp. rs > 0) and affinely conjugated to G0. This property splits Qg into
two disjoint subsets: Q−, consisting of maps in Qg whose the critical set is an ellipse,
and Q+, consisting of those maps whose critical set is a hyperbola.

Take G0 ∈ Q− and G as in (1) which is affinely conjugated to G0. After the change of
variables (X,Y ) =

(√−rs x,−sy
)

and an appropriate traslation, the map G is written
as:

G(x, y) =

(
pxy + ax+ by + k1, x

2 − y2 + txy +
at− 2b

p
x+

bt+ 2a

p
y + k2

)
. (2)

Let Θ− be the family of maps in Q− and defined as in (2). Notice that if G ∈ Θ− is
as above, then its critical set ` is given by the circle with Cartesian equation x2 + y2 =
(a2 + b2)/p2; obviously a2 + b2 > 0. We refer this kind of maps as the normal form for
Q−.

In analogous way, maps in Q+ are affinely conjugated to a map of the family Θ+

given by the normal form:

G(x, y) =

(
pxy + ax+ by + k1, x

2 + y2 + txy +
at− 2b

p
x+

bt− 2a

p
y + k2

)
, (3)
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whose critical set ` is the hyperbola given by y2 − x2 = (a2 − b2)/p2; note that a2 > b2,
otherwise G /∈ Q+.

3. Deltoids and Hypdeltoids

We begin this section by recalling generic properties related to critical sets of smooth
planar maps and singularities of smooth parametrized curves in R2.

Take a smooth map G : R2 → R2. The following notions and statements were
introduced by H. Whitney in [9]. The map G is said to be good if every point p ∈ U
is either regular or the gradient of the Jacobian matrix of G at p is non-null. If G is
a good map, then its critical set ` is a 1-manifold. In this case, if p ∈ ` and ϕ is a
parametrization of ` around p (ϕ(0) = p), then this critical point is called a fold point
of G if d(G ◦ ϕ)/dt 6= 0 at t = 0 and p is a cusp point of G whenever d(G ◦ ϕ)/dt = 0
and d2(G ◦ ϕ)/dt2 6= 0 at t = 0; these definitions are independent of the choice of the
parametrization. In that seminal article Whitney found a generic set of good maps: the
set of excellent maps, which are characterized by the fact that the critical set is only
composed by fold or cusp points. Furthermore, local normal forms for these critical
points were constructed. If p is a fold point, then the map G is equivalent, in some
neighborhood of p, to the map (x, y) 7→ (x2, y) in a neighborhood of the origin; so G is
locally of type (0, 2). For cusp points the normal form is given by (x, y) 7→ (xy− x3, y),
which implies that cusp points are isolated and the mapping is of type (1, 3) around
p. It is proved in [7] that the restriction of a generic map G to any component of
the complement of G−1(G(`)) is a covering map whose image is a component of the
complement of G(`); see Lemma 3 in section 4. Therefore, determining the critical sets,
the critical values and the preimages of the critical values is essential in the description
of the geometry of a generic map.

Additionally to the notion of cusp point as critical point of smooth maps we deal
with cusp points as singularities of plane smooth curves. In order to recall this notion
we consider a parametrized smooth curve γ(t) = (x(t), y(t)), where t is varying in an
open interval. Take a singular point p on this curve, that is, p = (x(t0), y(t0)) for some
t0 ∈ I, and x′(t0) = y′(t0) = 0. Hence it holds that

x(t) = x0 + a(t− t0)2 + b(t− t0)3 +R1(t), and

y(t) = y0 + c(t− t0)2 + d(t− t0)3 +R2(t),

where Ri(t)/(t − t0)3 → 0 when t → t0, i = 1, 2. Assuming a2 + c2 > 0, the curve γ is
tangent to the line through p with slope c/a if a 6= 0, and it is tangent to the vertical line
x = x0 at that point when a = 0. Observe that this assumption implies that near p the
curve is injective and this singularity is isolated. The singular point p is said to be an
ordinary cusp (or simply a cusp) on γ when ad− bc 6= 0. It is easy to see that under this
open condition on the derivatives of second and third order, the two branches of γ near
p, that is {γ(t) : t < t0} and {γ(t) : t > t0} with |t − t0| small, are located in different
sides of the tangent line. The same notion of cusp point on simple and piecewise regular
curves is introduced in [3].

3.1. Deltoids and maps in Θ−.

Definition 1. For α ∈ [0, 2π), the regular α-deltoid (deltoid, for short) is the parametrized
smooth closed curve ∆α given by:

∆α(ω) = (sin(2ω) + 2 sin(ω + α), cos(2ω)− 2 cos(ω + α)), ω ∈ [0, 2π). (4)
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Notice that ∆α(ω) = ie−2iω − 2iei(ω+α). In this way it is easy to verify that:
• The function ∆α : [0, 2π)→ R2 is injective; hence ∆α is a closed simple curve.
• Only at ω = (π − α)/3, (3π − α)/3, (5π − α)/3 it holds d∆α(ω)/dw = 0. That
is, ∆α has three singularities. Since d2∆α(ω)/dw2 6= 0 for all ω ∈ [0, 2π) and the

imaginary part of the product d2∆α(ω)/dw2. d3∆α(ω)/dw3 is non-null at the values
where d∆α(ω)/dw = 0, then that three singularities are cusp on the deltoid ∆α. Here
z denotes the conjugate of the complex numbre z.

An implicit Cartesian equation of ∆α can be obtained by eliminating the variable ω
in the equations x = sin(2ω) + 2 sin(ω+α) and y = cos(2ω)−2 cos(ω+α). Indeed, with
the proceduce described in [8, p. 206] one arrives to Dα(x, y) = 0, where

Dα(x, y) = (x2 + y2)(x2 + y2 + 18) + 8x(3y2 − x2) sin(2α)

+ 8y(3x2 − y2) cos(2α)− 27.

It is simple to check that for all α ∈ [0, 2π) the function Dα satisfies

Dα = D0 ◦ J ◦R−2α/3, (5)

where J is the reflection with respect to the vertical axis and R−2α/3 is the rotation by
angle −2α/3.
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Figure 1. Regular deltoids with α = 0, π8 ,
13π
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Take G ∈ Θ− as in equation (2). Recall that its critical set ` is the ellipse given by

x2 + y2 = ρ2/p2, where ρ =
√
a2 + b2. Fix α ∈ [0, 2π) such that

(a, b) = ρ(cos(α), sin(α)), (6)

and parametrize ` as

`(ω) =
ρ

p
(sin(ω), cos(ω)), ω ∈ [0, 2π). (7)

With these considerations G(`(ω)) is written, for all ω ∈ [0, 2π), as:

G(`(ω)) = A

(
ρ2

p2
∆α(ω)

)
, (8)

where α and ρ are given by (6) and A is the affine bijection:

A(x, y) =
1

2
((p, t)x+ (0,−2)y) + (k1, k2). (9)

Notice that (8) and the existence of the three cusp points on ∆α imply that G has only
three critical point of cusp type: `((π − α)/3), `((3π − α)/3) and `((5π − α)/3). It is
also concluded that the restriction of G to ` is an injective function.
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Now we will analize the preimage under G of G(`). First, it is clear that (x, y) belongs

to G−1(G(`)) if and only if p2

ρ2A
−1G(x, y) ∈ ∆α; that is,

p2

ρ2

(
2xy +

2a

p
x+

2b

p
y,−x2 + y2 +

2b

p
x− 2a

p
y

)
∈ D−1

α (0).

Introducing the change of variable (X,Y ) = p
ρ (x, y), using (6) and defining

H(X,Y ) = (2XY + 2X cos(α) + 2Y sin(α),−X2 + Y 2 + 2X sin(α)− 2Y cos(α)),

it follows that (x, y) ∈ G−1(G(`)) if and only if (Dα ◦H)(X,Y ) = 0. A straightforward
calculation leads to the identity

(Dα ◦H ◦R−α/3)(X,Y ) = (X2 + Y 2 − 1)2Dα(X,Y ).

From (5) one obtains Dα ◦Rα/3 = Dα/2, consequently

(Dα ◦H)(X,Y ) = (X2 + Y 2 − 1)2Dα/2(X,Y ).

This implies that G−1(G(`)) = ` ∪ ˜̀, where ˜̀ is the deltoid obtained as the homothetic
transformation with scale ρ/p of the deltoid ∆α/2. From this fact one can verify that `

is contained in the closure of the bounded component of the complement of ˜̀; moreover,

` and ˜̀ are tangent at the three cusp points in `.
The following lemma summarizes the preceding discussion.

Lemma 1. If G ∈ Θ−, then its critical set ` is a circle having exactly three cusp points,
the restriction of G to ` is injective, the set G(`) is a deltoid and G−1(G(`)) is the union

of ` and another deltoid ˜̀which is tangent to ` at the three critical points of cusp type.

3.2. Hypdeltoids and maps in Θ+. Now we will proceed in very similar way as above
to analize the geometry of the set of critical values of maps in Θ+.

Definition 2. Given α ∈ R, the regular α-hypdeltoid (hypdeltoid, for short) is the pair
of parametrized curves Λ±α given by:

Λ±α (ω) = (sinh(2ω)± 2 sinh(ω + α),− cosh(2ω)± 2 cosh(ω + α)), ω ∈ R. (10)

For i = 1, 2 and σ = ± we denote by ϕσi (ω) the ith-coordinate of Λσα(ω). Suppose
that for ω, ω′ ∈ R are satisfied ϕ+

1 (ω) = ϕ−1 (ω′) and ϕ+
2 (ω) = ϕ−2 (ω′). This implies

that − cosh(3ω + α) = cosh(3ω′ + α), which occurs when ω = ω′ = −α3 ; but ϕ+
2 (−α3 ) 6=

ϕ−2 (−α3 ). Thus, the branches Λ−α and Λ+
α are disjoint. On the other hand, since ϕ+

1 is a

function onto R and dϕ+
1 (ω)/dω 6= 0, it follows that Λ+

α is an embbeding of R; indeed,
it is the graph of a smooth function. With respect to the branch Λ−α , it is easy to see
that dϕ−1 (ω)/dω = dϕ−2 (ω)/dω if and only if ω = −α3 . Hence, on Λ−α there is only one

singularity; moreover, by analyzing the values of the second and third derivatives of ϕ−i
at ω = −α3 we conclude that this singularity is a cusp point. Furthermore, as ϕ−1 is a

function onto R, d2ϕ−2 (ω)/dω2 < 0 and dϕ−1 (ω)/dω = 0 exactly at ω = −α3 and ω = α,
then the function ω 7→ Λ−α (ω) is injective, and the branch Λ−α is topological immersion
of R.

Now we will obtain a Cartesian equation for Λ±α . First we introduce

x = sinh(2ω)± 2 sinh(ω) and y = − cosh(2ω)± 2 cosh(ω). (11)

Since y2 − x2 = 5 ∓ 4 cosh(3ω), the equation on the right side of (11) implies that
u = 1

2 (
√

3− 2y ± 1), by setting u = cosh(ω). But cosh(3ω) = 4u3 − 3u, then

(y2 − x2)(y2 − x2 + 18) + 8y(3x2 + y2)− 27 = 0



ON THE GEOMETRY OF QUADRATIC MAPS OF THE PLANE 125

is an implicit Cartesian equation of Λ±0 . Thanks to this Cartesian representation and
the identity

Λ±α (ω) = ϕ(ω) +Bα(Λ±0 (ω)− ϕ(ω)),

where ϕ(ω) = (sinh(2ω),− cosh(2ω)) and Bα is the linear map given by the matrix(
cosh(α) sinh(α)
sinh(α) cosh(α)

)
, we get (after a tedious computation) that the zero set of

Hα(x, y) = (x2 − y2)(x2 − y2 − 18)− 8x(x2 + 3y2) sinh(2α)

+ 8y(3x2 + y2) cosh(2α)− 27

is a the Cartesian description of Λ±α . It is simple to check that Hα = H0 ◦Sα, where Sα

is the linear isomorphisms given by

(
cosh(2α/3) − sinh(2α/3)
− sinh(2α/3) cosh(2α/3)

)
.
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Figure 2. Hypdeltoids with α = − 1
3 , 0, 1.

Take G ∈ Θ+ as in (3), recall that its critical set ` is given by the equation y2−x2 =

ρ2/p2, where ρ =
√
a2 − b2 and |a| > |b|. Consider α ∈ R such that the coefficients a

and b in (3) satisfy

(a, b) = ρ(coshα, sinhα). (12)

We parametrize the branches `± of ` by

`±(ω) =
ρ

p
(sinh(ω),± cosh(ω)), ω ∈ R.

Then the image by G of `±(ω) is expressed as G(`±(ω)) = A
(
ρ2

p2 Λ±α (ω)
)

, where A is

defined in (9). This expression allows to conclude that:
• The map G restricted to each branch `±(ω) is an injective function.
• There is only one cusp point in the critical set of G, which belongs to `−. The
remaining critical points are all of the fold type.

• A point (x, y) ∈ G−1(G(`)) if and only if p2

ρ2A
−1G(x, y) ∈ Λ±α , that is

p2

ρ2

(
2xy +

2a

p
x+

2b

p
y,−x2 − y2 +

2b

p
x+

2a

p
y

)
∈ H−1

α (0).

Making (X,Y ) = p
ρ (x, y), equation (12) implies that (x, y) ∈ G−1(G(`)) if and only

if (Hα ◦ h)(X,Y ) = 0, where

h(X,Y ) = (2XY + 2 cosh(α)X + 2 sinh(α)Y,−X2 − Y 2 + 2 sinh(α)X + 2 cosh(α)Y ).

It can be checked that for all X,Y ∈ R it holds

(Hα ◦ h)(X,Y ) = (1 +X2 − Y 2)2Hα/2(X,−Y ).



126 J. DELGADO, J.L. GARRIDO, N. ROMERO, A. ROVELLA, AND F. VILAMAJÓ

Thus, the zero set of the polynomial (Hα ◦ h)(X,Y ) is the union of the hyperbola
1 + X2 − Y 2 = 0 and the hypdeltoid Hα/2(X,−Y ) = 0. Therefore, G−1(G(`)) is the
union of the hyperbola ` and the hypdeltoid obtained as the homethetic transformation
with scale ρ/p of the reflection respect to the horizontal axis of the hypdeltoid Λ±α/2.

We summarize the precedent exposition in the following lemma.

Lemma 2. If G ∈ Θ+, then its critical set ` is a hyperbola containing only one cusp
point, the mapping G is injective when it is restricted to `, the set of critical values G(`)

is a hypdeltoid and its preimage is the union of ` and a hypdeltoid ˜̀.

4. Proof of Theorem 1

As all the statements in Theorem 1 are invariant under affine conjugation, we only
consider generic quadratic maps.

Proof of part (i) of Theorem 1. Take a generic map G as in equation (1), that is

G(x, y) = (pxy + ax+ by + k1, rx
2 + sy2 + txy + cx+ dy + k2),

with prs 6= 0, by simplicity we assume p > 0. Let |(x, y)| = max{|x|, |y|}. We show
that there exists K0 > 0 depending only on G such that, for K > K0 the condition
|(x, y)| > K implies |G(x, y)| > 2K. So it is clear that ∞ is an attracting fixed point
for G. Indeed, assume that |(x, y)| > K and |x| ≥ |y|. If |pxy+ ax+ by+ k1| < 2K and
K is large enough, then:

|y| <
2K + |ax+ k1|
|px+ b| ≤ 2K + |a||x|+ |k1|

p|x| − |b|

≤ 2K + |k1|
pK − |b| +

|a|
p− |b|/K ≤

3

p
+

2|a|
p
≤ 3 + 2|a|

p
.

This inequality implies that:

|G(x, y)| ≥ |r|x2 −
(∣∣∣∣
t(3 + 2|a|)

p
+ c

∣∣∣∣
)
|x| − |s|(3 + 2|a|)2

p2
− |d|(3 + 2|a|)

p
− k2;

since r 6= 0 it follows that |G(x, y)| > 2K if K is sufficiently large and |x| > K. The
proof for the case |y| ≥ |x| is similar. �

For the proof of the other parts of theorem 1 we will use the following result, which
can be found in [7].

Lemma 3. Let G be a smooth proper map on a manifold M . The restriction of G to
any component of the complement of G−1(G(`)) is a covering map whose image is a
component of the complement of G(`).

The proof of this lemma is based on the fact that every point y in G(C) has finitely
many preimages, where C is a component of the complement of G−1(G(`)). Then the
result holds even if the set of critical points is not bounded. Note that part (i) proved
above implies that the restriction of G to a component of G−1(G(`)) is a proper map.

Proof of part (iv) of Theorem 1. Let G be a map in Θ− as in (2). Denote by c1, c2 and
c3 the cusp points of G. Besides the injectivity of G when restricted to `, Lemma 1

describes the way as the sets `, G(`) and G−1(G(`)) = `∪ ˜̀are displayed, just as figure
3 shows.
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A

˜̀

`

BC

D

c1

c2c3
G−→ G(D)

G(c1)

G(`)

G(c2) G(c3)

Figure 3. Critical set, critical values and its preimage for maps in Θ−.

Note that the regions A, B, C and D are topological discs and constitute the bounded
components of the complement of G−1(G(`)). It follows from Lemma 3 that the restric-
tion of G to each of these regions is a homeomorphism onto the bounded component of
the complement of G(`).
Claim: Every point in the unbounded component of the complement of G(`) has two
preimages.

Note that the first coordinate of G(x, y) can be made pxy + by + u by a translation
in the second coordinate. The preimage of a point (u, v) (with v > 0 large enough)
satisfies y = 0 or x = −b/p. Substituting x = −b/p in the second coordinate of G, and
assuming v large, there exist two solutions for y. On the other hand, substituting y = 0
in the second coordinate of G(x, y), and taking v large, it comes that two solutions for
x exist because v > 0. Hence, from Lemma 3, the restriction of G to the unbounded
component E of the complement of G−1(G(`)) is a two-to-one covering of the unbounded
component of the complement of G(`).

It remains to calculate the degree of G. As in the claim, take (u, v) with v > 0 large
enough and having preimages (x±, 0). The determinant of DG at these points has the
same sign of −v, so the degree is −2. �

Proof of part (v) of Theorem 1. Consider a map G ∈ Θ+ whose critical set is the hy-
perbola `. Let `1 and `2 be the branches of `; we assume that `1 contains the unique
cusp point c1 of G, the remaining critical points of G are fold points. As G(`1) and
G(`2) are the branches of the hypdeltoid G(`) (see Lemma 2), it follows that the set
of regular values has three components: Y0, Y2 and Y4. As in the proof of part (iv)
above, one can take now a point of the form (u,−v) with v large enough to conclude
that there are points with no preimages. It follows immediately that the degree of G is
zero in this case. Moreover, by the normal form at cusp points (see the remarks at the
beginning of Section 3) there exists a basis of neighborhoods of a cusp whose images are
open. Therefore, exactly one of the three regions contained in the complement of G(`)
has no preimage under G; this component will be denoted by Y0. It follows also that
the boundary of Y0 is equal to G(`2), because there cannot be images of cusps points in
the boundary of Y0. Then denote by Y2 the other region having G(`2) in its boundary.
Points in Y2 have two preimages because passing through G(`2) from Y0 to Y2 means
an increasing in two units of the number of preimages; this follows by using the normal
form at fold points. With similar arguments using the normal form at cusp points it
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follows that every point in the region Y4 whose boundary is G(`1), has four preimages
(`1 contains the cusp point).

A

B C
D

E

F

`1

`′1

`2

`′′1

G−→
Y4

Y2

Y0

G(`1)

G(`2)

Figure 4. Critical set, critical values and its preimage for maps in Θ+.

It remains to describe the set G−1(G(`)). Note that G−1(G(`2)) has only one compo-
nent, the contrary assumption would imply that points in Y0 have preimages. It follows

that the hypdeltoid ˜̀= `′1 ∪ `′′1 in the preimage of G(`) (see Lemma 2) is contained in
G−1(G(`1)). Then G−1(G(`1)) = `1 ∪ `′1 ∪ `′′1 . Now we want to determine the location

of the branches of ˜̀. First note that as `1 has a cusp, then using again normal forms, it

comes that one of the branches of ˜̀, say `′1, is tangent to `1 at c1. Now take a simple
curve γ joining G(`1) \ {G(c1)} to G(`2) and whose interior is contained in Y2. It is
claimed that G−1(γ) satisfies the following properties:

(1) Its interior is a simple arc, denoted from now on as γ′.
(2) One of the extreme points of γ′ belongs to `′1, the other one belongs to `′′1 .
(3) The preimage of γ ∩ Y2 does not intersect `1.

Proof of these assertions: (1) Note that the two preimages of points in Y2 are located at
different sides of `2. This is because `2 only contains fold points. Recall from the normal
form at a fold type critical point that the preimage of a simple curve intersecting `2 at
just one point is a simple curve.
(2) and (3). Note that `′1 cannot intersect `2 because their images are disjoint, recall
that G|` is injective. The same thing occurs with `′′1 and `2. Hence γ′ cannot have
both extreme points in the same component of the preimage of G(`). So, to complete
the proof of both (2) and (3) it remains to show that its end points cannot belong to
`1. Assume that one of the extreme points of γ′ belongs to `1. As `1 is a set whose
points (excepting c1) are critical points of fold type, then points in γ ∩ Y2 would have
preimages at both sides of `1, but then these points would have more than two preimages
contradicting the definition of Y2.

Supported on these arguments we conclude that the complement of G−1(G(`)) is the
union of six regions: A, B, C, D, E and F . The restrictions of G to A, B, C and F
are homeomorphisms onto the region Y4, while the restrictions of G to D and E are
homeomorphisms onto the region Y2; see figure 4. �
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Proof of part (ii) of Theorem 1. For the proof of this parte one must find, for any per-

turbation G̃ of G, diffeomorphisms ϕ and ψ such that ψ ◦ G = G̃ ◦ ϕ. Consider first a
map G ∈ Θ−. It was shown above that this map has the geometrical structure described

in figure 3. What must be shown now is that any perturbation G̃ of G has the same

geometrical structure, that is, the set of critical points of G and G̃ must be diffeomor-
phic, as well as the sets of critical values; moreover, the number of components of the
complement of G−1(G(`)) must remain unchanged after perturbation. Indeed, assume

that we have proved that for G̃ the following picture is realized:

(1) The set of critical points ` of G̃ is diffeomorphic to a circle and contains exactly
three cusps.

(2) The image G̃(`) of ` is a simple closed curve of class C1 except at the image of the

cusp points of G̃.

(3) The preimage of G̃(`) is equal to the union of ` and another simple closed curve δ
which is of class C1 except at three points. Moreover, ` is contained in the bounded
component of the complement of δ except at the cusps of `, where a tangency
between ` and δ occurs.

(4) The complement of the preimage of G̃(`) is equal to the union of five regions, the

map G̃ is injective in each one of the four bounded regions, and it is two-to-one in
the unbounded one.

With these properties at hand, one can easily construct the diffeomorphisms making
the equivalence. Begin with a diffeomorphism ϕ carrying the closure of the bounded

component D of the complement of `(G) to the closure of the bounded component D̃

of the complement of `(G̃). By property (1) above it is obvious that this can be done
with the additional assumption that ϕ carries cusps to cusps. Denote by c1, c2, c3 the
cusps of G and by c′i = ϕ(ci), i = 1, 2, 3. Properties (2) and (3) above imply that the

bounded components of the complement of G̃−1(G̃(`)) are four: Ã, B̃, C̃ and D̃, they

are labeled as in figure 3; that is, Ã is the region containing in its boundary c′2 and c′3, B̃

is the component containing in its boundary c′2 and c′1, C̃ is the component containing

c′1 and c′3, and D̃ as described above. Use corresponding notations (A,B,C,D) for the
components of the complement of the preimage of G(`(G)). We proceed to extend ϕ as
follows: for a point x ∈ A, there exists a unique point in y ∈ D such that G(y) = G(x).

Then define ϕ(x) as the unique point in x̃ ∈ Ã such that G̃(x̃) = G̃(ϕ(y)). Note that ϕ
was defined in A as

ϕ = (G̃|Ã)−1 ◦ G̃|D̃ ◦ ϕ ◦ (G|D)−1 ◦G|A.
Similar extension to B and C. Thus, ϕ is defined in the closure of the union A∪B∪C∪D.
Observe that the equation above implies that ϕ is differentiable in the union of the
interiors of these regions. It is also is smooth in the boundary of D. In common
boundaries it is well defined because the common boundaries are critical points and ϕ
satisfies the symmetric property:

G(x) = G(y) implies G̃(ϕ(x)) = G̃(ϕ(y)). (13)

This formula also implies the smoothness of ϕ at those boundaries. It remains to define
ϕ in E, the unbounded component of the complement of G−1(G(`(G))). That is, ϕ must

be any diffeomorphism from E onto Ẽ with prescribed boundary values, and such that
the symmetric property holds. To construct this, let L be an unbounded simple line
starting at G(c1), and note that the preimage of L under G has two components: L1 and
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L2, recall that L is simple and G|E is a covering of the annulus. Note that G−1(G(c1))
has two preimages, one of which is c1, and assume that L1 has c1 as its unique extreme

point. Let L̃i (i = 1, 2) be equally constructed for G̃; as above c′1 is the extreme point

of L̃1. Let ϕ be any diffeomorphism from L1 to L̃1. Then extend ϕ to L2, making as
before: for x2 ∈ L2 there is a unique x1 in L1 such that G(x2) = x1, hence one can

define ϕ(x2) as the unique point x̃2 in L̃2 such that G̃(x̃2) = G̃(ϕ(x1)). Observe that ϕ
was defined twice at the points G−1(G(c1)), but both definitions coincide. As E is an
annulus, it follows that E \ (L1 ∪L2) equals the union of two connected components V1

and V2, and that G is injective in each Vi. Define Ṽ1 and Ṽ2 in similar way. Note that

V1 and Ṽ1 are half-planes and that ϕ was already defined as a diffeomorphism from the

boundary of V1 onto the boundary of Ṽ1. It is easy then to extend ϕ to a diffeomorphism

from V1 onto Ṽ1. Making the same trick as above, extend ϕ to the whole L2.
At this point, we have constructed a diffeomorphism ϕ from the plane onto itself

satisfying the symmetry property (13). To define ψ we proceed as follows: let y be any

point in the plane and choose any x such that G(x) = y. Then define ψ(y) = G̃(ϕ(y)).
This definition does not depend on the choice of x by the symmetry of ϕ. It is smooth
since it is locally a composition of diffeomorphisms at any point y /∈ G(`1), and every

point in G(`) has a preimage that is not critical. Clearly G̃ ◦ ϕ = ψ ◦ G. This finishes

the construction of the equivalence between G and G̃.
Now it remains to prove that the properties (1) to (4) are satisfied for a perturbation

G̃ of G. A strong C∞ neighborhood of G is given by a function ε : R2 → R+ and

defined as the class of maps G̃ of the plane such that every derivative of G̃ at a point z

is at a distance less than ε(z) from the corresponding derivative of G at z. If G̃ is a C0

strong perturbation of G, then G̃ has an attractor at ∞, from which it follows that it is
a proper map and has degree two. Moreover, given a neighborhood U of the critical set
of G, there exists a C1 strong neighborhood of G such that the set of critical points of

any G̃ in that neighborhood is contained in U . This is also easy to prove since critical
points are determined by a C1 condition: the Jacobian equal to zero. Furthermore,
if the perturbation is of class C3, and the initial map G is generic, then the critical
set of the perturbation is C1 close to that of G, and the type of the critical points
is preserved. That is, properties (1) and (2) are immediate application of the generic
conditions imposed on the maps G under consideration. Then property (3) follows from
the fact that the map is two-to-one in the un bounded component of the complement of
the preimage of the critical set, and finally this implies property (4).

The proof for G ∈ Θ+ is similar and will be omitted. �

Proof of part (iii) of Theorem 1. Until now it was proved that generic quadratic maps
belong to one of two classes of geometric equivalence. It follows that no other class may
contain an open set. �

5. A one-parameter family

In this section we analyze some global aspects of the dynamics of the one-parameter
family fµ(z) = z2−µz̄, where µ ∈ R, z ∈ C and z̄ denotes the conjugated of the complex
number z. Several properties about the dynamics of this family are exposed in [5] and
[6]. If I : C→ R2 is given by I(x+ iy) = (y,−x) and Gµ = I ◦ fµ ◦ I−1, then

Gµ(x, y) = (−2xy + µx, x2 − y2 − µy). (14)
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Observe that for every µ the map Gµ belongs to Θ− and verifies the symmetries:
Gµ ◦J = J ◦Gµ and Rα ◦Gµ ◦Rα = Gµ, where J(x, y) = (−x, y) and Rα is the rotation
of angle α = 2π

3 .
The map G2 has very interesting features: it is a two-dimensional analogue of the

map x→ −x2 − 2x on the interval [−3, 1]. The next theorem, which was proved in [5],
emphasizes the importance of this map.

Theorem 2. The following properties are satisfied by the mapping G2:

(i) The basin of attraction of ∞ is the unbounded component of the complement of
G2(`), where ` is the critical set of G2.

(ii) The restriction of G2 to the complement of this basin is conjugated to a Baker-like
map.

Let T be an equilateral triangle; joining the middle points of the sides of T one
obtains an equilateral triangle T ′. The Baker-like map mentioned in the statement
above is obtained as follows (see [5]): first, carry T into T ′ by means of four affine maps
with singularities at the sides of T ′, then apply a symmetry with respect to one of the
sides of T ′ and finally multiply by two, to fit again on T . The map obtained has a
fixed vertex while the other two are two-periodic. Observe that the map is expanding
except for the singularities, each point in the interior of T has four preimages, while the
restriction to the boundary is two-to-one. Moreover, this map preserves the Lebesgue
measure.

Denote by Bµ the basin of attraction of∞ for the map Gµ and by ∂Bµ its boundary.

The results stated in the theorem above imply that the deltoid ˜̀, closure of G−1
2 (G2(`))\

`, is equal to G2(`) and also equal to ∂B2, while the restriction of G2 to the complement
of B2 preserves a smooth measure. Note that the restriction of G2 to ∂B2 is conjugated
to the circle map z → z2. The map G2 is highly unstable, the bifurcations of the
dynamics around G2 depends on the relative positions of the critical points and the
basin of attraction of ∞. The study of the boundary of B2 is determinant in the global
behavior of the perturbations of G2.

We will just consider perturbations of G2 within the family Gµ. The main goal in
this section is to prove the next theorem:

Theorem 3. The family Gµ has the following two properties:

(i) If µ < 2, then Bµ is simply connected (if considered as Bµ ∪ {∞}).
(ii) The complement of Bµ is a Cantor set for every µ large.

Since Gµ belongs to Θ−, the following parameter values are obtained from (2): p =
−2, a = µ, b = t = k1 = k2 = 0. So, α = 0, ρ = µ and A = −Id; see (6), (7) and

(9). Keeping the meaning of ` and ˜̀ for the mapping Gµ, it follows that Gµ(`) and ˜̀
are parametrized, respectively, by ω 7→ −µ2

4 ∆0(ω) and ω 7→ −µ2 ∆0(ω), with ω ∈ [0, 2π).
From these facts it is easy to conclude that:

• If µ = 2, then ˜̀= Gµ(`).

• If µ < 2, then Gµ(`) ⊂ int ˜̀.
• If µ > 2, then Gµ(`) ⊂ ext ˜̀.
Here int γ and ext γ denote, respectively, the bounded and unbounded regions provided
by the complement of the plane simple closed curve γ.

Lemma 4. If L is a simple closed curve such that Gµ(`) ⊂ intL, then G−1
µ (L) is also a

simple closed curve and Gµ : G−1
µ (L) → L is two-to-one. Moreover, if L1 = G−1

µ (L) ⊂
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extL, then L2 = G−1
µ (L1) ⊂ extL1 and Gµ(L) ⊂ intL. On the other hand, if L is

a simple closed curve and L ⊂ intGµ(`), then L1 is the disjoint union of four simple
closed curves.

Proof. The first assertion is an immediate consequence of part (iv) in Theorem 1. Next
assume by contradiction that L1 ⊂ extL and suppose that there exists a point x ∈
extL2 ∩ intL1. Observe that if x ∈ extL2, then Gµ(x) ∈ extL1. But if x ∈ intL1,

then Gµ(x) ∈ intGµ(L1) = intL ⊂ intL1, which is absurd; thus L2 ⊂ extL1. To prove

that Gµ(L) ⊂ intL, note that G−1
µ (L) ⊂ extL implies that L ⊂ Gµ(extL) = extGµ(L),

therefore Gµ(L) ⊂ intL. The last assertion is also direct consequence of Theorem 1. �

Proof of part (i) of Theorem 3. As exhibited above, the deltoids G(`) and ˜̀ coincide for
µ = 2. The vertices of this deltoid are the fixed point r2 = (0,−3) and a two-periodic
orbit {p2, q2}. Denote by rµ, pµ, qµ the analytic continuation of these points. The circle
C through these three points is centered at the origin and has radius 1 +µ. Since µ < 2
we have

Gµ(`) ⊂ int ˜̀⊂ intC. (15)

Consider the function χ : C→ R defined by χ(z) = |z| for all z ∈ C. Observe that for
every z ∈ extC, χ(fµ(z))−χ(z) ≥ |z|2− (µ+ 1)|z| > 0. This says that χ is a Lyapunov
function for the restriction of fµ to extC, therefore this set is contained in the basin of
∞ for this map.

We claim that {G−nµ (extC)}n≥0 is an increasing sequence of simply connected sets.
Note that the map I, defined at the beginnig of this section, leaves C invariant; hence
extC is also invariant under Gµ and contained in Bµ. It follows from Lemma 4 that
G−1
µ (C) ⊂ intC. On the other hand, equation (15) and the same lemma imply that

G−1
µ (C) is a simple closed curve. Joining these two facts we have that

G−1
µ (extC) = extG−1

µ (C) ⊃ extC.

As Gµ(`) ⊂ intC, Lemma 4 also implies that ˜̀⊂ intG−1
µ (C). It follows that Gµ(`)

is also contained in intG−1
µ (C). Hence, the preceding argument implies that G−2

µ (C) is

a simple closed curve, which obviously is contained in intG−1
µ (C). Thus by a recursive

discourse, the claim follows by induction. Finally, since the basin of ∞ satisfies Bµ =⋃
n≥0G

−n
µ (C), the proof of this part of the theorem is complete. �

Proof of part (ii) of Theorem 3. A simple calculation shows that Gµ(`) ⊂ intC for all

µ > 2(1 +
√

2); so, every critical value, and hence every critical point, belongs to Bµ. In

this case the complement Bcµ of Bµ satisfies Bcµ =
⋂
n≥0G

−n
µ (int ˜̀). Then, by standard

arguments one can prove that Bcµ has uncountably many components, but to show that
it is a Cantor set we need to make µ larger. Indeed, for µ sufficiently large, it will

be showed that the distance between the critical set ` and the preimage of ˜̀ is large
and the differential at these points expands any vector at a constant rate. Note that

G−1
µ (˜̀) has four connected components, denoted by Ki

µ (i = 0, 1, 2, 3). One of these

components, say K0
µ, is contained in int `. By calculating the vertices of K0

µ one can see

that for every R > 4 there exists µ(R) such that K0
µ is contained in the disc of center

0 and radius R, for every µ > µ(R). Using the symmetries of the mapping, the same

property holds for every Ki
µ. Fix any R > 4. Since DGµ(x, y) =

(
−2y + µ −2x

2x −2y − µ

)
,

it follows that for all (x, y) in K0
µ, DGµ(x, y) expands uniformly any nonzero vector for
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every µ > µ(R). On the other hand, let K1
µ be the component contained in the exterior

of ` and intersecting the vertical axis. For every (x, y) ∈ K1
µ, it holds that |x| < R and

−µ2 − y ∼ µ. Then the expansion of DGµ at points in K1
µ can be equally obtained.

Since the regions K2
µ and K3

µ can be obtained from K1
µ by special rotations, the result

follows using the symmetries of the map Gµ. �

6. Conclusions and questions.

In this final section we discuss some problems related to the topics of this article.

6.1. The geometry of critical sets. In the wide world of planar quadratic maps there
are finitely many classes of geometrically equivalent maps. In the generic set Qg such
a classification was possible mainly by two reasons: first, the mechanism created to
understand the preimages of the deltoids or hypdeltoids; second, because these maps
are injective when restricted to its critical sets. However, for nongeneric quadratic maps
these restrictions are not necessarily injective, but one can directly check the assertion
in each one of the parts of the decomposition established in sections 7 to 9 in [1], where
the nongeneric quadratic maps of plane were classified.

It is easy to see that even within the class of generic maps of the plane having just
one component of critical points, there exist infinitely many nonequivalent maps. The
next example illustrates this claim.

Example 1. Consider the one-parameter family of plane endomorphisms:

Fµ(x, y) = (x3 − 3xy, y + fµ(x)).

The critical set of Fµ is the curve y = x2 + xf ′µ(x). These maps have nondegenerate
critical points, a cusp point occurs at every (x, y) in the critical set such that 2x+2f ′µ(x)+
xf ′′µ (x) = 0. For example, by choosing the function fµ so that xf ′′µ (x)+2f ′µ(x) = µ sinx,
there exist values of µ for which the number of cusps is arbitrarily large. Then there
exist infinitely many different classes of geometric equivalence within that family.

The problem of classifying under geometric equivalence degree three polynomial en-
domorphisms is not possible with similar techniques. At this point, we like to pose the
following question: Are there finitely many equivalence classes of generic polynomials of
a given degree?

6.2. Dynamics of plane maps. As was said in the introduction, it is known that
generic quadratic maps of the plane having no fixed points, must have empty limit
sets. The question arising is if the bifurcation giving rise to the appearance of a first
fixed point occurs in the boundary of the basin of attraction of ∞. That is, if fµ is
a one-parameter family of generic maps, and f0 is the first map having fixed points,
then we ask wether there exists an interval [0, µ0] such that fµ has a fixed point in the
boundary of the basin of ∞. This problem seems to be very difficult, and a positive
answer would give a new element for understanding globally the dynamics of these maps.
More generally, we state the following open question: Does a generic quadratic map of
the plane (having fixed points) necessarily have a fixed point in the boundary of the basin
of ∞?
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6.3. Dynamics of the family Gµ(z) = z2 − µz̄ and its perturbations. Some
questions that would be interesting to answer concern also with the boundary of the
basin of ∞. It is natural to ask if the fact that every critical point is contained in the
basin of ∞ implies that the nonwandering set is a hyperbolic set, however this seems
to be very difficult to prove. Being less ambitious, one can ask if at least for the one
parameter family under consideration, it holds that for parameters µ little larger than
two, the complement of the basin is an expanding Cantor set.

There is another interesting question concerning the basin of ∞. It is clear that
the complement of the basin is a forward invariant set. It was sometimes conjectured
(for this family and also for others families of endomorphisms of the plane appearing
in diverse models) that, as some numerical experiments have shown, there is a unique
attractor in the complement of the basin of ∞. In other words, it is asked if the plane
is subdivided into three sets: the basin of ∞, the basin of another attractor and the
boundary of both sets; see [6] and references therein.

We want to state another problem. Observe that the restriction of G2 to the boundary
of the basin of ∞ is a degree two map isotopic to the map z → z2 in the unit circle.
Moreover, this map is a local homeomorphism, but has three degenerate critical points,
whose images are periodic repellers. It is an interesting problem to solve if this invariant
curve has some kind of persistence. When µ > 2 the set of critical points is contained
in the basin of ∞, and it is impossible for the curve to persist. But consider the case
where µ < 2. In this case the situation is different because the set of critical points does
not intersect the closure of the basin of ∞. We finish this section with two questions:
Is it true when µ < 2 that an invariant curve persists in the boundary of the basin of
∞? If the answer to this question is yes, what can be said about the dynamics of the
restriction of Gµ to the invariant curve?
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S/N. Niterói, 24.020-140, Rio de Janeiro, Brasil.
E-mail address: jdelgado@mat.uff.br
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LINEAR COCYCLES OVER LORENZ-LIKE FLOWS

MOHAMMAD FANAEE

Abstract. We prove that the Lyapunov exponents of typical fiber bunched linear

cocycles over Lorenz-like flows have multiplicity one: the set of exceptional cocycles
has infinite codimention, i.e. it is locally contained in finite unions of closed sub-
manifolds with arbitrarily high codimension.
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1. Introduction

A linear cocycle over a flow f t : Λ → Λ is a flow F t : Λ × Cd → Λ× Cd of the form

F t(x, v) = (f t(x), At(x)v)

where each At(x) : Cd → Cd is a linear isomorphism. The Lyapunov exponents are the
exponential rates

λ(x, v) = lim
|t|→∞

1

t
log ||At(x)v||, v 6= 0.

By Oseledets [14] this limit exists for every v ∈ Cd on a full measure set of x ∈ Λ,
relative to any invariant measure m. There are at most d Lyapunov exponents; they are
constant on orbits and vary measurably with the base point. Thus Lyapunov exponents
are constant if m is ergodic.

Our main interest is to characterize when all exponents have multiplicity one i.e. the
subspace of vectors v ∈ Cd that share the same value of λ(x, v) has dimension one.

There has been much recent progress on this problem, specially when the base dy-
namics is hyperbolic, see [9,5,6,11]. Here, we extend the theory to the case when the
base dynamics is a Lorenz-like attractor.

A Lorenz-like flow in 3-dimensions admits a cross section S and a Poincaré transfor-
mation P : S\Γ → S defined outside a curve Γ which is contained in the intersection of
S with the stable manifold of some hyperbolic equilibrium. Trajectories through Γ just
converge to the equilibrium and the other trajectories through S eventually return to

136
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S. Their accumulation set is the so-called geometric Lorenz attractor. Moreover, there
is an invariant splitting

TΛM = Es ⊕ Ecu

of the tangent bundle where the uniformly contracting bundle Es has dimension 1, and
the volume-expanding bundle Ecu which contains the flow direction has dimension 2.
Another important feature is that the Poincaré transformation of this flow admits an
invariant contracting foliation F through which the dynamics can be reduced to that of
a map on the interval (leaf space of F). A Lorenz-like flow admites an invariant physical
probability measure which is ergodic.

1.1. Cocycles over maps. A linear cocycle over an invertible transformation f : N →
N is a transformation F : N × Cd → N × Cd satisfying f ◦ π = π ◦ F which acts by
linear isomorphisms A(x) on fibers. So, the cocycle has the form

F (x, v) = (f(x), A(x)v)

where

A : N → GL(d,C).
Conversely, any A : N → GL(d,C) defines a linear cocycle over f . Note that Fn(x, v) =
(fn(x), An(x)v), where

An(x) = A(fn−1(x)) ... A(f(x))A(x),

A−n(x) = (An(f−n(x)))−1,

for any n ≥ 1, and A0(x) = id.
Let µ be a probability measure invariant by f . Oseledets Theorem [14] states that

there exist a Lyapunov splitting

E1(x) ⊕ ...⊕ Ek(x), 1 ≤ k = k(x) ≤ d,

and Lyapunov exponents λ1(x) > ... > λk(x),

λi(x) = lim
|n|→∞

1

n
log ‖ An(x)vi ‖, vi ∈ Ei(x), 1 ≤ i ≤ k,

at µ-almost every point. Lyapunov exponents are invariant, uniquely defined at almost
every x and vary measurably with the base point x. Thus, Lyapunov exponents are
constant when µ is ergodic. Then {λ1, ..., λk} is called the Lyapunov spectrum of A.

We recall that, for any r ∈ N ∪ {0} and 0 ≤ ρ ≤ 1, the Cr,ρ topology is defined by

||A||r,ρ = max
0≤i≤r

sup
x

||DiA(x)|| + sup
x 6=y

||DrA(x) −DrA(y)||
d(x, y)ρ

(for ρ = 0 omit the last term) and then

Cr,ρ(N, d,C) = {A : N → GL(d,C) : ||A||r,ρ < +∞}
is a Banach space. We assume that r + ρ > 0 which implies η−Hölder continuity:

‖ A(x) −A(y) ‖≤‖ A ‖0,η d(x, y)η,

with

η =

{
ρ r = 0
1 r ≥ 1.
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1.2. Fiber bunching condition. Suppose that N = NZ, the full shift space with
countably many symbols, and f : N → N the shift map

f((xn)n∈Z) = (xn+1)n∈Z.

A cylinder of N is any subset

[ak, ...; a0; ..., al] = {x : xj = ιj , j = k, ..., l}
of N . We endowed N with topology generated by cylinders. The local stable and local
unstable sets of any x ∈ N are defined as

W s
loc(x) = {y : xn = yn, n ≥ 0}

and
Wu

loc(x) = {y : xn = yn, n < 0}.
Assume that N is endowed with a metric d for which

(i) d(f(y), f(z)) ≤ θ(x)d(y, z), for all y, z ∈ W s
loc(x),

(ii) d(f−1(y), f−1(z)) ≤ θ(x)d(y, z), for all y, z ∈ Wu
loc(x),

where 0 < θ(x) ≤ θ < 1, for all x ∈ N .
Let A be an η-Hölder continuous linear cocycle over f .

Definition 1.1. A is fiber bunched if there exists some constant τ ∈ (0, 1) such that

||A(x)|| ||A(x)−1||θ(x)η < τ,

for any x ∈ N .

Remark 1.1. Fiber bunching is an open condition in Cr,ρ(N, d,C): if A is a fiber
bunched linear cocycle then any linear cocycle B sufficiently C0 close to A is also fiber
bunched, by definition.

1.3. Product structure. Let Nu = N{n≥0} and Ns = N{n<0}. The map

x 7→ (xs, xu)

is a homeomorphism formN onto Ns×Nu where xs = πs(x) and xu = πu(x), for natural
projections πs : N → Ns and πu : N → Nu. We also consider the maps fs : Ns → Ns

and fu : Nu → Nu defined by
fu ◦ πu = πu ◦ f,
fs ◦ πs = πs ◦ f−1.

Assume that µf is an ergodic probability measure for f . Let µs = (πs)∗µf and
µu = (πu)∗µf be the images of µf under the natural projections. It is easy to see that
µs and µu are ergodic probabilities for fs and fu, respectively. Notice that µs and µu

are positive on cylinders, by definition.
We say that µf has product structure if there exists a measurable density function

ω : N → (0,+∞) such that
µf = ω(x)(µs × µu).

Assuming a probability measure which has product strucrure, Bonatti and Viana
[9] obtained a general criterion for simplicity of Lyapunov spectrum for cocycles over
hyperbolic systems and used it to prove that simplicity holds for generic linear cocycles
that satisfy the fiber bunching condition. This criterion has improved by Avila and Viana
[5] who used it to prove the Zorich-Kontsevich conjecture [6]. In [11], by geometric tools,
we prove

Theorem 1.1. [11] Lyapunov exponents of typical fiber bunched linear cocycles over
complete shift map have multiplicity 1.
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1.4. Suspension flows. Consider a suspension flow f t : Λ → Λ of f : N → N and let
T : N → R be the corresponding return time to N . Assume that At : Λ → GL(d,C) is
a linear cocycle over f t, and define

Af (x) = AT (x)(x),

for any x ∈ N . Note that Af : N → GL(d,C) is a linear cocycle over f .
Then we define a relative topology as

||At||r,ρ = ||Af ||r,ρ
for any r ∈ N ∪ {0} and 0 ≤ ρ ≤ 1 with r + ρ > 0, and let

Cr,ρ(Λ, d,C) = {At : Λ → GL(d,C) : ||At||r,ρ < +∞}.

Definition 1.2. At is fiber bunched if the corresponding linear cocycle Af is a fiber
bunched linear cocycle over f .

Remark 1.2. Note that fiber bunching is an open condition in Cr,ρ(Λ, d,C), by defini-
tion.

Our main result is

Main Theorem. Typical fiber bunched linear cocycles over geometric Lorenz attrac-
tors have simple spectrum.

2. Lorenz-like flows

In this section, we recall the basic notions and strategies to construct a geomet-
ric Lorenz attractor and the unique physical probability measure and then, we study
existence of a Markov structure on these flows.

The geometric Lorenz attractors were introduced in [18,12] as a precise model for the
dynamical behavior of the equations

ẋ = a(y − x),
ẏ = bx− y − xz,
ż = xy − cx,

(1)

proposed by Lorenz [13], loosely related to fluid convection and weather prediction.
Tucker [16] showed that the Lorenz equations exhibits a geometric Lorenz attractor, for
classical parameters a = 10, b = 28, c = 8/3.

This system of equations is symmetric with respect to the z−axis. The singularity 0
has real eigenvalues αss < αs < 0 < −αss < αu with αs + αu > 0. There are also two
symmetric saddles σ1, σ2 with a real negative and two conjugate complex eigenvalues
where the complex eigenvalues have positive real parts. The character of this flow is
strongly dissipative, in particular, any maximally positively invariant subset has zero
volume.

2.1. The geometric model. To construct a geometric Lorenz attractor, we should
analyze the dynamics of Lorenz flow in a neighborhood of 0 imitating the effect of the
pair of saddles.
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2.1.1. Poincaré transformation. By construction, there is a cross section S intersecting
the stable manifold of 0 along a curve Γ that separates S into 2 connected components.
We denote the corresponding Poincaré transformation

P : S\Γ → S.

Note that the future trajectories of points in Γ do not came back to S.
We consider the smooth foliation F of S into curves having Γ as a leaf which are

invariant and uniformly contracted by forward iterates of P . Indeed, every leaf F(x,y) is
mapped by P completely inside the leaf FP (x,y), and P |F(x,y)

is a uniform contraction.
Indeed, P must have the form

P (x, y) = (g(x), h(x, y))

which by effect of saddles and singularity, we can assume that h is a contraction along
its second coordinate. The map g is uniformly expanding with derivative tending to
infinity as one approaches to Γ. We assume that |g′| ≥ θ−1 >

√
2 and since the rate of

contraction of h on the second coordinate should be much higher than the expansion of
g, we can take |∂yh| ≤ θ < 1.

2.1.2. Lorenz map. Let π be the canonical projection of section S into F , i.e. π assigns
to each point of S the leaf that contained it. By invariance of F , one dimensional Lorenz
map

g : (F\Γ) → F
is uniquely defined so that

S\Γ P−−−−→ S

π

y
yπ

F\Γ −−−−→
g

F

commutes, i.e. g ◦ π = π ◦ P on S\Γ.
One may identify quotient space S/F with a compact interval as I = [−1, 1], and so

g : [−1, 1]\{0} → [−1, 1]

is smooth on I\{0} with a discontinuity and infinite left and right derivatives at 0. Note
that the symmetry of the Lorenz equations implies g(−x) = −g(x).

2.2. The attractor. The geometric Lorenz attractor Λ is characterized as follows. Note
that the restriction of g to both {x < 0} and {x > 0} admits continuous extensions
to the point 0. Hence, g may be considered as an extension to a 2-valued map at
0 and continuous on both {x ≤ 0} and {x ≥ 0}. Correspondingly, the restriction
of the Poincaré transformation to each of the connected components of S\Γ admits a
continuous extension to the closure, each one collapsing the curve Γ to a single point.
Thus, P may also be considered as a 2-valued transformation defined on the whole cross
section and continuous on the closure of each of the connected components. Let

ΛP =
⋂

n≥0

Pn(S) ⊂ S.

We define Λ to be the saturation of ΛP by the Lorenz flow, that is, the orbits of its
points. Therefore, orbits in Λ intersect the cross section infinitely often, both forward
and backward.
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Dynamical properties of Λ may be deduced from corresponding properties for the
quotient map h. More important, a quotient map with similar properties exists for all
nearby vector fields, and so such properties are robust for these flows.

2.3. Physical probability measure. The existence of a unique absolutely continu-

ous invariant probability µg which is ergodic and 0 <
dµg

d(Leb) < +∞ for Lorenz one-

dimensional map g is well-known (see [16] for more details).
One may construct an invariant probability measure µP on ΛP , as the lifting of µg.

Indeed, we may think of µg as a probability measure on Borel subsets of F . Since P is
uniformly contracting on leaves of F , one concludes that the sequence

(Pn
∗ µg)n≥1,

of push-forwards is weak∗-Cauchy: given any continuous ϕ : S → R,
∫

ϕ d(Pn
∗ µg) =

∫
(ϕ ◦ Pn) dµg, n ≥ 1,

is a Cauchy sequence in R. Define the probability measure µP as the weak∗-limit of this
sequence that is ∫

ϕ dµP = lim
n→+∞

∫
ϕ d(Pn

∗ µg),

for each continuous function ϕ. Thus µP is invariant under P , and it is a physical
probability measure on Borel subsets of ΛP which is ergodic.

Later, as the Poincaré transformation may be extended to the Lorenz flow through a
suspension construction, the invariant probability µP corresponds to an ergodic physical
probability measure m on Λ: Denote by R : S\Γ → (0,+∞) the first return time to S
defined by

P (x) = fR(x)(x).

The first return time R is Lebesgue integrable, since P (x) ≈ | log(d(x,Γ))|, for x close
to Γ. This follows that ∫

R dµP < +∞.

Let ∼ be an equivalence relation on S × R defined as (x,R(x)) ∼ (P (x), 0). Set S̃ =
(S × R)/ ∼ and define the finite measure

µ̃ = π∗(µP × dt)

where π : S × R → S̃ is the quotient map and dt is Lebesgue measure in R. Define
φ : S̃ → M as φ(x, t) = f t(x), and let

m = φ∗µ̃.

One may check also that

1

T

∫ T

0

ϕ(f t(x)) dt →
∫

ϕ dm

as T → +∞, for any continuous function ϕ : M → R, and Lebesgue almost every
x ∈ φ(S̃).



142 MOHAMMAD FANAEE

3. A symbolic structure

Consider a Lorenz one dimensional map g : I\{0} → I.

Theorem 3.1. [10] There exists a return map ĝ, an interval Î = (−δ, δ), 0 < δ < 1, and

a partition {Î(l) : l ∈ N} to subintervals of Î, Lebesgue mod 0, for which ĝ maps any

Î(l) diffeomorphically onto Î, and the return time r̂ is Lebesgue integrable. Moreover,

there exists a constant 0 < c < 1 such that, for all x, y in any Î(l),

log
|ĝ′(x)|
|ĝ′(y)| ≤ cn(x,y)

where n(x, y) = min{n : ĝn(x) ∈ Î(li), ĝn(y) ∈ Î(lj), i 6= j}.

Remark 3.1. Note that, as Lorenz map g is uniformly expanding, the intersection of
(ĝ−n(J(ln))) over all n ≥ 0 consists of exactly one point.

Therefore, ĝ may be seen as the shift map on N̂ = N{n≥0}: there exists a conjugation

between the shift map f̂ : N̂ → N̂ and ĝ presented by the next commuting diagram

N̂
f̂−−−−→ N̂

φ̂

y
yφ̂

Î −−−−→
ĝ

Î

where the bijection φ̂ may be defined as

φ̂ : (ln)n≥0 7→
⋂

n≥0

ĝ−n(Î(ln)).

3.1. Bi-dimensional Markov structure. Now, we consider the bi-dimensional do-
main Ŝ = π−1(Î) ⊂ S and corresponding to the Markov partition of Î define a Markov

partition {Ŝ(l) = π−1(Î(l)) : l ∈ N} of Ŝ. The return time is defined as

r(x) = r̂(π(x)).

Hence, there exists a return map P̂ to Ŝ as

P̂ (x) = P r(x)(x),

for any x ∈ Ŝ. Moreover

ĝ ◦ π = π ◦ P̂ .

Let

ΛP̂ =
⋂

n≥0

P̂n(Ŝ).

So ΛP̂ is homeomorphically equal to N . Indeed, since
⋂

n∈Z P̂
−n(Ŝ(ln)) consists of

exactly one point, one may define a bijection φ : N → ΛP̂ as

φ : (ln)n∈Z 7→
⋂

n∈Z
P̂−n(Ŝ(ln))
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which implies the commuting diagram

N
f−−−−→ N

φ

y
yφ

ΛP̂ −−−−→
P̂

ΛP̂ .

3.2. Lifting the probability measure. The normalized restriction µ̂ of µg to the

domain of ĝ is an absolutely continuous ergodic probability for ĝ and then for f̂ , by
conjugacy.

As the natural extension of f̂ realized as the complete shift map f on N , the lift µ
of µ̂ is the unique f -invariant ergodic probability measure on N such that

π̂∗µ = µ̂.

Proposition 3.1. The lift probability µ has product structure. Moreover, the density
function ω is continuous and, bounded from zero and infinity

Proof. Note that by Theorem 3.1, for all x̂, ŷ in the same cylinder

log
Jf̂(x̂)

Jf̂(ŷ)
≤ cn(x,y).

The rest of proof is based on 4 main steps Step 1. If x̂, ŷ ∈ N̂ then for any x ∈ W s
loc(x̂)

and y ∈ Wu
loc(x) ∩W s

loc(ŷ), the limit

Jx̂,ŷ(x) = lim
n→∞

Jf̂n(x̂n)

Jf̂n(ŷn)
,

where x̂n = π̂(f−n(x)), ŷn = π̂(f−n(y)), exists uniformly on x̂, ŷ, x. Moreover,

(x̂, ŷ, x) 7→ Jx̂,ŷ(x)

is continuous and uniformly bounded from zero and infinity.
Indeed, we observe that

log
Jf̂n(x̂n)

Jf̂(ŷn)
≤

n∑

i=1

log
Jf̂(x̂i)

Jf̂(ŷi)
.

Since x̂i and ŷi are in the same cylinder, the series is uniformly bounded by
∑

i c
n(x̂i,ŷi).

But n(x̂i, ŷi) is strictly increasing that implies uniform convergence of the series.

Step 2. If {µx̂ : x̂ ∈ N̂} be an integration of µ then, for µ-almost every x̂ ∈ N̂ ,

µx̂(ξn) =
1

Jf̂n(x̂n)
,

for every cylinder ξn = [x−n, ..., x−1], n ≥ 1, and any x ∈ ξn × {x̂}.
Step 3. Given any disintegration, by the last step, one may find a disintegration
{µx̂ : x̂ ∈ N̂} of µ so that

µŷ = Jx̂,ŷµx̂.

Step 4. Fixing any x̂0 ∈ N̂ , one may define

ω̂(xs, xu) = Jx̂0,xu(xs, xu),

for every x = (xs, xu) ∈ N . By Step 2, µxu = ω̂(xs, xu), for any xu ∈ N̂ .
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The lift measure µ projects to µ̂ = µu, but the projection µs to Ns is given by

µs = µx̂0

∫

N̂

ω̂(xs, xu) dµ̂.

Therefore

µ = ω(xs, xu)µs × µu

where

ω(xs, xu) =
1∫

N̂
ω̂(xs, xu) dµ̂

ω̂(xs, xu).

As conditional probabilities vary continuously with the base point so the density
function ω is continuous. Also, ω is bounded from zero and infinity.

The i of Proposition 3.1 is now completed.

3.3. Suspending the bi-lateral shift. The saturation of N by the Lorenz flow f t, by
ergodicity of m has full measure in Λ. Now on, by Λ we mean this full measure subset.
Henceforth, a return time to N is defined as

T : N → R

T (x) =

r(x)−1∑

j=0

R(P j(x)),

for any x ∈ N .

Proposition 3.2. The return time T is integrable with respect to the probability measure
µ.

Proof. For almost every x,

∫
T (x) d(Leb) =

∫
r(x)[

1

r(x)

r(x)−1∑

j=0

R(P j(x))] d(Leb)

converges to ∫
r(x)(

∫
R d(Leb)) d(Leb) < +∞

which implies ∫
T d(Leb) < +∞.

The proof is now completed by absolute continuity.

4. The proof of Main Theorem

Now, we are in the setting to complete the proof of Main Theorem.

For any linear cocycle At over Λ consider the corresponding linear cocycle Af on N
by

Af (x) = AT (x)(x),

for any x ∈ N .

Proposition 4.1. Lyapunov spectrum of At is simple if and only if Lyapunov spectrum
of Af is simple.
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Proof. The Lyapunov exponents of Af are obtained by multiplying those of At by the
average return time

sn(x) =

n−1∑

j=0

T (P̂ j(x)), x ∈ N.

Indeed, given any non zero vector v,

lim
n→+∞

1

n
log ||An

f (x)v|| = lim
n→+∞

1

n
log ||Asn(x)(x)v||

which, for µ-almost every x, this is equal to

lim
n→+∞

1

n
sn(x) lim

m→+∞
1

m
log ||Am(x)v||.

But 1
nsn(x) converges to

∫
T dµ < +∞

The proof of Proposition 4.1 is now completed.

Let At be a linear cocycle over Λ. We define a neighborhood V of At as the subset
of all cocycles Bt over Λ for which Bf ∈ U .
Proposition 4.2. The application

V ∋ Bt 7→ Bf ∈ U
is a submersion.

Proof. By definition,
∂BtBf (Ḃt) = Ḃf .

Let Ḃ ∈ Cr,ρ(N, d,C). Then the suspension Ḃt of Ḃ is defined by

Ḃt(Xs(x)) = (id, t+ s), 0 < t+ s ≤ T (x),

identifying (id, T (x)) with (Ḃ(x), 0), for any x ∈ N , setting Ḃ0 = id. Ḃt is an η-Hölder

linear cocycle over Λ for which Ḃf (x) = (Ḃ(x), 0). This shows that the derivative is
surjective.

The proof of Proposition 4.2 is now completed.

The proof of Main Theorem is then completed, by Theorem 1.1.
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REGULARITY OF THE DRIFT AND ENTROPY OF RANDOM

WALKS ON GROUPS

LORENZ GILCH AND FRANÇOIS LEDRAPPIER

Random walks on a group G model many natural phenomena. A random walk
is defined by a probability measure p on G. We are interested in global asymptotic
properties of the random walks and in particular in the linear drift and the asymptotic
entropy. If the geometry of the group is rich, then these numbers are both positive and
the way of dependence on p is some global property of G. In this note, we review recent
results about the regularity of the drift and the entropy in some examples.

1. Entropy and linear drift

We recall in this section the main notations for the objects under consideration asso-
ciated to a group G and a probability measure p on G. Background on random walks
can be found in the survey papers [KV] and [V] and in the book by W. Woess ([W]).

Let G be a finitely generated group and S a symmetric finite generator. For g ∈ G,
let |g| denote the smallest n ∈ N such that g can be written as g = s1 · · · sn, where
s1, . . . , sn ∈ S. We denote by d(g, h) := |g−1h| the left invariant associated metric.
Let p be a probability measure on G with support B. Unless otherwise specified, we
always assume that B is finite and that

⋃
n∈NB

n = G. We denote by P(B) the set of
probability measures with support B. The set P(B) is naturally identified with an open
subset of the probabilities on B, which is a contractible open polygonal bounded convex
domain in R|B|−1. We form, with p(0) being the Dirac measure at the identity e,

p(n)(g) = [p(n−1) ? p](g) =
∑

h∈G
p(n−1)(gh−1)p(h),

where g ∈ G. The spectral radius is given by %(p) = lim supn→∞ p(n)(e)1/n. Define the
entropy Hn,p and the drift Ln,p of p(n) by:

Hn,p := −
∑

g∈G
p(n)(g) ln p(n)(g), Ln,p :=

∑

g∈G
|g|p(n)(g),

and the average entropy hp and the linear drift `p by

hp := lim
n→∞

1

n
Hn,p, `p := lim

n→∞
1

n
Ln,p.

Both limits exist by subadditivity and Fekete’s Lemma. The linear drift makes sense
as soon as

∑
g∈G |g|p(g) < +∞, the entropy under the slightly weaker condition H1,p <

+∞. The entropy hp was introduced by Avez ([Av]) and is related to bounded solutions
of the equation on G of the form f(g) =

∑
h∈G f(gh)p(h) (see e.g. [KV]). In particular,

hp = 0 if and only if the only bounded solutions are the constant functions ([KV],
[De2]). The general relation is ([Gu])

(1) hp ≤ `pv,
147
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where v := limn→∞ 1
n ln (#{g ∈ G; |g| ≤ n}) is the volume entropy of G. In particular,

if `p = 0 then hp = 0.
We say that p is symmetric if B = B−1 and p(g) = p(g−1) for all g ∈ B. We call p

centered if
∑
g∈B χ(g)p(g) = 0 for all group morphisms χ : G→ R. Clearly, symmetric

probabilities are centered. If p is centered and hp = 0, then `p = 0 ([Va], [Ma1]). If p
is not centered, we may have hp = 0 and `p 6= 0, for instance on Z. If this is the case,
there is a group morphism χ : G → R such that `p =

∑
g∈B χ(g)p(g) ([KL], see also

[EKn] for finite versions of this result).

Both hp and `p describe asymptotic properties of the random walk directed by p. Let
(Ω, P ) = (GN, p⊗N) be the infinite product space such that ω = (ω1, ω2, . . .) ∈ GN is
realized by a sequence of i.i.d. random variables with values in G and distribution p.
We form the right random walk by Xn(ω) := ω1ω2 · · ·ωn. The probability p(n) is the
distribution of Xn, and an application of Kingman’s subadditive ergodic theorem ([Ki])
gives that, for P -a.e. ω,

(2) lim
n→∞

1

n
|Xn| = `p and lim

n→∞
− 1

n
ln
(
p(n)(Xn)

)
= hp.

The random walk is said to be recurrent if, for P -a.e. ω, there is a positive n ∈ N
with Xn(ω) = e. In this case there is an infinite number of integers n with Xn = e
and, by (2), `p = 0. Hence, hp = 0. From here on, we assume that the random walk is
transient, i.e. |Xn| → ∞ for P -a.e. ω. The Green function G(g, h), g, h ∈ G, is defined
by

G(g, h) :=
∑

n≥0

p(n)(g−1h).

By decomposing of the first visit to h and using transitivity of the random walk we get

G(g, h) = F (g, h)G(h, h) = F (g, h)G(e, e),

where F (g, h) is the probability of reaching h starting from g. If p is symmetric, then
the (left invariant) Green distance is defined by dG(g, h) := − lnF (g, h). The drift `p,G
for that distance coincide with the entropy hp ([BP], Proposition 6.2, [BHM]) and the
volume entropy is 1, so that there is equality in (1) for that distance ([BHM]).

We now turn to another representation of the drift and entropy. Let X be a compact
space. X is called a G-space if the group G acts by continuous transformations on X.
This action extends naturally to probability measures on X. We say that the measure
ν on X is stationary if

∑
g∈G(g∗ν)p(g) = ν. The entropy of a stationary measure ν is

defined by

(3) hp(X, ν) := −
∑

g∈G

(∫

X

ln
dg−1
∗ ν

dν
(ξ)dν(ξ)

)
p(g).

The entropy hp and the linear drift `p are given by variational formulas over stationary
measures (see [KV] for the entropy, [KL] for the linear drift):

hp = max{hp(X, ν);X G-space and ν stationary on X},(4)

`p = max
{∑

g∈G

(∫

G

ξ(g−1)dν(ξ)

)
p(g); ν stationary on G

}
,(5)

where G is the Busemann compactification of G, the elements of which are horofunctions
ξ on G. A pair (X, ν), where X is a G-space and ν a p-stationary measure is called a
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boundary if, for P -a.e.ω, (Xn(ω))∗ν converge towards a Dirac measure. It is called a
Poisson boundary if it is a boundary and it realizes the maximum in formula (4).

From the definition of `p and hp, one sees that the mappings p 7→ `p and p 7→ hp are
uppersemicontinuous on P(B). Erschler ([Er]) raised the question of continuity of these
functions and gave examples where these mappings are not continuous on the closure
of P(B). The question of continuity in general on the interior of P(B) is open. In the
rest of the paper, we discuss several examples where one can prove stronger regularity
results.

2. Nearest neighbour random walks on a free group

In the case when the group G is a free group with d generators, d ≥ 2, and p is
supported by these generators, explicit computations can be made (see [DM]).

Let G be the free group with set of generators S = {±i; i = 1, . . . , d}, where −i = i−1

for i ∈ S. Let P(S) be the set of probability measures on G with support S. Since d ≥ 2,
as n goes to infinity, the reduced word representing Xn(ω) converges towards an infinite
reduced word X∞(ω) = s1(ω)s2(ω) · · · with sj(ω) 6= −sj+1(ω). Denote by G∞ the space
of infinite reduced words. The stationary measure is unique: it is the distribution ν of
X∞(ω). Then (G∞, ν) is both the Poisson boundary and the Busemann boundary of
G. Let qi = P

(
{ω; s1(ω) = i}

)
= ν([i]), where [i] consists of all infinite words in G∞

starting with letter i ∈ S. We have
∑
i∈S qi = 1. Let i1 . . . ik be a reduced word in

G. Then ν is uniquely determined by the values ν([i1 . . . ik]) = F (e, i1 . . . ik)(1− q−ik),
where F (e, i1 . . . ik) is the probability of hitting i1 . . . ik when starting at the identity e.
Formula (5) writes:

`p = 1− 2
∑

i∈S
piq−i.

In order to write the formula for the entropy, we introduce zi := F (e, i) for i ∈ S.

The density
dg−1
∗ ν

dν
(ξ) gives the minimal positive harmonic function with pole at ξ =

i1i2 . . . ∈ G∞. The Green function satisfies the following multiplicative structure:

G(e, i1 . . . ik) = F (e, i1)G(i1, i1 . . . ik) = F (e, i1)G(e, i2 . . . ik).

This yields together with [L1, Theorem 2.10]

di−1
∗ ν

dν
(ξ) = lim

k→∞
G(−i, i1 . . . ik)

G(e, i1 . . . ik)
=

{
zi, if i1 6= −i,
z−1
−i , if i1 = −i.

Formula (4) writes:

hp =
∑

i∈S
pi
[
q−i ln z−i − (1− q−i) ln zi

]
.

We can express the qi in terms of the pi, and vice versa, thanks to the traffic equations:
using the Markov property, we can write:

zi = pi + zi
∑

j∈S\{i}
pjz−j and qi = zi(1− q−i).

Setting Y :=
∑
j∈S pjz−j , we get

pi =
zi(1− Y )

1− ziz−i
and zi =

qi
1− q−i

,
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so that we find:

`p = 1− 2

A

∑

i∈S

qiq−i(1− qi)
1− qi − q−i

, where A = (1− Y )−1 = 1 +
∑

i∈S

qiq−i
1− qi − q−i

,

which writes:

`p =
B

A
, where B := 1−

∑

i∈S

qiq−i(1− 2qi)

1− qi − q−i
.

Hence, in terms of the qi, i ∈ S, pi and `p are rational, and the expression of hp
involves rational functions and ln qi, ln(1− qi).
Proposition 2.1. The mappings p 7→ `p and p 7→ hp are real analytic on P(S).

Proof. Since all formulas are explicit in terms of the qi, we only have to check that the
qi are real analytic functions on P(S). First, we can write zi as a power series in terms
of the pi’s and the additional variable z ∈ C, namely as

zi(z) =
∑

(n1,...,n2d)∈N2d

c(n1, . . . , n2d)p
n1
1 pn2
−1p

n3
2 pn4
−2 · . . . · p

n2d−1

d pn2d

−d z
n1+···+n2d ,

where c(n1, . . . , n2d) ≥ 0. Since the spectral radius is strictly smaller than 1 (see e.g.
[W, Cor. 12.5]), the power series G(e, i|z) =

∑
n≥0 p

(n)(i)zn has radius of convergence

strictly bigger than 1 and satisfies G(e, i|z) ≥ zi(z) for all real z > 0. That is, for
each p ∈ P(S), zi(z) has radius of convergence Ri > 1. Choose now any δ > 0 with
1 + δ < Ri. Then

zi = zi(1) ≤ zi(1 + δ)

=
∑

(n1,...,n2d)∈N2d

c(n1, . . . , n2d)
(
(1 + δ)p1

)n1 · . . . ·
(
(1 + δ)p−d

)n2d <∞.

In other words, zi = zi(1) is real analytic in a neighbourhood of any p ∈ P(S). The
equations qi = zi(1− q−i), q−i = z−i(1− qi) give

qi =
zi(1− z−i)
1− ziz−i

,

and this finishes the proof. �

Observe that for d = 1, the group G is Z, S = {±1} and p 7→ `p = |p1 − p−1| is not
a real analytic function on P(±1).

The formulas are even simpler when the probability p is symmetric. Let Pσ(S) be
the set of symmetric probability measures on S; elements of Pσ(S) are described by d

positive numbers {p1, · · · , pd} such that
∑d
i=1 pi = 1/2. If p ∈ Pσ(S), qi = q−i and we

have:

`p =
B

A
with A = 1 + 2

d∑

i=1

q2
i

1− 2qi
and B = 1− 2

d∑

i=1

q2
i ,

hp = − 2

A

d∑

i=1

qi(1− qi) ln
qi

1− qi
,whereas

pi =
qi(1− qi)
A(1− 2qi)

for i = 1, . . . , d.
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Proposition 2.2. The functions p 7→ `p and p 7→ hp reach their maxima on Pσ(S) at
the constant vector p0 = (1/2d, . . . , 1/2d) and

`p0 = 1− 1

d
, hp0 =

(
1− 1

d

)
ln(2d− 1).

Proof. By symmetry, the constant vector p0 is a critical point for `p. At p0, qi = 1/2d by
symmetry and `p0 = 1− 1/d, hp0 = (1− 1/d) ln(2d− 1) by the formulas above (observe
that these expressions are also valid for d = 1: the only point of Pσ(±1) is (1/2, 1/2),
for which ` = 0 = 1 − 1/d and h = 0 = (1 − 1/d) ln(2d − 1)). Moreover, the volume
entropy of G is ln(2d− 1). By (1), the result for `p implies that (1− 1/d) ln(2d− 1) is
the maximal value that the entropy might take on Pσ(S). Since this is the entropy hp0 ,
p0 achieves the maximum of the entropy as well.

We are going to prove that the function (q1, . . . , qd) 7→ B/A has a unique critical

point on the set {(q1, . . . , qd); qj > 0,
∑d
j=1 qj = 1/2}. Observe that the formula for `p

is continuous on the domain 0 ≤ qi ≤ 1/2 and that the value of `p at the boundary

of the domain {(q1, . . . , qd); qj > 0,
∑d
j=1 qj = 1/2} is the one computed with only the

non-zero qi’s on a free group with a smaller set of generators. Since at the constant
vector p0, `p0 = 1 − 1/d, it follows, by induction on the dimension, that the critical
point p0 is a maximum. The proof for d = 2 is the same as in the general case: there is
only one critical point by the argument below and the limit of the expression for `p at
(0, 1/2), (1/2, 0) is 0.

Using a Lagrange multiplier, we are looking for the critical points of the function

F (q, λ) = `p − λ(
∑d
j=1 qj − 1/2) satisfying 0 ≤ qj ≤ 1/2 for j = 1, . . . , d. Setting as

above

A = 1 + 2
d∑

i=1

q2
i

1− 2qi
and B = 1− 2

d∑

i=1

q2
i ,

all equations ∂F
∂qi

= 0 depend only on A,B, λ and qi.

Indeed, they write G(A,B, λ, qi) = 0, where:

G(A,B, λ, q) = 16Aq3 + 4q2(λA2 − 4A−B) + 4q(−λA2 +A+B) + λA2.

If, for fixed A,B, λ, the equation G(A,B, λ, qi) = 0 has only one solution q ∈ [0, 1/2),
then, for these values of A,B, λ, the only possible critical point of F is qj = 1/2d for all

j. Then, unless A = 2d−1
2d−2 , B = 2d−1

2d , there is no critical point for F with those values
of A,B.

To summarize, we only have to verify that the equation G(A,B, λ, qi) = 0 has at
most one solution q ∈ [0, 1/2) for all A,B, λ with 0 < B < 1 < A.

The function q 7→ G(A,B, λ, q) is a third degree polynomial with positive highest
coefficient, 1/2 is a critical point and G(A,B, λ, 1/2) = B > 0. Therefore, there is at
most one solution q ∈ [0, 1/2). �

It is likely that p0 gives also the maximum of the entropy on the whole P(S), but
we do not have a proof of that fact. We also conjecture that the mapping p 7→ `p is
a concave function; calculating the drift for small d ∈ N supports and confirms this
conjecture, but we do not have a proof for general d.

3. Free products, Artin dihedral groups and braid groups

The computations in Section 2 have been known for fifty years (even if Proposition
2.2 seems to be formally new). There are very few other examples where it is possible
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to describe geometrically the Poisson boundary and the Busemann boundary, and it is
even rarer to be able to give useful formulas for the stationary measure. In this section,
we review the examples we are aware of.

One important concept of constructing new groups from given ones is the free product
of groups. The crucial point is that free products have a tree-like structure. More pre-
cisely, suppose we are given finitely generated groups G1, . . . , Gr equipped with finitely
supported probability measures p1, . . . , pr. The identity of Gi is denoted by ei, and
w.l.o.g. we assume that these groups are pairwise disjoint and we exclude the case
r = 2 = |G1| = |G2| (this case leads to recurrent random walks in our setting). The free
product G1 ∗ · · · ∗Gr is given by

G = ∗ri=1Gi =
{
x1x2 . . . xn

∣∣xj ∈
r⋃

i=1

Gi \ {ei}, xj ∈ Gk ⇒ xj+1 /∈ Gk
}
∪ {e},

the set of finite words over the alphabet
⋃r
i=1Gi \ {ei} such that two consecutive let-

ters do not come from the same group Gk, where e describes the empty word. A group
operation on G is given by concatenation of words with possible contractions and cancel-
lations in the middle such that one gets a reduced word as above. For x = x1 . . . xn ∈ G
define the block length of x as ‖x‖ := n.

A random walk on G is constructed in a natural way as follows: we lift pi to a
probability measure p̄i on G: if x = x1 . . . xn ∈ G with xn /∈ Gi and v, w ∈ Gi, then
p̄i(xv, xw) := pi(v, w). Otherwise we set p̄i(x, y) := 0. Choose 0 < α1, . . . , αr ∈ R with∑r
i=1 αi = 1. Then we obtain a new probability measure on G defined by

p =
r∑

i=1

αip̄i

with B = supp(p) =
⋃r
i=1 supp(pi). We consider random walks (Xn)n∈N0

on G starting
at e, which are governed by p. For i ∈ {1, . . . , r}, denote by ξi the probability of hitting
the set Gi \ {ei} when starting at e. The spectral radius %(p) is strictly less than 1
due to the non-amenability of G. Let ∂Gi be the Martin boundary of Gi with respect
to pi, and denote by G∞ the set of infinite words x1x2 . . . such that xi ∈ Gk implies
xi+1 /∈ Gk. Then the Martin boundary of G is given by

∂G = G∞ ∪
r⋃

i=1

{xξ;x = x1 . . . xn ∈ G, xn /∈ Gi, ξ ∈ ∂Gi};

see e.g. [W, Proposition 26.21]. The random walk on G converges almost surely to an
infinite word in G∞, and the limit distribution ν is determined by

ν
(
{x1x2 · · · ∈ G∞;x1 = y1, . . . , xn = yn}) = F (e, y1 . . . yn)

(
1− (1− ξi)Gi(ξi)

)
,

where n ∈ N, y1 . . . yn ∈ G with yn /∈ Gi, F (e, y1 . . . yn) being the probability of hitting

y1 . . . yn and Gi(ei|z) =
∑
n≥0 p

(n)
i (ei)z

n with z ∈ C.
The next propositions summarize results about regularity of drift and entropy. Ex-

plicit formulas can be found in the cited sources.

Proposition 3.1 ([Gi1]). The drift w.r.t. the block length `B = limn→∞ 1
n‖Xn‖ exists

and varies real-analytically in p ∈ P(B).
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Proof. In [Gi1, Equ. (9)] a formula for `B is given:

`B =

r∑

i=1

αi
1− ξi
ξi

(
1− (1− ξi)Gi(ei|ξi)

)
.

Let d = |B| − 1, and write p = (q1, . . . , qd) ∈ P(B). Analogously to the proof of
Proposition 2.1 one can write ξi as a power series (evaluated at z = 1) in the form

ξi(z) =
∑

(n1,...,nd)∈Nd
c(n1, . . . , nd)q

n1
1 qn2

2 . . . qndd zn1+···+nd , z ∈ C.

Since %(p) < 1 the Green functions G(g|z) =
∑
n≥0 p

(n)(e)zn, g ∈ G, have radii of

convergence R = 1/%(p) > 1 and dominate ξi(z) for real z > 0. Hence, ξi(z) has
radius of convergence bigger than 1, which in turn – following the same argumentation
as in Proposition 2.1 – yields real analyticity of ξi = ξi(1) in a neighbourhood of any
p ∈ P(B). Furthermore, Gi(z) can be expanded in the same form as ξi(z) and, for each
real positive z0 < 1, the mapping p 7→ Gi(z0) is real analytic. Since ξi < 1 (see e.g.
[Gi1, Lemma 2.3]) the mapping p 7→ Gi(ξi) is aslo real-analytic as a composition of
real-analytic functions. This yields the proposed statement. �

Proposition 3.2 ([Gi1]). Let p govern a nearest neighbour random walk on G, that
is, the length |g| is computed with respect to the generator B. Then the drift function
p 7→ `p = limn→∞ 1

n |Xn| is real-analytic.

Proof. By the formula for ` given in [Gi1, Section 7] we just have to check that the
mapping

p 7→ G̃j(y, z) :=
∑

m,n≥0

∑

x∈Gj :|x|=m
p

(n)
j (ej , x)ynzm

is real-analytic for all y ∈ (0, 1) and z = 1. For a moment fix y < 1 and choose δ > 0

small enough such that y(1 + 2δ)2 < 1. Since p
(n)
j (ej , x) > 0, x ∈ Gj with |x| = m,

implies n ≥ m, we get

G̃j
(
y, (1 + 2δ)2

)
=
∑

m,n≥0

∑

x∈Gj :|x|=m
p

(n)
j (ej , x)

(
y(1 + δ)2

)n ≤ 1

1− y(1 + 2δ)2
<∞.

This yields ∂
∂z G̃

(
y, (1 + δ)2

)
< ∞. Since each term p

(n)
j (ej , x) can be written as a

polynomial ∑

(n1,...,nd)∈Nd:
n1+...+nd=n

c(n1, . . . , nd)q
n1
1 · . . . · qndd ,

where p = (q1, . . . , qd) ∈ P(B) and c(n1, . . . , nd) ≥ 0, we can rewrite ∂
∂z G̃

(
y, (1 + δ)2

)

as
1

1 + δ

∑

m,n≥0

∑

x∈Gj :|x|=m
m
(
p

(n)
j (ej , x)(1 + δ)n

)(
ξj(1 + δ)

)n
.

That is,
∑
m,n≥0

∑
x∈Gj :|x|=mmp

(n)
j (ej , x)ξnj is real-analytic in P(B) as a composition

of real-analytic functions, and this yields the claim. �

Let us mention that – in contrast to Proposition 2.2 – simple random walk is not
necessarily the fastest random walk. Namely, it can be verified with the help of Math-
ematica that – with pi describing the simple random walk on Gi – the simple random
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walk on (Z/3Z) ∗ (Z/2Z) (that is, α1 = 2/3, α2 = 1/3) is slower than the random walk
on the free group with the parameters α1 = α2 = 1/2.

Furthermore, we have the following regularity result:

Proposition 3.3 ([Gi3]). Assume that hi := −∑g∈Gi pi(g) ln pi(g) < ∞ for all i ∈
{1, . . . , r}, that is, all random walks on the factors Gi have finite single-step entropy.
Then the mapping p 7→ hp is real analytic.

We now turn to another class of groups whose Cayley graphs have a tree-like structure.
A group G is called virtually free if it has a free subgroup of finite index. At this point
we assume that G has a free subgroup with at least d ≥ 2 generators; otherwise, G is
a finite extension of Z where we either get recurrent random walks or non-regularity
points on P(B). It is well-known that virtually free groups can be constructed from
a finite number of finite groups by iterated amalgamation and HNN extensions. Each
element of G can be written as x1 . . . xnh, where xi ∈ {±i; i = 1, . . . d} and h being one
of finitely many representatives for the different cosets. Suppose we are given a weight
or length function l(±i) ∈ R for i ∈ {1, . . . , d}. Then a natural length function on G is
defined by l(x1 . . . xnh) =

∑n
j=1 l(xj). We have the following result:

Proposition 3.4 ([Gi2]). Let G be a virtually free group. Let p govern a finite range
random walk on G. Then the mapping p 7→ limn→∞ l(Xn)/n is real-analytic.

Proof. Random walks on virtually free groups can be interpreted as a random walk
on a regular language in the sense of [Gi2]. The claim follows from the formula for
limn→∞ l(Xn)/n, the drift with respect to the length function l, given in [Gi2, Theorem
2.4]. Due to non-amenability of G we have again %(p) < 1. The rest follows analogously
as in the proofs of Propositions 2.1 and 3.1. �

For the case l being the natural word length the last proposition is also covered by
Corollary 4.2.

At this point we want to mention the article [MM2], which uses similar techniques
to establish statements about the drift of random walks on the braid group B3 and on
Artin groups of dihedral type. Traffic equations are established, whose unique solutions
lead to formulas for the drift. For random walks on these groups there might occur
transitions (when varying the probability measures of constant support), where one has
no regularity. An explicit example for a non-differentiabilty point is given on the braid
group B3. However, [MM2] gives explicit formulas for the drift in terms of the solutions
of the traffic equations splitted up into different branches. By methods similar to the
above, one can show that the drift is real-analytic on each branch. Indeed, solutions
of the traffic equations can be written as converging power series as in the proofs of
Propositions 3 and 3.2.

4. Hyperbolic groups

A geodesic metric space is called hyperbolic if geodesic triangles are thin: there is
δ ≥ 0 such that each side of a geodesic triangle is contained in a δ-neighborhood of the
union of the other two sides. A finitely generated group is called hyperbolic if the Cayley
graph defined by some finite symmetric generator is hyperbolic. This property does not
depend on the set of generators. Free groups are hyperbolic, as are fundamental groups of
compact manifolds of negative curvature, and small cancellation groups. See e.g. [GH]
for the main geometric properties of hyperbolic groups. The geometric boundary of a
hyperbolic space is the space of equivalence classes of geodesic rays, where two geodesic
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rays are equivalent if they are at a bounded Hausdorff distance. The geometric boundary
∂G of the Cayley graph of a hyperbolic group G is a compact G-space. It is endowed
with the Gromov metric (see [GH]). The mapping Φ : G→ ZG,Φ(g)(h) = |h−1g| − |g|
is an isometry such that Φ(G) is relatively compact for the product topology. The
Busemann compactification G is the closure of Φ(G) in ZG. There is an equivariant
homomorphism π : G\G→ ∂G (see e.g. [WW]). The homomorphism π is finite-to-one
(see e.g. [CP]). Following [Bj], we say that G with the generator S satisfies (BA) if
the homomorphism π is one-to-one. In this case, we write, for ξ ∈ ∂G, h ∈ G, ξ(h) for
the value at h of the sequence π−1ξ ∈ ZG. Free groups and surface groups with their
natural generators satisfy (BA). It is an open problem whether any hyperbolic group
admits a symmetric generator with the property (BA).

Let p be a probability on G with finite support. Then, there is a unique p-stationary
probability measure νp on ∂G and (∂G, νp) is a Poisson boundary for (G, p)([An], [K]
Theorem 7.6). If (BA) is satisfied, the measure νp is the unique stationary probability
measure on the Busemann compactification and formulas (4) and (5) write:
(6)

hp = −
∑

g∈B

(∫

∂G

ln
dg−1
∗ νp
dνp

(ξ)dνp(ξ)

)
p(g), `p =

∑

g∈B

(∫

∂G

ξ(g−1)dνp(ξ)

)
p(g).

Proposition 4.1. Assume that (G,S) is a non-elementary hyperbolic group and satisfies
(BA). Let p ∈ P(B), α be small enough, and let f be an α-Hölder continuous function
on ∂G. Then the mapping p 7→

∫
∂G

f(ξ)dνp(ξ) is real analytic on a neighborhood of p
in P(B).

Proof. Let Kα be the space of α-Hölder continuous functions on ∂G. The space Kα is a
Banach space with norm ‖f‖α, where

‖f‖α = max
ξ∈∂G

|f(ξ)|+ sup
ξ,η∈∂G:ξ 6=η

|f(ξ)− f(η)|
(d(ξ, η))α

.

For p ∈ P(B), let Qp be the operator on Kα defined by

Qpf(ξ) =
∑

g∈B
f(g−1ξ)p(g).

Clearly, the mapping p 7→ Qp is real analytic from P(B) into L(Kα). If G is not elemen-
tary and satisfies (BA), it can be shown (see [Bj], Lemma 4) that, for α small enough,
f 7→

∫
fdνp is an isolated eigenvector for the transposed operator Q∗p on the dual space

K∗α. The proposition follows by a perturbation lemma. �

Corollary 4.2. Assume that (G,S) is a non-elementary hyperbolic group and satisfies
(BA). Then the mapping p 7→ `p is real analytic.

Indeed, the function ξ(g−1) in formula (6) belongs to Kα for all α. Corollary 4.2 is
due to [L2] in the case of the free group. P. Mathieu ([Ma2]) proved the C1 regularity
and gave a formula for ∇pνp and ∇p`p in the symmetric case, to be compared with
formulas for linear response of dynamical systems (cf. [R]).

The formula (6) for the entropy is valid in general, even without the (BA) hypothesis,

but observe that the integrand ϕp(g, ξ) := − ln
dg−1
∗ νp
dνp

(ξ) is itself a function of p. To

study this function, we use the description by A. Ancona ([An]) of the Martin boundary
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of a random walk with finite support on a hyperbolic group. Recall that Fp(g, h) is the
probability of reaching h starting from g in dependence of p.

Proposition 4.3 ([An]). Assume that G is hyperbolic and that p has finite support.
Then,

ϕp(g, ξ) = lim
h→ξ

ln
Fp(e, h)

Fp(g−1, h)
for all g ∈ G, ξ ∈ ∂G.

A consequence of the proof of Proposition 4.3 is that, for all g ∈ G, for α small
enough ϕp(g, ξ) ∈ Kα (see [INO]). In the case of free groups, Proposition 4.3 goes back
to Derriennic ([De1]) and using his arguments one can prove:

Proposition 4.4 ([L2]). If G is a free group and p has finite support B, there is α small
enough that, for all g ∈ B, the mapping p 7→ ϕp is real analytic from a neighborhood of
p in P(B) into Kα.

Corollary 4.5 ([L2]). If G is a free group and p has finite support B, the mapping
p 7→ hp is real analytic on P(B).

For cocompact Fuchsian groups there is the following recent result:

Proposition 4.6 ([HMM]). Let G be a cocompact Fuchsian group with planar presen-
tation. Then the mapping p 7→ `p is real analytic.

For a general hyperbolic group, we have a weaker result:

Proposition 4.7 ([L3]). If G is a hyperbolic group and p has finite support B, there is
α small enough that, for all g ∈ B, the mapping p 7→ ϕp is Lipschitz continuous from a
neighborhood of p in P(B) into Kα.

Corollary 4.8 ([L3]). If G is a hyperbolic group and p has finite support B, the map-
pings p 7→ hp, p 7→ `p are Lipschitz continuous on P(B).

[Gi4] proves also continuity of the mapping p 7→ hp for random walks on regular
languages, which adapt, for instance, to the case of virtually free groups.

The best results of regularity to-date are due to P. Mathieu; in particular:

Proposition 4.9 ([Ma2]). If G is a hyperbolic group satisfying (BA), B is finite and
symmetric and λ 7→ pλ, λ ∈ [−ε,+ε] is a smooth curve in the set Pσ(B) of symmetric
probability measures on B, then the mapping λ 7→ hpλ is differentiable .

Let λ 7→ pλ, λ ∈ [−ε,+ε] be a smooth curve in P(B). We write:

lim
λ→0

h(pλ)− h(p0)

λ

= lim
λ→0

1

λ

∑

g∈B

(∫

∂G

ϕpλ(g, ξ)dνpλ(ξ)pλ(g)−
∫

∂G

ϕp0(g, ξ)dνp0(ξ)p0(g)

)

= lim
λ→0

1

λ

∑

g∈B

(∫

∂G

(ϕpλ(g, ξ)− ϕp0(g, ξ))dνpλ(ξ)

)
pλ(g) +

+
∑

g∈B

(∫

∂G

ϕp0(g, ξ))[ lim
λ→0

1

λ
(dνpλ − dνp0)](ξ)

)
pλ(g) +

+
∑

g∈B

(∫

∂G

ϕp0(g, ξ))dνp0(ξ)

)
[ lim
λ→0

1

λ
(pλ(g)− p0(g)].
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The third line converges by definition. To prove that the second line converges, P.
Mathieu observes that the Green metric − lnFp0(g, h) on G satisfies (BA) and a form
of hyperbolicity that allows him to extend Proposition 4.1. More precisely, he shows
directly the differentiability of λ 7→

∫
f(ξ)dνpλ(ξ), for f ∈ Kα, and gives a formula for

the derivative. For the first line, P. Mathieu shows a general result for any non-amenable
group G and pλ with finite support. In our case, his result writes:

Proposition 4.10 ([Ma2]). Let λ 7→ pλ, λ ∈ [−ε,+ε] be a smooth curve in P(B).
Then,

lim
λ→0

1

λ

∑

g∈B

(∫
(ϕpλ(g, ξ)− ϕp0(g, ξ))dνpλ(ξ)

)
pλ(g) = 0.

It is likely that the function p 7→ hp has more regularity on P(B), but this is an open
problem.

Another natural extension is towards more general families of probability measures
on G. Proposition 2.1 is valid for p varying in finite dimensional affine subsets of
{p;∑g∈G e

γ|g|p(g) < +∞} for some γ > 0 (see [L1]). The other properties rest on

Harnack inequality at infinity (see [An]), which has been proven only for probability
measures with finite support on hyperbolic groups. Finally, let P1(G) be the set of
probabilities on G satisfying

∑
g∈G |g|p(g) < +∞ endowed with the topology of conver-

gence on the functions which grow slower than C|g| at infinity. The first observation
on this topic of regularity of the entropy is the fact that, if G is hyperbolic, p 7→ hp is
continuous on P1(G) ([EKc]).
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EXACTNESS, K-PROPERTY

AND INFINITE MIXING

MARCO LENCI

Abstract. We explore the consequences of exactness or K-mixing on the notions
of mixing (a.k.a. infinite-volume mixing) recently devised by the author for infinite-
measure-preserving dynamical systems.

Mathematics Subject Classification (2010): 37A40, 37A25.

1. Introduction

Currently, in infinite ergodic theory, there is a renewed interest in the issues related to
mixing for infinite-measure-preserving (or just nonsingular) dynamical systems, in short
infinite mixing (see [Z, DS, L1, I3, DR, MT, LP, A2, Ko, T1], and some applications in
[I1, I2, AMPS, L2, T2]).

The present author recently introduced some new notions of infinite mixing, based on
the concept of global observable and infinite-volume average [L1]. In essence, a global
observable for an infinite, σ-finite, measure space (X,A , µ) is function in L∞(X,A , µ)
that “looks qualitatively the same” all overX . This is in contrast with a local observable,
whose support is essentially localized, so that the function is integrable.

Postponing the mathematical details to Section 2, the purpose of the global observ-
ables is basically twofold. First, the past attempts to a general definition of infinite
mixing involved mainly local observables (equivalently, finite-measure sets), and the
problems with such definitions seemed to depend on that. Second, seeking inspiration
in statistical mechanics (which is the discipline of mathematical physics that has success-
fully dealt with the question of predicting measurements in very large, formally infinite,
systems), one realizes that many quantities of interest are extensive observables, that
is, objects that behave qualitatively in the same way in different regions of the phase
space. (More detailed discussions about these points are found in in [L1, L2].)

Extensive observables are “measured” by taking averages over large portions of the
phase space. We import that concept too, by defining the infinite-volume average of a
global observable F : X −→ R as

(1.1) µ(F ) := lim
VրX

1

µ(V )

∫

V

F dµ.

Here V is taken from a family of ever larger but finite-measure sets that somehow covers,
or exhausts the whole of X . The precise meaning of the limit above will be given in
Section 2.
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Now, let us consider a measure-preserving dynamical system on (X,A , µ). For the
sake of simplicity, let us restrict to the discrete-time case: this means that we have a
measurable map T : X −→ X that preserves µ. Choosing two suitable classes of global
and local observables, respectively denoted G and L, we give five definitions of infinite
mixing. These fall in two categories, exemplified as follows.

Using the customary (abuse of) notation µ(g) :=
∫
X
g dµ. we say that the system

exhibits:

• global-local mixing if, ∀F ∈ G, ∀g ∈ L, lim
n→∞

µ((F ◦ T n)g) = µ(F )µ(g);

• global-global mixing if, ∀F,G ∈ G, lim
n→∞

µ((F ◦ T n)G) = µ(F )µ(G).

Disregarding for the moment the mathematical issues connected to the above notions,
we focus on the interpretation of global-local mixing. Restricting, without loss of gen-
erality, to local observables g ≥ 0 with µ(g) = 1, and defining dµg := g dµ, the above
limit reads:

(1.2) lim
n→∞

T n
∗ µg(F ) = µ(F ),

where the measure T n
∗ µg is the push-forward of µg via the dynamics T n (in other words,

T n
∗ µg := µg ◦ T−n = µPng, where P is the Perron-Frobenius operator relative to µ, cf.

(3.2)-(3.3)). If (1.2) occurs for all g ∈ L and F ∈ G, the above is a sort of “convergence to
equilibrium” for all initial states given by µ-absolutely continuous probability measures.
In this sense the functional µ (not a measure!) plays the role of the equilibrium state.

Exactness and K-mixing (a.k.a. the K-property) are notions that exist and have the
same definition both in finite and infinite ergodic theory. In finite ergodic theory they
are known to be very strong properties, as they imply mixing of all orders, cf. definition
(3.1). The purpose of this note is to explore their implications in terms of the notions
of infinite mixing introduced in [L1].

As we will see below (Theorem 3.5(a)), the most notable of such implications is a
weak form of global-local mixing, whereby any pair of measures µg, µh, as introduced
earlier, are asymptotically coalescing, in the sense that

(1.3) lim
n→∞

(T n
∗ µg(F )− T n

∗ µh(F )) = 0,

for all F ∈ G.
In the next section we review the five definitions of global-local and global-global

mixing, together with the already known (though with a different name) definition of
local-local mixing. In Section 3 we prepare, state and prove Theorem 3.5, which lists
some consequences of exactness and the K-property. Finally, in Section 4, we introduce
the space of the equilibrium observables, which is a purely ergodic-theoretical construct
in which some information about global-local mixing can be recast.

2. Definitions of infinite mixing

Let (X,A , µ, T ) be a measure-preserving dynamical system, where (X,A ) is a mea-
sure space, µ an infinite, σ-finite, measure on it, and T a µ-endomorphism, that is, a
measurable surjective map that preserves µ (i.e., µ(T−1A) = µ(A), ∀A ∈ A ).

Denoting by Af := {A ∈ A | µ(A) <∞} the class of finite-measure sets, we assume
that the following additional structure is given for the dynamical system:

• A class of sets V ⊂ Af , called the exhaustive family. The elements of V will
be generally indicated with the letter V .
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• A subspace G ⊂ L∞(X,A , µ;R), whose elements are called the global ob-
servables. These functions are indicated with uppercase Roman letters (F,G,
etc.).

• A subspace L ⊂ L1(X,A , µ;R) whose elements are called the local observ-
ables. These functions will be indicated with lowercase Roman letters (f, g,
etc.).

A discussion on the role and the choice of V ,G,L is given in [L1], together with the
proofs of most assertions made in this section.

We assume that V contains at least one sequence (Vj)j∈N, ordered by inclusion, such
that

⋃
j Vj = X . (In actuality, this requirement is never used in the proofs, but, since

the elements of V are regarded as large and “representative” regions of the phase space
X , we keep it to give “physical” meaning to the concept of infinite-volume average, see
below.) We also assume that 1 ∈ G (with the obvious notation 1(x) := 1, ∀x ∈ X).

Definition 2.1. Let V be the aforementioned exhaustive family. For φ : V −→ R, we
write

lim
VրX

φ(V ) = ℓ

when

lim
M→∞

sup
V ∈V

µ(V )≥M

|φ(V )− ℓ| = 0.

We call this the ‘µ-uniform infinite-volume limit w.r.t. the family V ’, or, for short, the
infinite-volume limit.

We assume that, ∀n ∈ N,

(2.1) µ(T−nV△V ) = o(µ(V )), as V ր X.

This is reasonable because, if a large V ∈ V is to be considered a finite-measure substi-
tute for X , it makes sense to require that a finite-time application of the dynamics does
not change it much. Finally, the most crucial assumption is that,

(2.2) ∀F ∈ G, ∃µ(F ) := lim
V րX

1

µ(V )

∫

V

F dµ.

µ(F ) is called the infinite-volume average of F w.r.t. µ. It easy to check that µ is
T -invariant, i.e., for all F ∈ G and n ∈ N, µ(F ◦ T n) exists and equals µ(F ) [L1].

With this machinery, we can give a number of definitions of infinite mixing for the
dynamical system (X,A , µ, T ) endowed with the structure of observables (V ,G,L).

The following three definitions will be called global-local mixing, as they involve
the coupling of a global and a local observable. We say that the system is mixing of
type

(GLM1): if, ∀F ∈ G, ∀g ∈ L with µ(g) = 0, lim
n→∞

µ((F ◦ T n)g) = 0;

(GLM2): if, ∀F ∈ G, ∀g ∈ L, lim
n→∞

µ((F ◦ T n)g) = µ(F )µ(g);

(GLM3): if, ∀F ∈ G, lim
n→∞

sup
g∈L\0

‖g‖−1
1 |µ((F ◦ T n)g)− µ(F )µ(g)| = 0,

where ‖ · ‖1 is the norm of L1(X,A , µ;R).
Clearly, (GLM1–3) are listed in increasing order of strength, with (GLM2) being

possibly the most natural definition one can give for the time-decorrelation between a
global and a local observable (recall that µ(F ◦ T n) = µ(F )). (GLM3) is a uniform
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version of it, with important implications (cf. Proposition 2.4), while (GLM1) is a much
weaker version, as will become apparent in the remainder.

Although this note is mostly concerned with global-local mixing, one can also consider
the decorrelation of two global observables, namely global-global mixing. For this we
need the following terminology:

Definition 2.2. For V as defined above and φ : V × N −→ R, we write

lim
V րX
n→∞

φ(V, n) = ℓ

to mean

lim
M→∞

sup
V ∈V

µ(V )≥M
n≥M

|φ(V, n)− ℓ| = 0.

As n will take the role of time, we refer to this limit as the ‘joint infinite-volume and
time limit’.

For F ∈ L∞ and V ∈ V , let us also denote µV (F ) := µ(V )−1
∫
V Fdµ. We say that

the system is mixing of type

(GGM1): if, ∀F,G ∈ G, lim
n→∞

µ((F ◦ T n)G) = µ(F )µ(G);

(GGM2): if, ∀F,G ∈ G, lim
V րX
n→∞

µV ((F ◦ T n)G) = µ(F )µ(G).

Though (GGM1) seems the cleaner of the two versions, it has the serious draw-
back that, for n ∈ N, µ((F ◦ T n)G) might not even exist, for there is no provi-
sion in our hypotheses to guarantee the ring property for condition (2.2) (namely,
∃µ(F ), µ(G) ⇒ ∃µ(FG)). Nor do we want one, if we are to keep our framework general
enough. (GGM2) solves this question of wellposedness, and is in some sense stronger
than (GGM1):

Proposition 2.3. If F,G ∈ G are such that µ((F ◦ T n)G) exists for all n large enough
(depending on F,G), then

(2.3) lim
V րX
n→∞

µV ((F ◦ T n)G) = ℓ =⇒ lim
n→∞

µ((F ◦ T n)G) = ℓ.

In particular, if the above hypothesis holds ∀F,G ∈ G, then (GGM2) implies (GGM1).

Proof. From Definition 2.2, the left limit of (2.3) implies that, ∀ε > 0, ∃M =M(ε) such
that

(2.4) ℓ− ε ≤ µV ((F ◦ T n)G) ≤ ℓ+ ε

for all V ∈ V with µ(V ) ≥M and all n ≥M . By hypothesis, if M is large enough, the
infinite-volume limit of the above middle term exists ∀n ≥M and equals µ((F ◦T n)G).
Upon taking such limit, what is left of (2.4) and its conditions of validity is the very
definition of the right limit in (2.3). �

With reasonable hypotheses on the structure of G and L, the strongest version of
global-local mixing implies the “strongest” version of global-global mixing. The fol-
lowing proposition is a simplified version of a similar result of [L1] (for an intuitive
understanding of the hypotheses, see Proposition 3.2 and Remark 3.3 there).

Proposition 2.4. Suppose there exist a family (ψj)j∈N of real-valued functions of X
(this will play the role of a partition of unity) and a family (JV )V ∈V of finite subsets of
N such that:
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(i) ∀j ∈ N, ψj ≥ 0;
(ii) ∀G ∈ G, ∀j ∈ N, Gψj ∈ L;

(iii) in the limit V ր X,

∥∥∥∥∥∥
∑

j∈JV
ψj − 1V

∥∥∥∥∥∥
1

= o(µ(V )),

where 1V is the indicator function of V . Then (GLM3) implies (GGM2).

Proof of Proposition 2.4. Since the limit in (GGM2) is trivial when G is
a constant, and since the global observables are bounded functions, it is no loss of
generality to prove (GGM2) for the case G ≥ 0 only.

The proof follows upon verification that the functions gj := Gψj verify all the hy-
potheses of Proposition 3.2 of [L1] (cf. also Remark 3.3). Notice that the identity
G =

∑
j gj (which makes sense insofar as (ψj)j is a partition of unity) is illustrative and

not really used in the proof there. �
Since the five definitions presented above deal with the decorrelation of, first, a global

and a local observable, and then two global observables, symmetry considerations would
induce one to give a definition of local-local mixing as well. A reasonable possibility
would be to call a dynamical system mixing of type

(LLM): if, ∀f ∈ L ∩ G, g ∈ L, lim
n→∞

µ((f ◦ T n)g) = 0.

In fact, this definition already exists, as it is easy to check that, in the most general case
(that is, G = L∞, L = L1), a dynamical system is (LLM) if and only if, ∀A,B ∈ Af ,
limn→∞ µ(T−nA ∩ B) = 0, i.e., if and only if the system is of zero type [HK] (cf. also
[DS, Ko]). Incidentally, this is the same definition that Krengel and Sucheston call
‘mixing’, for an infinite-measure-preserving dynamical system [KS].

3. Exactness and K-property

Two of the few definitions that are copied verbatim from finite to infinite ergodic
theory are those of exactness and K-mixing. Though they are well known, we repeat
them here for completeness. We state the versions for measure-preserving maps, but they
can be given for nonsingular maps as well (T is nonsingular if µ(A) = 0 ⇒ µ(T−1A) = 0).

Let us denote by N the null σ-algebra, i.e., the σ-algebra that only contains the
zero-measure sets and their complements. Also, given two σ-algebras A ,B, we write
A = B mod µ if ∀A ∈ A , ∃B ∈ B with µ(A△B) = 0, and viceversa; equivalently, the
µ-completions of A and B are the same.

Definition 3.1. The measure-preserving dynamical system (X,A , µ, T ) is called exact
if

∞⋂

n=0

T−nA = N mod µ.

Since exactness implies that T−1A 6= A mod µ, a nontrivial exact T cannot be an
automorphism of the measure space (X,A , µ)—although in some sense an invertible
map can still be exact, cf. Remark 3.3 below.

The counterpart of exactness for automorphisms is the following:

Definition 3.2. The invertible measure-preserving dynamical system (X,A , µ, T ) pos-
sesses the K-property (from A. N. Kolmogorov) if ∃B ⊂ A such that:

(i) B ⊂ TB;
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(ii)

∞∨

n=0

T nB = A mod µ;

(iii)

∞⋂

n=0

T−nB = N mod µ.

In this case, one also says that the dynamical system is K-mixing, or that T is a K-
automorphism of (X,A , µ).

Remark 3.3. Comparing Definition 3.1 with condition (iii) of Definition 3.2, one might
be tempted to say that, if (X,A , µ, T ) has the K-property, then (X,B, µ, T ) is exact.
This is not technically correct because, in all nontrivial cases, the inclusion in Definition
3.2(i) is strict, thus T is not a self-map of the measure space (X,B, µ). That said,
if (X,A , µ) is a Lebesgue space, (X,B, µ, T ) is still morally exact, in the following
sense. Assume w.l.g. that B is complete, let XB be the measurable partition of X that
generates B. (In a Lebesgue space there is a one-to-one correspondence, modulo null
sets, between complete sub-σ-algebras and measurable partitions [R].) B can be lifted
to a σ-algebra for XB, which we keep calling B. Also, defining TB([x]) := [T (x)] (where
[x] denotes the element of XB that contains x), we verify that TB is well defined as a
self-map of (XB,B, µ) (in fact, from Definition 3.2(i), XTB is a sub-partition of XB)
and T−1

B A = T−1A, ∀A ∈ B (with the understandable abuse of notation whereby A
denotes both a subset of XB and a subset of X). This and Definition 3.2(iii) show
that TB is an exact endomorphism of (XB,B, µ). Of course, in all of the above, B can
be replaced by Bm := TmB, for all m ∈ Z (because Bm can be used in lieu of B in
Definition 3.2).

In finite ergodic theory, both exactness and the K-property imply mixing of all orders,
namely, ∀k ∈ Z+ and A1, A2, . . . , Ak ∈ A ,

(3.1) µ(A1 ∩ T−n2A2 ∩ · · ·T−nkAk) −→ µ(A1)µ(A2) · · ·µ(Ak),

whenever n2 → ∞ and ni+1 − n1 → ∞, ∀i = 2, . . . k− 1 [Q]. (In (3.1) we have assumed
µ(X) = 1.)

One would expect such strong properties to have consequences also in infinite ergodic
theory. This is the case, as we describe momentarily. But first we need some elementary
formalism from the functional analysis of dynamical systems. For F ∈ L∞ and g ∈ L1,
let us denote

(3.2) 〈F, g〉 := µ(Fg).

Define the Koopman operator U : L∞ −→ L∞ as UF := F ◦T . Its adjoint for the above
coupling is called the Perron-Frobenius operator, denoted P : L1 −→ L1. Its defining
identity is

(3.3) 〈UF, g〉 = 〈F, Pg〉.
Let us explain in detail how P is defined through (3.3). Take g ∈ L1 and assume for
the moment g ≥ 0. Take also F = 1A, with A ∈ A . We see that 〈UF, g〉 =

∫
T−1A g dµ.

Since T preserves µ and is thus nonsingular w.r.t. it, and since the measure space is σ-
finite, the Radon-Nykodim Theorem yields a locally-L1, positive, function Pg : X −→ R
such that

∫
T−1A g dµ =

∫
A(Pg)dµ = 〈F, Pg〉. Using F = 1X = 1, we see that Pg ∈ L1

with ‖Pg‖1 = ‖g‖1. For a general g ∈ L1, we write g = g+ − g−, where g+ and g− are,
respectively, the positive and negative parts of g. Then Pg := Pg+ − Pg− is also in L1
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and

(3.4) ‖Pg‖1 ≤ ‖g‖1.
Therefore, through approximations of F via simple functions (on finite-measure sets and
in the L∞-norm), one can extend (3.3) to all F ∈ L∞.

In the process, we have learned that P is a positive operator (g ≥ 0 ⇒ Pg ≥ 0)
and ‖P‖ = 1, whereas, obviously, U is a positive isometry. Moreover, it is easy to see
that Pg = g, with g ≥ 0, if and only if g is an invariant density, i.e., if µg defined by
dµg/dµ = g is an invariant measure. (In fact, had we defined (3.2) for F ∈ L1 and
g ∈ L∞, (3.3) would have defined a positive operator P : L∞ −→ L∞, with ‖P‖ = 1,
and such that P1 = 1.)

Most of the remainder of this note will be based on an important theorem by Lin [Li]
(see also [A1] for a nice short proof).

Theorem 3.4. The nonsingular dynamical system (X,A , µ, T ) is exact if and only if,
∀g ∈ L1 with µ(g) = 0, lim

n→∞
‖Png‖1 = 0.

In the rest of the paper we assume to be in one of the following two cases:

(H1) (X,A , µ, T ) is exact. V is any exhaustive family that verifies (2.1). G = L∞.
L = L1. (Given the assumptions of Section 2, this corresponds to the most
general choice of V ,G,L.)

(H2) (X,A , µ, T ) is K-mixing (thus T is an automorphism). V is any exhaustive
family that verifies (2.1). G is the closure, in L∞, of

⋃
m>0 L

∞(Bm), where

Bm = TmB, as defined in Remark 3.3. Lastly, L = L1.

Theorem 3.5. Under either (H1) or (H2),

(a) (GLM1) holds true;
(b) (LLM) holds true;
(c) (GGM2) implies (GLM2);
(d) If, ∀F ∈ G, ∃gF ∈ L, with µ(gF ) 6= 0, such that

lim
n→∞

µ((F ◦ T n)gF ) = µ(F )µ(gF ),

then (GLM2) holds true.

As anticipated in the introduction, (GLM1) (which is the most important assertion
of the theorem) means that the evolutions of two absolutely continuous initial measures
become indistinguishable, as time goes to infinity. We may call this phenomenon asymp-
totic coalescence. This implies that they will return the same measurements of global
observables, but not that this measurements will converge (in which case we would have
a sort of convergence to equilibrium). In fact, for many interesting systems, it is not
hard to construct F ∈ L∞ such that 〈F, Png〉 does not converge for all g ∈ L1.

This is not surprising, for, even in finite ergodic theory, certain proofs of mixing, or
decay of correlation, are divided in two parts: asymptotic coalescence and the conver-
gence of one initial measure. The difference there is that the latter is usually easy.

The remainder of this section is devoted to the following:

Proof of Theorem 3.5. Let us start by proving assertion (a), namely (GLM1).
We use the formalism of functional analysis outlined earlier in the section.

If (H1) is the case, the proof is immediate: for F ∈ L∞ and g ∈ L1, with µ(g) = 0,

(3.5) |µ((F ◦ T n)g)| = |〈F, Png〉| ≤ ‖F‖∞ ‖Png‖1 → 0,
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as n→ ∞, by Theorem 3.4.
In the case (H2), let us observe that, by easy density arguments, all the definitions

(GLM1–3) hold true if they are verified w.r.t. G′ and L′ which are subspaces of G and
L, respectively, in the L∞- and L1-norms. We can take G′ :=

⋃
m>0 L

∞(Bm) (which

is dense in G by definition) and L′ :=
⋃

m>0L
1(Bm), which is dense in L = L1(A ) by

the K-property [A1]. Therefore, it suffices to show (GLM1) for a general m > 0 and
∀F ∈ L∞(Bm), ∀g ∈ L1(Bm) with µ(g) = 0.

Using the arguments and the notation of Remark 3.3, we denote by F̂ the function
induced by F on XBm (i.e., F̂ ([x]) := F (x)), and analogously for all the other Bm-

measurable functions. We observe that F ◦T n is Bm-measurable and F̂ ◦ T n = F̂ ◦T n
Bm

.
Thus

(3.6) µ((F ◦ T n)g) = µ((F̂ ◦ T n
Bm

)ĝ),

where the r.h.s. is regarded as an integral in XBm . Since (XBm ,Bm, µ, TBm) is exact,
and µ(ĝ) = µ(g) = 0, we use (3.6) in (3.5) to prove that the l.h.s. of (3.6) vanishes, as
n→ ∞.

The following is a corollary of (GLM1).

Lemma 3.6. Assume either (H1) or (H2), and fix F ∈ G. If, for some ℓ ∈ R and ε ≥ 0,
the limit

lim sup
n→∞

∣∣∣∣
µ((F ◦ T n)g)

µ(g)
− ℓ

∣∣∣∣ ≤ ε

holds for some g ∈ L (with µ(g) 6= 0), then it holds for all g ∈ L (with µ(g) 6= 0).

Proof of Lemma 3.6. Suppose the above limit holds for g0 ∈ L. Take any other
g ∈ L, with µ(g) 6= 0. We have:

∣∣∣∣
µ((F ◦ T n)g)

µ(g)
− ℓ

∣∣∣∣

≤
∣∣∣∣µ
(
(F ◦ T n)

(
g

µ(g)
− g0
µ(g0)

))∣∣∣∣+
∣∣∣∣
µ((F ◦ T n)g0)

µ(g0)
− ℓ

∣∣∣∣ .
(3.7)

By (GLM1), the first term of the above r.h.s. vanishes as n→ ∞, whence the assertion.
�

Going back to the proof of Theorem 3.5, we see that Lemma 3.6 immediately implies
assertion (d).

As for (b), again we prove it for both cases (H1) and (H2) at the same time. W.l.g.,
let us assume that A 6= N mod µ (otherwise L1 would be trivial). We claim that

(3.8) sup
A∈Af

µ(A) = ∞.

In fact, since A is not trivial, the above sup is positive. If it equalled M ∈ R+, it would
be easy to construct an invariant set B with 0 < µ(B) ≤M . But µ(X) = ∞, therefore
T would not be ergodic, contradicting both (H1) and (H2).

Now take f ∈ L1 ∩ G and ε > 0. By (3.8), ∃A ∈ Af with µ(A) ≥ ‖f‖1/ε. Set
gε = 1A/µ(A). We have that

(3.9)

∣∣∣∣
µ((f ◦ T n)gε)

µ(gε)

∣∣∣∣ = |µ((f ◦ T n)gε)| ≤ ‖f‖1 ‖gε‖∞ ≤ ε.
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By Lemma 3.6,

(3.10) lim sup
n→∞

∣∣∣∣
µ((f ◦ T n)g)

µ(g)

∣∣∣∣ ≤ ε

holds for all g ∈ L with µ(g) 6= 0. Since ε is arbitrary, we get that the above r.h.s.
is zero. The case µ(g) = 0 is trivial because the same assertion comes directly from
(GLM1). This proves (LLM), namely, assertion (b).

Finally for (c). Take a G ∈ G such that µ(G) > 0. Since µV (G) → µ(G), as V ր X ,
(GGM2) implies that there exist a large enough M and a V ∈ V , with µ(V ) ≥ M ,
such that

(3.11) |µV ((F ◦ T n)G)− µ(F )µ(G)| ≤ εµV (G)

for all n ≥ M . Setting g := G1V , we can divide (3.11) by µV (G) = µ(g) and take the
lim sup in n:

(3.12) lim sup
n→∞

∣∣∣∣
µ((F ◦ T n)g)

µ(g)
− µ(G)

µV (G)
µ(F )

∣∣∣∣ ≤ ε.

By Lemma 3.6, the above holds ∀g ∈ L, with µ(g) 6= 0. Since ε can be taken arbitrarily
close to 0 and µ(G)/µV (G) arbitrarily close to 1, we have that, for all F ∈ G and g ∈ L,
with µ(g) 6= 0,

(3.13) lim
n→∞

µ((F ◦ T n)g) = µ(F )µ(g).

The corresponding statement for µ(g) = 0 comes from (GLM1). �

4. The equilibrium observables

The “pure” ergodic theorist might raise an eyebrow at the constructions of Section
2, especially at the ideas of the exhaustive family (which demands that one singles out
some sets as more important than the others) and of the infinite-volume average (which
is not a measure, or even guaranteed to always exist).

Though these issues (and more) have been addressed in [L1], one might still want
to see if some of the concepts presented here can be viewed from the vantage point of
traditional infinite ergodic theory. For what follows I am indebted to R. Zweimüller.

As we discussed in the introduction, the definition (GLM2) makes sense as a kind
of convergence to equilibrium for a large class of initial distributions (see also the obser-
vation on (GLM1) after the statement of Theorem 3.5). Without worrying too much
about predetermining good test functions for this convergence (namely, the global ob-
servables), and the value of any such limit (namely, the infinite-volume average), one
might simply consider the space E = E(X,A , µ, T ) of all the good test functions, in this
sense:

(4.1) E :=
{
F ∈ L∞

∣∣∣ ∃ρ(F ) ∈ R s.t. lim
n→∞

µ((F ◦ T n)g) = ρ(F )µ(g), ∀g ∈ L1
}
.

(Occasionally, one might want to restrict the space of the initial distributions to some
subspace of L1.) Clearly, E is a vector space which contains at least the constant
functions.
ρ(F ) represents a sort of value at equilibrium of F and, in this context, it need not

have anything to do with µ(F ) (which might or might not exist), V , or the choice of
G and L. Thus, the elements of the vector space E may be called the equilibrium
observables and ρ : E −→ R the equilibrium functional.
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If we are in either case (H1) or (H2), Theorem 3.5(d) shows that, for a given F ∈ G,
one only need find one local observable that verifies the limit in (4.1). Also, by Theorem
3.5(b), any f ∈ G ∩ L1 belongs to E , with ρ(f) = 0. Therefore, in these cases, it makes

sense to introduce Ê := E/(G ∩ L1), and ρ is well defined there. When talking about Ê ,
we write F ∈ Ê to mean F ∈ E , and F = G to mean [F ] = [G] (where [·] denotes an
equivalence class in E/(G ∩ L1)).

Determining Ê for a given, say, exact dynamical system appears to be as complicated
as proving (GLM2) for a truly large class of global observables, though occasionally
some information can be obtained quickly. We conclude this note by giving some exam-
ples thereof.

Boole transformation. This is the transformation T : R −→ R defined by T (x) :=
x − 1/x. This map preserves the Lebesgue measure on R, as it is easy to verify, and is
exact [A1]. We can use the fact that T is odd to construct a nonconstant equilibrium
observable. Set F (x) := sign(x), and g := 1[−1,1]. Clearly, for all n ∈ N, F ◦ T n is odd

and µ((F ◦ T n)g) = 0, so F ∈ Ê , with F 6= constant, and ρ(F ) = 0.
Evidently, the same reasoning can be applied to any exact map with an odd symmetry.

Translation-invariant expanding maps of R. Take a C2 bijection Φ : [0, 1] −→ [k1, k2],
with k1, k2 ∈ Z, and Φ′ > 1, where Φ′ denotes the derivative of Φ. (Notice that these
conditions imply Φ(0) = k1, Φ(1) = k2, and k := k2 − k1 ≥ 2.) Define T : R −→ R via

(4.2) T |[j,j+1)(x) := Φ(x− j) + j,

for all j ∈ Z. By construction T (x + 1) = T (x) + 1, ∀x ∈ R, and so T is a k-to-1
translation-invariant map, in the sense that it commutes with the natural action of Z in
R.

Suppose that T preserves the Lebesgue measure, which we denote mR. (One can
easily construct a large class of maps of this kind.) It can be proved that any such
T is exact [L3]. Now, define I := [0, 1) and TI : I −→ I as TI(x) := T (x) mod 1.
Clearly, (I,BI , TI ,mI), where BI and mI are, respectively, the Borel σ-algebra and the
Lebesgue measure on I, is a probability-preserving dynamical system. It is easy to see
that it is exact, and thus mixing.

Now consider a Z-periodic, bounded, F : R −→ R. Evidently, ∀x ∈ I, ∀n ∈ N,
F ◦T n(x) = F ◦T n

I (x). Hence, by the mixing of the quotient dynamical system, for any
square-integrable g supported in I,

lim
n→∞

mR((F ◦ T n)g) = lim
n→∞

mI((F ◦ T n
I )g)

= mI(F )mI(g)

= mI(F )mR(g).

(4.3)

By the exactness of T , the above holds for all g ∈ L1(R). Hence F ∈ Ê , with ρ(F ) =
mI(F ) = mR(F ).

An analogous procedure (using Ij := [0, j) instead of I) can be employed to prove

that any (jZ)-periodic, bounded F belongs in Ê , with ρ(F ) = mR(F ). In [L3] we extend
this result to observables that are quasi-periodic w.r.t. any jZ, and more.

Random walks. A special case of the above situation occurs when Φ is linear. The result
is a piecewise linear Markov map that represents a random walk in Z, in the following
sense. Denote by ⌊x⌋ the maximum integer not exceeding x ∈ R. If an initial condition



EXACTNESS, K-PROPERTY AND INFINITE MIXING 169

x ∈ I is randomly chosen with law mI , then the stochastic process (⌊T n(x)⌋)n∈N is
precisely the random walk starting in 0 ∈ Z, with uniform transition probabilities for
jumps of k1, k1 + 1, . . . , k2 − 1 units [L2].

A reelaboration of a result of [L1] shows that Ê contains all L∞ functions such that
the limit

(4.4) ρ(F ) := lim
M→∞

∫ a+M

a−M

F (x) dx

exists independently of and uniformly in a ∈ R. In fact, it is proved in [L1, Thm. 4.6(b)]
(see also [L2, Thm. 9]) that, if g ∈ L1, F ∈ L∞(A0), where A0 is the σ-algebra generated
by the partition {[j, j + 1)}j, and the limit

(4.5) lim
j→∞

∫ q+j

q−j

F (x) dx =: mR(F )

(j ∈ Z) exists uniformly in q ∈ Z, then mR((F ◦ T n)g) → mR(F )mR(g), as n → ∞.
Obviously, comparing (4.4) with (4.5), ρ(F ) = mR(F ).

Now, for a general F , one can take g = 1[0,1) ∈ L1(A0). It is easy to check that Png
is A0-measurable too, thus

lim
n→∞

mR((F ◦ T n)g) = lim
n→∞

〈E(F |A0), P
ng〉

= mR(E(F |A0))mR(g)

= ρ(F )mR(g),

(4.6)

which proves our claim.
If the random walk has a drift, say a positive drift, then a.e. orbit will converge to

+∞. Therefore, any bounded function G that asymptotically shadows any of the above
observables—meaning limx→+∞(G(x)−F (x)) = 0, for some F verifying (4.4)—will also

belong to Ê , with ρ(G) = ρ(F ).
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Abstract. We present the actual state of the study of the minimal sets of Lefschetz

periods MPerL(f) for the Morse–Smale diffeomorphisms on some closed manifolds,
as the connected compact surfaces (orientable or not) without boundary, the n–

dimensional torus and some other manifolds. The results on MPerL(f) are valid for

C1 self–maps on the mentioned closed manifolds with finitely many periodic points
all of them hyperbolic such that all the eigenvalues of the induced maps on homology

are roots of unity. This class of maps includes the Morse–Smale diffeomorphisms.

1. Introduction

In the study of the discrete dynamical systems and, in particular in the study of the
orbits of self–maps defined on a given compact manifold, the periodic orbits play an
important role. These last forty years there was many results showing that some simple
assumptions force qualitative and quantitative properties (like the set of periods) of a
map. One of the first results in this direction was the famous paper Period three implies
chaos for the interval continuous self–maps, see [24].

One of the most used tool for studying the existence of fixed points and periodic
points, for continuous self maps on compact manifolds, and more generally topological
spaces which are retract of finite simplicial complexes, is the Lefschetz fixed point the-
orem and its improvements (cf. [1, 2, 7, 8, 9, 11, 18, 19, 25, 30]). The Lefschetz zeta
function ζf (t) simplifies the study of the periodic points of f . It is a generating function
for the Lefschetz numbers of all iterates of f . All these notions are defined in Section 3.

The Morse-Smale diffeormorphisms have simple dynamic behaviour, however they are
an important class of discrete dynamical systems. Our objective is to describe the peri-
odic structure of these systems, in particular their minimal sets of periods. The results
that we present here are valid for a class of maps that includes the Morse-Smale diffeo-
morphisms, i.e. C1 maps having finitely many periodic points all of them hyperbolic
and with the same action on the homology as the Morse–Smale diffeomorphisms.

Many papers have been published analyzing the relationships between the dynamics
of the Morse–Smale diffeomorphisms and the topology of the manifold where they are
defined, see for instance [3, 4, 5, 11, 12, 13, 14, 15, 31, 33, 35, 36, 37]. The Morse–Smale
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diffeomorphisms have a relatively simple orbit structure. In fact, their set of periodic
orbits is finite, and their structure is preserved under small C1 perturbations.

Let X be a topological space. Let f : X → X be a continuous map. A point x ∈M
is nonwandering of f if for any neighborhood U of x there exists some positive integer
m such that fm(U) ∩ U 6= ∅. The set of nonwandering points of f is denoted by Ω(f).

We say that x is a periodic point of f of period p if fp(x) = x and f j(x) 6= x for
all 0 ≤ j < p. The set {x, f(x), . . . , fp−1(x)} is called the periodic orbit of the periodic
point x. If X = M is a C1 manifold and f a C1 map, we say that x a periodic point of
period p, is hyperbolic if the eigenvalues of Dfp(x) have modulus different from 1.

If x is a hyperbolic periodic point of f of period p, the stable manifold of x is

W s(x) = {y ∈M : d(x, fpm(y))→ 0 as m→∞}
and the unstable manifold of x is

Wu(x) = {y ∈M : d(x, fpm(y))→ 0 as m→ −∞},
where d is the distance on M induced by the supremum norm.

We say that M is a closed manifold if it is a connected compact manifold without
boundary. A diffeomorphism f : M →M is Morse–Smale if

(i) Ω(f) is finite,
(ii) all periodic points are hyperbolic, and

(iii) for each x, y ∈ Ω(f), W s(x) and Wu(y) have transversal intersections.

The first condition implies that Ω(f) is the set of all periodic points of f .

Two diffeomorphisms f, g ∈ Diff(M) are C1 equivalent if and only if there exists a C1

homeomorphism h : M →M such that h ◦ f = g ◦h. A diffeomorphism f is structurally
stable provided that there exists a neighborhood U of f in Diff(M) such that each g ∈ U
is topologically equivalent to f . Since the class of Morse–Smale diffeomorphisms is
structurally stable inside the class of all diffeomorphisms (see [33, 34, 32]), to understand
the dynamics of this class is an interesting problem.

Let

Per(f) = {m ∈ N : f has a periodic orbit of period m},
i.e. Per(f) is the set of periods of f .

The Lefschetz zeta function ζf (t) for a C1 Morse–Smale diffeomorphism f on a closed
surface M is introduced in Section 3. Using this function we define the minimal set of
Lefschetz periods MPerL(f) for a such diffeomorphism f in Section 4. As we shall see
the study of this set is important because any other C1 Morse–Smale diffeomorphism g
on a manifold M in the same homology class than f satisfies

MPerL(f) ⊆ Per(g).

The set MPerL(f) is computable from the Lefschetz zeta function of f , and it consists
of odd positive integers, see Proposition 7. In Section 5 we mention the results related
to the MPerL(f) for maps on orientable closed surfaces, in Section 6 on non-orientable
closed surfaces, and in Section 7 on the n-dimensional torus.

The results are of two different types, some give an explicit description of the MPerL(f)
for all Morse-Smale diffeomorphisms on a given manifold, see Theorems 8, 13 and 15.
Other results describe what type of subsets of odd positive integers can be MPerL(f)
for some Morse-Smale diffeomorphisms f , see Theorems 9, 10, 11, 12 14, 16 and 17.
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2. Cyclotomic polynomials

In this section we describe some basic properties of the cyclotomic polynomials which
we shall use in our study of the Lefschetz zeta function.

Let n denote an integer. The n–th cyclotomic polynomial is given by

cn(t) =
1− tn∏

d|n
d<n

cd(t)
, (1)

for n > 1 and c1(t) = 1− t. An alternative way to express cn(t) is

cn(t) =
∏

k

(wk − t),

for n 6= 2, where wk = e2πik/n and k runs over the relative primes to n and smaller than
n, for c2(t) = −(w2 − t). For more details about these polynomials see [23].

Let ϕ(n) be the degree of cn(t). Then n =
∑

d|n
ϕ(d). So ϕ(n) is the Euler function,

which satisfies

ϕ(n) = n
∏

p|n
p prime

(
1− 1

p

)
.

Therefore if the prime decomposition of n is pα1
1 · · · pαkk , then

ϕ(n) =
k∏

j=1

p
αj−1
j (pj − 1).

From the formula (1), we have

cn(t) =
∏

d|n
(1− td)µ(n/d)

where µ is the Möbius function, i.e.

µ(m) =





1 if m = 1,
0 if k2|m for some k ∈ N,
(−1)r if m = p1 · · · pr has distinct primes factors.

Lemma 1 (Gauss). Irreducible polynomials whose roots are roots of unity are precisely
the collection of cyclotomic polynomials.

Here are some elementary properties of the cyclotomic polynomials (cf. [23]).

(p1) If p > 1 is prime then cp(t) = (1− tp)/(1− t).
(p2) If p = 2r with r odd then c2r(t) = cr(−t).
(p3) If p = 2α with α a positive integer, then cp(t) = 1 + t2

α−1

.

(p4) If p = rα with r > 2 prime and α a positive integer,, then cp(t) = cr(t
rα−1

) =

(1− trα)/(1− trα−1

).

(p5) If p = 2nr with r odd and n > 1, then cn(t) = c2r(t
2n−1

).
(p6) For all n we have that cn(0) = 1, and the leading term of cn(t) is 1 if n ≥ 2.
(p7) The degree of cn(t) is even for n > 2.
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Table 1. The first thirty cyclotomic polynomials.

c1(t) = 1− t c2(t) = 1 + t c3(t) =
1− t3
1− t

c4(t) = 1 + t2 c5(t) =
1− t5
1− t c6(t) =

1 + t3

1 + t

c7(t) =
1− t7
1− t c8(t) = 1 + t4 c9(t) =

1− t9
1− t3

c10(t) =
1 + t5

1 + t
c11(t) =

1− t11

1− t c12(t) =
1 + t6

1 + t2

c13(t) =
1− t13

1− t c14(t) =
1 + t7

1 + t
c15(t) =

(1− t15)(1− t)
(1− t3)(1− t5)

c16(t) = 1 + t8 c17(t) =
1− t17

1− t c18(t) =
1 + t9

1 + t3

c19(t) =
1− t19

1− t c20(t) =
1 + t10

1 + t2
c21(t) =

(1− t21)(1− t)
(1− t3)(1− t7)

c22(t) =
1 + t11

1 + t
c23(t) =

1− t23

1− t c24(t) =
1 + t12

1 + t4

c25(t) =
1− t25

1− t5 c26(t) =
1 + t13

1 + t
c27(t) =

1− t27

1− t9

c28(t) =
1 + t14

1 + t2
c29(t) =

1− t29

1− t c30(t) =
(1 + t15)(1 + t)

(1 + t3)(1 + t5)

3. Lefschetz Zeta Function

Let X be a topological space which is a retract of a finite simplicial complex [20]. The
compact manifolds, the CW complexes are spaces of this type. Let n be the topological
dimension of X. If f : X → X is a continuous map on X, it induces a homomorphism on
the k–th rational homology group of X for 0 ≤ k ≤ n, i.e. f∗k : Hk(X,Q)→ Hk(X,Q).
The Hk(X,Q) is a finite dimensional vector space over Q and it is torsion free, because
it is a vector space over Q. The map f∗k is linear given by a matrix with integer entries,
then the Lefschetz number of f defined as

L(f) =
n∑

k=0

(−1)ktrace(f∗k),

is always an integer number.

The Lefschetz Fixed Point Theorem states that if L(f) 6= 0 then f has a fixed point
(cf. [7]). If we consider the Lefschetz number of fm, then in general is not true that
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L(fm) 6= 0 implies that f has a periodic point of period m; it only implies the existence
of a periodic point with period a divisor of m.

The technique of using Lefschetz numbers to obtain information about the periods
of a map is also used in many other papers, see for instance the book of Jezierski and
Marzantowicz [22], the article of Gierzkiewicz and Wójcik [17] and the references quoted
in both.

The Lefschetz zeta function of f is defined as

ζf (t) = exp


∑

m≥1

L(fm)

m
tm


 .

This function keeps the information of the Lefschetz number for all the iterates of f , so
this function gives information about the set of periods of f . There is an alternative
way to compute it:

ζf (t) =
n∏

k=0

det(Id∗k − tf∗k)(−1)k+1

, (2)

where n = dimX, nk = dimHk(X,Q), Id := Id∗k is the identity map on Hk(X,Q),
and by convention det(Id∗k − tf∗k) = 1 if nk = 0 (cf. [11]).

A rational linear transformation is called quasi–unipotent if their eigenvalues are roots
of unity. We say that a continuous map f : X → X is quasi–unipotent if the maps f∗k
are quasi–unipotent for 0 ≤ k ≤ n.

Proposition 2 (Shub [35]). Let M be a compact manifold. If f : M →M is a Morse–
Smale diffeomorphism, then f is quasi–unipotent.

The following result shows that the class of C1 quasi-unipotent maps are more general
that the Morse-Smale diffeomorphisms.

Theorem 3 ([29]). Let M be a C1 closed manifold of dimension n and f : M →M be
a C1 map with finitely many periodic points all of then hyperbolic. Then the eigenvalues
of f∗k are zero or roots of unity for 0 ≤ k ≤ n.

When X is a surface, i.e. a 2-dimensional manifold, we can compute the Lefschetz
zeta function of a quasi-unipotent self-map on X. If X = Mg is an orientable surface of
genus g without boundary then H0(X,Q) = Q, H2(X,Q) = Q and

H1(X,Q) = Q⊕ · · · ⊕Q︸ ︷︷ ︸
2g

.

And if X = Ng a non-orientable surface without boundary of genus g, i.e., X is a
connected sum of g real projective planes, then H0(X,Q) = Q, H2(X,Q) ≈ 0 and

H1(X,Q) = Q⊕ · · · ⊕Q︸ ︷︷ ︸
g−1

.

If the rational linear transformation f∗k is quasi-unipotent. Then its characteristic
polynomial is in Z[x] and its factors over Z are irreducible polynomials whose roots are
roots of unity. So these factors are cyclotomic polynomials.

The following result is used to compute the Lefschetz zeta functions of f .

Proposition 4 ([26]). If f∗1 is quasi–unipotent, then

det(Id∗1 − tf∗1) = (−1)1+det(f∗1) det(f∗1 − tId∗1).
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Proposition 5. Let X be a closed surface and f : X → X be a continuous map such
that f∗1 is quasi-unipotent and p(t) its characteristic polynomial .

(1) If X = Ng is a non–orientable closed surface of genus g, then

ζf (t) =
p(t)

1− t , (3)

being p(t) a product of cyclotomic polynomials of degree g − 1.
(2) If X = Mg is an orientable closed surface of genus g, then

ζf (t) =





p(t)

(1− t)2
if f is orientation preserving,

p(t)

(1− t)(1 + t)
if f is orientation reversing

(4)

being p(t) a product of cyclotomic polynomials of degree 2g.

We say that a rational function ζf (t) is a possible zeta function, if ζf (t) satisfies
formula either (3), or (4) for a map f : X → X satisfying the hypothesis of Proposition
5.

Proposition 5 allows us to describe explicitly the possible Lefschetz zeta functions for
quasi-unipotent maps on Mg and Ng. By finding all possible products of cyclotomic
polynomials of total degree 2g or g− 1, in the orientable or non-orientable cases respec-
tively. In the following paragraphs, we present the possible Lefschetz zeta functions for
small g, see [26, 28] for details.

If X = M0 = S2, then ζf (t) = (1 − t)−2 when f is orientation preserving, and
ζf (t) = (1− t2)−1 when f is orientation reversing.

Let X = M1 = T2. If f preserves the orientation, then the possible characteristic
polynomials of f∗1 are:

c21(t), c22(t), c3(t), c4(t), c6(t).

So the possible zeta functions are:

1,
(1 + t)2

(1− t)2
,

1 + t2

(1− t)2
,

1− t3
(1− t)3

,
1 + t3

(1 + t)(1− t)2
.

If f reverses the orientation, then the only possible characteristic polynomial of f∗1 is
c1(t)c2(t). Then ζf (t) = 1 is the only possible zeta function.

Let X = M2. If f preserves the orientation, then the possible ζf (t) are:

1− t5
(1− t)3

,
1 + t5

(1 + t)(1− t)2
,

1 + t4

(1− t)2
,

1 + t6

(1 + t2)(1− t)2
,
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(1− t3)2

(1− t)4
,

(1− t3)(1 + t3)

(1− t)3(1 + t)
,

(1 + t2)(1− t3)

(1− t)3
,

(1 + t2)2

(1− t)2
,

(1 + t2)(1 + t3)

(1− t)2(1 + t)
,

(1 + t3)2

(1 + t)2(1− t)2
,

(1− t3)(1 + t)2

(1− t)3
,

(1 + t2)(1 + t)2

(1− t)2
,

(1 + t3)(1 + t)

(1− t)2
,

1− t3
1− t , 1 + t2,

1 + t3

1 + t
,

(1 + t)4

(1− t)2
, (1 + t)2, (1− t)2.

If f reverses the orientation, then the possible ζf (t) are:

1− t3
1− t , 1 + t2,

1 + t3

1 + t
, (1− t)2, (1 + t)2.

In Tables 2 and 3 are listed the possible Lefschetz zeta functions for quasi-unipotent
maps on M3.

Now we consider non–orientable surfaces. If X = N1, i.e. the real projective plane,
then the only possible zeta function is ζf (t) = (1−t)−1. When X = N2 the Klein bottle,
the possible zeta functions are ζf (t) = 1 or ζf (t) = (1 + t)(1− t)−1. When X = N3 the
possible Lefschetz zeta functions are

1− t, 1 + t,
(1 + t)2

1− t ,
1− t3

(1− t)2
,

1 + t3

(1− t)(1 + t)
,

1 + t2

1− t . (5)

In Table 4 and 5 the possible Lezfchetz zeta functions on N4 and N5 are listed,
respectively. For higher g, see [28].

The case of X = Dn, the closed disc with n-holes, is similar to Nn+1; since they have
the same homology groups, see [16].

The case of X = Tn is studied in [14] and [6]. The homology spaces of Tn with
rational coefficients are

Hk(Tn,Q) = Q⊕ · · · ⊕Q︸ ︷︷ ︸
nk

,

where nk =
(
n
k

)
. Since the homology spaces of Tn form an exterior algebra, then the

map f∗1 determines all the other f∗k, for 2 ≤ k ≤ n, in the following way (cf. [38]): Let
p1(t) be the characteristic polynomial of f∗1, then

p1(t) =

n∏

j=1

(t− λj),

where the λj are the eigenvalues of f∗1. Then the other pk(t) are expressed as:

p2(t) =
∏

i<j

(t− λiλj),

p3(t) =
∏

i<j<l

(t− λiλjλl),

...

pn(t) = t− (λ1λ2 · · ·λn).
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Table 2. Possible Lefschetz zeta functions for orientation preserving
quasi-unipotent maps on M3

1 − t7

(1 − t)3
1 − t9

(1 − t)2(1 − t3)

1 + t7

(1 − t)2(1 + t)

1 + t9

(1 + t3)(1 − t)2

(1 − t5)(1 − t3)

(1 − t)4
(1 − t5)(1 + t2)

(1 − t)3
(1 − t5)(1 + t3)

(1 − t)3(1 + t)

(1 + t5)(1 − t3)

(1 + t)(1 − t)3

(1 + t5)(1 + t2)

(1 + t)(1 − t)2
(1 + t5)(1 + t3)

(1 − t)2(1 + t)2
(1 + t4)(1 − t3)

(1 − t)3
(1 + t4)(1 + t2)

(1 − t)2

(1 + t4)(1 + t3)

(1 − t)2(1 + t)

(1 + t6)(1 − t3)

(1 + t2)(1 − t)3
1 + t6

(1 − t)2
(1 + t6)(1 + t3)

(1 + t2)(1 − t)2(1 + t)

(1 − t3)3

(1 − t)5
(1 − t3)2(1 + t2)

(1 − t)4
(1 − t3)2(1 + t3)

(1 − t)4(1 + t)

(1 − t3)(1 + t3)(1 + t2)

(1 − t)3(1 + t)

(1 − t3)(1 + t3)2

(1 − t)3(1 + t)2
(1 + t2)2(1 − t3)

(1 − t)3
(1 + t2)3

(1 − t)2
(1 + t2)2(1 + t3)

(1 − t)2(1 + t)

(1 + t2)(1 + t3)2

(1 − t)2(1 + t)2
(1 + t3)3

(1 + t)3(1 − t)2
(1 − t3)2(1 + t)2

(1 − t)4
(1 − t3)(1 + t)2(1 + t2)

(1 − t)3

(1 − t3)(1 + t)(1 + t3)

(1 − t)3
(1 + t2)2(1 + t)2

(1 − t)2
(1 + t2)(1 + t)(1 + t3)

(1 − t)2
(1 + t3)2

(1 − t)2

(1 − t3)2

(1 − t)2
(1 − t3)(1 + t2)

1 − t

(1 − t3)(1 + t3)

(1 − t)(1 + t)
(1 + t2)2

(1 + t2)(1 + t3)

1 + t

(1 + t3)2

(1 + t)2
(1 + t)4(1 − t3)

(1 − t)3
(1 + t)4(1 + t2)

(1 − t)2

(1 + t)3(1 + t3)

(1 − t)2
(1 − t3)(1 + t)2

1 − t
(1 + t2)(1 + t)2 (1 + t3)(1 + t)

(1 − t3)(1 − t) (1 + t2)(1 − t)2
(1 + t3)(1 − t)2

1 + t

1 − t5

1 − t

(1 − t5)(1 + t)2

(1 − t)3
1 + t5

1 + t

(1 + t5)(1 + t)

(1 − t)2
1 + t4

(1 + t4)(1 + t)2

(1 − t)2
1 + t6

1 + t2
(1 + t6)(1 + t)2

(1 + t2)(1 − t)2
(1 − t3)2(1 + t)2

(1 − t)4

(1 + t2)(1 + t)4

(1 − t)2
(1 + t)4

(1 + t)6

(1 − t)2
(1 − t)2(1 + t)2

(1 − t)4

Using this information, Proposition 4 and formula (2), we can compute explicitly some
of the possible possible Lefschetz zeta functions for quasi-unipotent maps on Tn (cf. [6]).
In [14] all possible ζf (t) for quasi-unipotent maps on T3 and T4 are listed.
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Table 3. Possible Lefschetz zeta functions for orientation reversing
quasi-unipotent maps on M3.

(1 − t3)2

(1 − t)2
(1 − t3)(1 + t2)

1 − t

(1 − t3)(1 + t3)

(1 − t)(1 + t)
(1 + t2)2

(1 + t2)(1 + t3)

1 + t

(1 + t3)2

(1 + t)2
(1 − t3)(1 + t)2

(1 − t)
(1 − t3)(1 − t)

(1 + t2)(1 + t)2 (1 + t2)(1 − t)2 (1 + t3)(1 + t)
(1 + t3)(1 − t)2

1 + t

(1 + t)4 (1 + t)2(1 − t)2 (1 − t)4

Table 4. Possible Lefschetz zeta functions for quasi-unipotent maps on N4.

(1− t)2, (1− t)(1 + t), (1 + t)2,
(1 + t)3

1− t ,
1− t3
1− t ,

1 + t3

1 + t
, 1 + t2,

(1 + t)(1− t3)

(1− t)2
,

(1 + t)(1 + t2)

1− t .
1 + t3

1− t

Table 5. Possible Lefschez zeta functions for quasi-unipotent maps on N5.

1− t5
(1− t)2

,
1 + t5

(1− t)(1 + t)
,

1 + t4

1− t ,
(1− t3)2

(1− t)3
,

(1− t3)(1 + t3)

(1 + t)(1− t)2
,

(1− t3)(1 + t2)

(1− t)2
,

(1 + t3)2

(1 + t)2(1− t) ,
(1 + t3)(1 + t2)

(1 + t)(1− t) ,

(1 + t2)2

1− t ,
1 + t6

(1− t)(1 + t2)

(1− t3)(1 + t)

1− t ,
(1− t3)(1 + t)2

(1− t)2
,

(1 + t3)(1− t)
1 + t

, 1 + t3,
(1 + t3)(1 + t)

1− t , 1− t3,

(1 + t2)(1− t), (1 + t2)(1 + t),
(1 + t2)(1 + t)2

1− t , (1− t)3,

(1 + t)(1− t)2, (1 + t)2(1− t), (1 + t)3,
(1 + t)4

1− t .

4. The minimal set of Lefschetz periods MPerL(f)

In this section we assume that X is a C1 compact manifold. and let f : X → X be a
C1 map. Let x be a hyperbolic periodic point of period p of f and Eux its unstable space,
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i.e. the subspace of the tangent space TxX generated by the eigenvectors of Dfp(x) of
modulus larger than 1. Let γ be the orbit of x, the index u of γ is the dimension of Eux .
We define the orientation type ∆ of γ as +1 if Dfp(x) : Eux → Eux preserves orientation
and −1 if reverses the orientation. The collection of the triples (p, u,∆) belonging to all
periodic orbits of f is called the periodic data of f . The same triple can appear more
than once if it corresponds to different periodic orbits.

Theorem 6 (Franks [10]). Let f be a C1 a map on a closed manifold having finitely
many periodic points all of them hyperbolic, and let Σ be the periodic data of f . Then
the Lefschetz zeta function ζf (t) of f satisfies

ζf (t) =
∏

(p,u,∆)∈Σ

(1−∆tp)(−1)u+1

. (6)

Clearly the Morse–Smale diffeomorphisms on orientable and non–orientable closed
manifolds satisfy the hypotheses of this theorem.

We remark, this theorem is also true when X is a C1 compact manifold with boundary
and f : X → X a C1 map such that it does not have periodic points on the boundary
of X, see [10].

Theorem 6 allows to define the minimal set of Lefschetz periods of a C1 map on a
compact manifold having finitely many periodic points all of them hyperbolic. Such a
map has a Lefschetz zeta function of the form (6). Note that in general the expression
of one of these Lefschetz zeta functions is not unique as product of elements of the form
(1± tp)±1. For instance the following possible Lefschetz zeta function can be written in
four different ways in the form given by (6):

ζf (t) =
(1− t3)(1 + t3)

(1− t)2(1 + t)
=

1− t6
(1− t)2(1 + t)

=
1− t6

(1− t)(1− t2)
=

(1− t3)(1 + t3)

(1− t)(1− t2)
.

According with Theorem 6, the first expression will provide the periods {1, 3} for f ,
the second the periods {1, 6}, the third the period {1, 2, 6}, and finally the fourth the
periods {1, 2, 3}. Then for this Lefschetz zeta function ζf (t) we will define its minimal
set of Lefschetz periods as

MPerL(f) = {1, 3} ∩ {1, 6} ∩ {1, 2, 6} ∩ {1, 2, 3} = {1}.
If ζf (t) 6= 1 then it can be written as

ζf (t) =

Nζ∏

i=1

(1 + ∆it
ri)mi , (7)

where ∆i = ±1, the ri’s are positive integers, mi’s are nonzero integers and Nζ is a
positive integer depending on f .

If ζf (t) 6= 1 the minimal set of Lefschetz periods of f is defined as

MPerL(f) :=
⋂
{r1, . . . , rNζ},

where the intersection is considered over all the possible expressions (7) of ζf (t). If
ζf (t) = 1, then we define MPerL(f) := ∅. Roughly speaking the minimal set of Lefschetz
periods of f is the intersection of all the sets of periods forced by the finitely many
different representations of ζf (t) as product and quotient of elements of the form (1 ±
tp)±1. Clearly

MPerL(f) ⊆ Per(f).
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If M is a closed C1 manifold we denote by F(M) the set of all C1 self-maps on M
having finitely many periodic points all of them hyperbolic, and such that the induced
maps on homology f∗k are quasi-unipotent. By Proposition 2 the Morse-Smale diffeo-
morphisms on M belong to F(M). It can be checked that there are elements in F(M),
which are not Morse-Smale diffeormorphisms.

The results of this article apply to maps f in F(M). Moreover the techniques used
in the proofs of the main theorems of the present paper, can be used when the map f
satisfies the hypothesis of Theorem 3, i.e. f has finitely many periodic points all of them
hyperbolic. Therefore it is possible to obtain similar results with this weaker hypothesis.

Proposition 7 ([21, 27]). There are no even numbers in MPerL(f).

Proof. If the number 2d is in MPerL(f) then (1 ± t2d)m is a factor of the Lefschetz
zeta function ζf (t), for some m 6= 0. So if the factor is (1 − t2d)m it can be written as
(1− td)m(1 + td)m. Then due to the fact that the intersection of the exponents is taken
over all possible expressions (7) of ζf (t), the number 2d is not in MPerL(f).

If the factor is (1 + t2d)m, then it can be written as

(1 + t2d)m =
(1 + t2d)m(1− t2d)m

(1− t2d)m =
(1− t4d)m

(1− td)m(1 + td)m
.

Therefore, again 2d /∈ MPerL(f). �

5. MPerL(f) for maps in F(Mg)

In this section we summarize the results related to the minimal set of Lefschetz periods
for maps on orientable closed surfaces.

Theorem 8 ([26]). Let f ∈ F(Mg).

(a) If g = 0 then MPerL(f) = {1} if f preserves orientation, and MPerL(f) = ∅ if
f reverses orientation.

(b) If g = 1 then MPerL(f) = ∅ if f reverses orientation, and

MPerL(f) =





∅ if ζf (t) = 1,

{1} if ζf (t) =
(1 + t)2

(1− t)2
, or ζf (t) =

1 + t2

(1− t)2
,

{1, 3} if ζf (t) =
1− t3

(1− t)3
, or

1 + t3

(1− t)(1− t2)
.

if f preserves orientation.
(c) If g = 2 and f is orientation reversing then

MPerL(f) =





∅ if ζf (t) = 1 + t2,
{1} if ζf (t) = (1− t)2, or ζf (t) = (1 + t)2,

{1, 3} if ζf (t) =
1− t3
(1− t) , or

1 + t3

(1 + t)
.
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(d) If g = 2 and f is orientation preserving then its MPerL(f) is one of the following
ones:

{1} if ζf (t) is
(1− t3)(1 + t3)

(1− t)3(1 + t)
,

(1 + t)4

(1− t)2
, (1 + t)2,

(1− t)2,
(1 + t2)(1 + t)2

(1− t)2
,

(1 + t2)2

(1− t)2
,

1 + t4

(1− t)2
or

1 + t6

(1 + t2)(1− t)2
;

{3} if ζf (t) is
(1 + t3)2

(1 + t)2(1− t)2
;

{1, 3} if ζf (t) is
(1− t3)2

(1− t)4
,

(1 + t3)(1 + t)

(1− t)2
,

1− t3
1− t ,

1 + t3

1 + t
,

(1− t3)(1 + t)2

(1− t)2
,

(1 + t2)(1− t3)

(1− t)3
or

(1 + t2)(1 + t3)

(1− t)2(1 + t)
;

{1, 5} if ζf (t) is
1− t5

(1− t)3
or

1 + t5

(1 + t)(1− t)2
;

∅ if ζf (t) is 1 + t2.

(e) If g = 3 and f is orientation reversing then MPerL(f) is ∅, {1}, or {1, 3}.
(f) If g = 3 and f is orientation preserving then MPerL(f) is ∅, {1}, {1, 3}, {1, 5},
{1, 7}, {3}, {3, 5}, {1, 3, 5} or {1, 3, 9}.

The proof of Theorem 8 follows from the calculation of all possible Lefschetz zeta
functions, as it was shown in Section 3, and after using the definition of the Lefschetz
periods.

From the properties of the cyclotomic polynomials we obtain Theorems 9, 10, 11 and
12.

Theorem 9 ([26]). The following statements hold.

(a) If 2g − 1 is an odd prime, then {1, 2g − 1} is a possible MPerL(f) for some
orientation preserving map f ∈ F(Mg).

(b) If g = pα−1(p − 1)/2 + 1 with p odd prime then pα and pα−1 are contained in
the MPerL(f) for some orientation preserving map f ∈ F(Mg). If p = 2 then
MPerL(f) = ∅.

(c) If g is an odd prime number, then MPerL(f) = ∅ for some orientation preserving
map f ∈ F(Mg).

We would like to know what kind of subsets of the positive odd integers can be
realized as MPerL(f) for some maps f ∈ F(Mg), for some g. The following result gives
a partial answer to this question.

Theorem 10 ([21]). Let p1, . . . , pk be distinct odd primes and αi,j integers, such that
αi,j > αi,j+1 for 1 ≤ i ≤ k, 1 ≤ j ≤ li. Let S be one of the following sets

(1) S = {p1, . . . , pk},
(2) S =

{
p
αi,1
i , . . . , p

αi,li
i

}
, for 1 ≤ i ≤ k,

(3) S =
{
p
α1,1

1 , . . . , p
α1,l1
1 , . . . , p

αk,1
k , . . . , p

αk,lk
k

}
,

(4) S = {1, p1, . . . , pk},
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(5) S =
{

1, p
αi,1
i , . . . , p

αi,li
i

}
, for 1 ≤ i ≤ k, or

(6) S =
{

1, p
α1,1

1 , . . . , p
α1,l1
1 , . . . , p

αk,1
k , . . . , p

αk,lk
k

}
.

Then there is a possible Lefschetz zeta function ζf (t), with f ∈ F(Mg) for some g, such
that MPerL(f) = S.

Theorems 11 and 12 give a complete characterization when the number 1 belongs
to the minimal set of Lefschetz periods for a map f ∈ F(Mg). This characterization
is given in terms of the arithmetic properties of the cyclotomic polynomials which are
factors of the characteristic polynomial of the induced map on the first homology space.

Theorem 11 ([21]). Let f ∈ F(Mg) an orientation reversing map. Let q(t) be the
characteristic polynomial of f∗1. Then q(t) can be written as

q(t) = (cn1
(t))γ1 · · · (cnk(t))γk(c2α1m1

(t))β1 · · · (c2αlml(t))βl(c1(t))2n+1(c2(t))2m+1,

where n1, . . . , nk,m1, . . . ,ml are positive odd integers, greater than 1, and αi ≥ 1, βj ≥
0, γi ≥ 0, n,m ≥ 0, such that

(
k∑

i=1

ϕ(ni)γi

)
+

(
l∑

i=1

ϕ(mi)2
αi−1βi

)
+ 2n+ 2m+ 2 = 2g,

with ϕ(m) the Euler function of m. Moreover 1 /∈ MPerL(f) if and only if

∑

{j :αj=1}
µ(mj)βj + 2m =

k∑

i=1

µ(ni)γi + 2n,

where µ(m) is the Möbius function of m

Theorem 12 ([21]). Let f ∈ F(Mg) an orientation reversing map. Let q(t) be the
characteristic polynomial of f∗1. Then q(t) can be written as Then

q(t) = (cn1(t))γ1 · · · (cnk(t))γk(c2α1m1(t))β1 · · · (c2αlml(t))βl(c1(t))2n(c2(t))2m,

where n1, . . . , nk,m1, . . . ,ml are positive odd integers greater than 1, and αi ≥ 1, βj ≥ 0,
γi ≥ 0, n,m ≥ 0, such that

(
k∑

i=1

ϕ(ni)γi

)
+

(
l∑

i=1

ϕ(mi)2
αi−1βi

)
+ 2n+ 2m = 2g,

with ϕ the Euler function. Furthermore 1 /∈ MPerL(f) if and only if

∑

{j :αj=1}
µ(mj)βj + 2m =

k∑

i=1

µ(ni)γi + 2(n− 1).

6. MPerL(f) for maps in F(Ng)

In this section we summarize the results related to the minimal set of Lefschetz periods
for maps on non-orientable closed surfaces.

Theorem 13 ([28]). Let f be a Morse–Smale diffeomorphism on Ng, or more generally
a map belonging to F(Ng).

(a) If g = 1 then MPerL(f) is {1}.
(b) If g = 2 then MPerL(f) is ∅ or {1}.
(c) If g = 3 then MPerL(f) is {1}, {3} or {1, 3}.
(d) If g = 4 then MPerL(f) is ∅, {1} or {1, 3}.
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(e) If g = 5 then MPerL(f) is {1}, {3}, {5}, {1, 3} or {1, 5}.
(f) If g = 6 then MPerL(f) is ∅, {1}, {3}, {1, 3} or {1, 5}.
(g) If g = 7 then MPerL(f) is {1}, {3}, {5}, {7}, {1, 3}, {1, 5} {1, 7}, {1, 3, 5} or
{1, 3, 9}.

(h) If g = 8 then MPerL(f) is ∅, {1}, {3}, {1, 3}, {1, 5}, {1, 7}, {3, 5}, {3, 9},
{1, 3, 5} or {1, 3, 9}.

(i) If g = 9 then MPerL(f) is {1}, {3}, {5}, {7},{9}, {1, 3}, {1, 5} {1, 7}, {1, 9},
{3, 9}, {1, 3, 5}, {1, 3, 7}, {1, 3, 9}, {3, 5, 15} or {1, 3, 5, 15}.

Theorem 14 ([28]). The following statement hold.

(a) If g is an odd prime, then the sets {1, g} and {g} are possible MPerL(f) for
some f ∈ F(Ng).

(b) If g = pα−1(p−1) + 1 with p an odd prime and α > 1, then the set {1, pα−1, pα}
is a possible MPerL(f) for some f ∈ F(Ng).

(c) If g is even, then the empty set is a possible MPerL(f) for some f ∈ F(Ng).
(d) If g is odd, then MPerL(f) 6= ∅ for all f ∈ F(Ng).
(e) For every positive integer g, {1} is a possible MPerL(f) for some f ∈ F(Ng).
(f) If g is odd and p is an odd prime such that 1 < p ≤ g, then {p} is a possible

MPerL(f) for some f ∈ F(Ng).
(g) Let p1, . . . , pk be different odd primes larger than 1, and let α1, . . . , αk be positive

integers.
(g.1) Then the set {p1, . . . , pk} is a possible MPerL(f) for some f ∈ F(Ng),

where g =

(
k∑

i+1

pi

)
− (k − 1) if k is odd, and g =

(
k∑

i+1

pi

)
− (k − 2) if k

is even.
(g.2) Then the set {pα1

1 , . . . , pαkk } is a possible MPerL(f) for some f ∈ F(Ng)
and for some convenient genus g.

(g.3) Let p be an odd prime number. Then the set {pα1 , . . . , pαk} is a possible
MPerL(f) for some f ∈ F(Ng) and for some convenient genus g.

(g.4) Let αi,j positive integers such that αi,j > αi,j+1 for 1 ≤ i ≤ k and 1 ≤
j ≤ li. Then the set {pα1,1

1 , . . . , p
α1,l1
1 , . . . , p

αk,1
k , . . . , p

αk,lk
k } is a possible

MPerL(f) for some f ∈ F(Ng) and for some convenient genus g.

Statement (d) of Theorem 14 shows an important difference in the periodic structure
between the C1 Morse–Smale diffeomorphisms on orientable and non–orientable compact
surfaces without boundary. Statement (c) of Theorem 9 states that for all orientable
compact surfaces without boundary there are C1 Morse–Smale diffeomorphisms having
their minimal set of Lefschetz periods empty, and statement (d) of Theorem 14 shows
that this is never the case for C1 Morse–Smale diffeomorphisms on the non–orientable
closed surfaces.

The results of statements (f) and (g) of Theorem 14 also for C1 Morse–Smale dif-
feomorphisms on orientable closed surfaces, and their proof are similar to the proof of
Theorem 10.

The description of the MPerL(f) for Morse-Smale diffeomorphisms on Dg (and maps
in F(Dg)), which does not have periodic points on the boundary is the same of the
MPerL(f) of Morse-Smale diffeomorphisms on Ng+1 (maps in F(Ng+1)), since the pos-
sible Lefschetz zeta functions are the same, see [16].
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Open question. Can any finite set of odd positive integers be the minimal set of Lef-
schetz periods for a C1 Morse–Smale diffeomorphism on some orientable/non–orientable
compact surface without boundary with a convenient genus?

We think that the answer to this open question is positive. In [21] this open ques-
tion was stated as a conjecture for the C1 Morse–Smale diffeomorphisms on orientable
compact surface without boundary.

7. MPerL(f) for maps in F(Tn)

In this section we summarize the results related to the minimal set of Lefschetz periods
for maps on the n-dimensional torus.

Theorem 15 ([14]). Let f ∈ F(Tn).

(a) If n = 3 and f is orientation preserving then MPerL(f) = ∅ .
(b) If n = 3 and f is orientation reversing then MPerL(f) = ∅, {1}, or {1, 3}.
(c) If n = 4 and f is orientation reversing then MPerL(f) = ∅ .
(d) If n = 4 and f is orientation preserving then MPerL(f) = ∅, {1},{1, 3} or
{1, 5}.

Theorem 16 ([14]). If n is even then MPerL(f) = ∅, for f ∈ F(Tn) and orientation
reversing. If n is odd then MPerL(f) = ∅, for f ∈ F(Tn) and orientation preserving.

Theorem 17 ([6]). Let f be an orientation preserving map in F(Tn), with n = p − 1
and p and odd prime, such that the characteristic polynomial of f∗1 is cp(t), Then
MPerL(f) = {1, p}.
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THE ENTROPY OF AN INVARIANT PROBABILITY FOR THE

SHIFT ACTING ON ONE-DIMENSIONAL SPIN LATTICES IS

NON-POSITIVE
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We consider a compact metric space M as the state space and we generalize several
results of the classical theory of Thermodynamic Formalism. We analyze the shift acting
on MN and consider a fixed probability ν on M as the a-priori probability. Then, we can
define the Transfer (Ruelle) operator and analyze its properties. We study potentials A
which can depend on the infinite set of coordinates in MN. We define entropy and by
its very nature it is always a nonpositive number. The concepts of entropy and transfer
operator are linked. There exist Gibbs states with arbitrary negative value of entropy.
Invariant probabilities with support in a fixed point will have entropy equal to minus
infinity. The infinite product of dx on (S1)N will have zero entropy.

1. Introduction

This is a survey paper on the one-dimensional spin lattice model. The proofs of the
results presented here appear in [19].

Let M be a metric space, d1 its metric and finally the metric in MN given by:
d(x, y) =

∑∞
n=1

1
2n d1(xn, yn), where x = (x1, x2, ...) and y = (y1, y2, ...). Note that

B := MN is compact by Tychonoff´s theorem.
We denote by Hα the set of α-Hölder functions A : B → R with the norm ‖A‖α =

‖A‖ + |A|α, where ‖A‖ = supx∈B |A(x)| and |A|α = supx 6=y
|A(x)−A(y)|
d(x,y)α . σ : B → B

denotes the shift map which is defined by σ(x1, x2, x3, ...) = (x2, x3, x4, ...).
We call the general one-dimensional spin lattice the space MN and we consider sta-

tionary (invariant) probabilities for the shift.
We point out that a Holder potential A defined on MZ is coboundary with a potential

in MN (same proof as in [26]). In this way the Statistical Mechanics of interactions on
MZ can be understood via the analysis of the similar problem in MN.

We consider a fixed probability ν on the Borel sigma algebra of M . We assume that
the support of ν is equal to the set M . Note that from our hypothesis if x0 is isolated
then ν(x0) > 0. We stress the crucial point: ν needs to be a probability measure, not
only a measure.

Let C be the space of continuous functions from B to R.
For a fixed potential A ∈ Hα we define a Transfer Operator (also called Ruelle

operator) LA : C → C by the rule

LA(ϕ)(x) =

∫

S1

eA(ax)ϕ(ax)dν(a) ,
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where x ∈ B and ax = (a, x1, x2, ....) denote a pre-image of x with a ∈ S1.

The so called one-dimensional XY model (see [33],[10]) is considered in several ap-
plications to real problems in Physics. It is a particular case when M = S1 and ν is
the Lebesgue probability on S1. The spin in each site of the lattice is described by
an angle from [0, 2π). In the Physics literature, as far as we know, the potential A
depends on two coordinates. A well known example in applications is the potential
A(x) = A(x0, x1) = cos(x1 − x0 − α) + γ cos(2x0). We consider here potentials which
can depend on the all string x = (x1, x2, ....) but which are in the Holder class. Rigorous
mathematical results in this topic are considered in [20] and [2].

There are several possible points of view for understanding Gibbs states in Statistical
Mechanics (see [31], [28] for interesting discussions). We prefer the transfer operator
method because we believe that the eigenfunctions and eigenprobabilities (which can be
derived from the theory) allow a more deep understanding of the problem. For example,
the information one can get from the main eigenfunction (defined in the whole lattice)
is worthwhile, mainly in the limit when temperature goes to zero.

Examples:

Now we give a brief description of some other examples that fit in our setting. The
last example will be explained in details in section 4.

• If the alphabet is given by M = {1, 2, ..., d}, and the a-priori measure is given by

ν =
1

d

d∑

i=1

δi, then we have the original full shift in a finite set of d symbols and

the transfer operator is the classical Ruelle operator associated to a potential
A− log(d) (see for example [26] and [17]). More precisely

LA(ϕ)(x) =

∫

M

eA(ax)ϕ(ax)dν(a) =
∑

a∈{1,2,...,d}
eA(ax)−log(d)ϕ(ax).

If we change the a-priori measure to ν =
d∑

i=1

pi.δi, where pi > 0, and
d∑

i=1

pi =

1, then

LA(ϕ)(x) =
∑

a∈{1,2,...,d}
eA(ax)ϕ(ax)pa =

∑

a∈{1,2,...,d}
eA(ax)+log(pa)ϕ(ax)

is the classical Ruelle operator with potential A+ log(P ), where P (x1, x2, ...) =
px1

.

• If M0 = {zi, i ∈ N} is a countable infinite subset of S1, where each point is
isolated, and there is only one accumulating point z∞ ∈ S1\M0, then M =
M0 ∪ {z∞} is a compact set. In this case M can be identified with N, where a
special point z∞ plays the role of infinity (that is, a one-point compactification).

We consider here the restricted distance we get from S1 in M . If
∑

i∈N
pi = 1

with pi ≥ 0 and ν =
∑

i∈N
piδzi then ν is supported on the whole M , but z∞ is

not an atom for ν. The Thermodynamic Formalism with state space N, or Z, is
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considered for example in [30],[31],[6],[25]. We will analyze in section 4 some of
these results on the present setting.

Our main purpose here is to describe a general theory for the Statistical Mechanics
of one-dimensional spin lattices. We point out that most of the papers on the subject
assume that the potential A depends just on two (or, a finite number of) coordinates
(as for instance is the case of [1],[3], [15]). We consider potentials which can depend on
the infinite set of coordinates in MN.

In section 3 we consider the entropy, pressure and Variational Principle and its rela-
tions with eigenfunctions and eigenprobabilities of the Ruelle operator. This setting, as
far as we know, was not considered before. In this case the entropy, by its very nature,
is always a nonpositive number. Invariant probabilities with support in a fixed point
will have entropy equal to minus infinity. The infinite product of dν on MN will have
zero entropy. We point out that, although at first glance, the fact that the entropy we
define here is negative may look strange, our definition is the natural extension of the
concept of Kolomogorov entropy. In the classical case, the entropy is positive because
the a-priori measure is not a probability: is the counting measure. We will explain later
carefully this point.

2. The Ruelle operator

Let an be an element of Mn having coordinates an = (an, an−1, . . . , a2, a1), we denote
by anx ∈ B the concatenation of an ∈Mn with x ∈ B, i.e., anx = (an, . . . , a1, x1, x2, . . .).
In the case of n = 1 we will write a := a1 ∈ S1, and ax = (a, x1, x2, . . .).

The n-th iterate of LA has the following expression LnA(ϕ)(x) =
∫
Mn e

SnA(anx)ϕ(anx)(dν(a))n,

where SnA(anx) =
∑n−1
k=0 A(σk(anx)).

Theorem 1. Let us fix A ∈ Hα, then there exists a strictly positive Hölder eigenfunction
ψA for LA : C → C associated to a strictly positive eigenvalue λA. This eigenvalue is
simple, which means the eigenfunction is unique (modulo multiplication by constant).

We say that a potential B is normalized if LB(1) = 1, which means it satisfies∫
S1 e

B(ax)da = 1 , ∀x ∈ B .
Let A ∈ Hα, ψA and λA given by theorem 1, it is easy to see that

(1)

∫

S1

eA(ax)ψA(ax)

λAψA(x)
dν(a) = 1 , ∀x ∈ B .

Therefore we define the normalized potential Ā associated to A, as

(2) Ā := A+ logψA − logψA ◦ σ − log λA,

where σ : B → B is the shift map. As ψA ∈ Hα we have that Ā ∈ Hα.
We say a probability measure µ is invariant, if for any Borel set B, we have that

µ(B) = µ(σ−1(B)). We denote by Mσ the set of invariant probability measures.
We note that B is a compact metric space and by the Riesz Representation Theorem,

a probability measure on the Borel sigma-algebra is identified with a positive linear
functional L : C → R that sends the constant function 1 to the real number 1. We also
note that µ ∈Mσ if and only if, for any ψ ∈ C we have

∫
B ψ dµ =

∫
B ψ ◦ σ dµ .

We define the dual operator L∗A on the space of Borel measures on B as the operator
that sends a measure µ to the measure L∗A(µ), defined by

∫
B ψ dL∗A(µ) =

∫
B LA(ψ) dµ ,

for any ψ ∈ C.
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Theorem 2. Let A be a Hölder continuous potential, not necessarily normalized, ψA
and λA the eigenfunction and eigenvalue given by the Theorem 1. We associate to A
the normalized potential Ā = A+ logψA − logψA ◦ σ − log λA. Then

(a) there exists an unique fixed point µA for L∗
Ā

, which is a σ-invariant probability
measure;

(b) the measure ρA = 1
ψA

µA satisfies L∗A(ρA) = λAρA. Therefore, ρA is an eigen-

measure for L∗A;
(c) for any Hölder continuous function w : B → R, we have that, in the uniform

convergence topology,
LnA(w)
(λA)n → ψA

∫
B w dρA and Ln

Ā
ω →

∫
B ωdµA , where LnA denotes

the n-th iterate of the operator LA : Hα → Hα.

We call µA the Gibbs probability (or, Gibbs state) for A. We will leave the term
equilibrium probability (or, equilibrium state) for the one which maximizes pressure.
As we will see, this invariant probability measure over B describes the statistics in
equilibrium for the interaction described by the potential A. The assumption that the
potential is Hölder implies that the decay of iteraction is fast.

Proposition 1. The only Holder continuous eigenfunction ψ of LA which is totally
positive is ψA.

Proposition 2. Suppose Ā is normalized, then the eigenvalue λĀ = 1 is maximal.
Moreover, the remainder of the spectrum of LĀ : Hα → Hα is contained in a disk
centered at zero with radius strictly smaller than one.

Proposition 3. If v, w ∈ L2(µA) are such that w is Hölder and
∫
w dµA = 0, then,

there exists C > 0 such that for all n
∫

(v ◦ σn)w dµA ≤ C (λ1
Ā

)n. In particular µA is
mixing and therefore ergodic.

3. Entropy and Variational Principle

In this section (which was taken from [19]) we will introduce a notion of entropy.
Initially, this will be done only for Gibbs probabilities, and then we will extend this
definition to invariant probabilities. After that we prove that the Gibbs probability
obtained in the general setting above satisfies a variational principle.

We point out that any reasonable concept of entropy must satisfy two principles:
the entropy of probabilities with support in periodic orbits should be minimal and the
entropy of the independent probability should be maximal. This will happen for our
definition.

Definition 1. We denote by G the set of Gibbs measures, which means the set of
µ ∈ Mσ, such that, L∗B(µ) = µ, for some normalized potential B ∈ Hα. We define the
entropy of µ ∈ G as h(µ) = −

∫
B B(x)dµ(x).

One can show that −
∫
B dµ is the infimum of

{
−
∫
Adµ+ log(λA) : A ∈ Hα

}
.

The above definition which appears in [19] is different from the one briefly mentioned
in section 3 in [2].

Proposition 4. If µ ∈ G, then we have h(µ) ≤ 0.

This follow from Jensen’s inequality.
It is easy to see that the Gibbs state (dν)N has zero entropy.
Now we state a lemma that is used to prove the main result of this section, namely,

the variational principle of Theorem 3. This lemma was shown to be true in the the
classical Bernoulli case in [22].
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Lemma 1. Let us fix a Hölder continuous potential A and a measure µ ∈ G with
associated normalized potential B. We call C+ the space of continuous positive functions
on B. Then, we have

h(µ) +

∫

B
A(x)dµ(x) = inf

u∈C+

{∫

B
log

(LAu(x)

u(x)

)
dµ(x)

}
.

Definition 2. Let µ be an invariant measure. We define the entropy of µ as

h(µ) = inf
A∈Hα

{
−
∫

B
Adµ+ log λA

}
,

where λA is the maximal eigenvalue of LA, given by theorem 1.

This value is non positive and can be −∞ as we will se later.

Definition 3. Given a Hölder potential A we call the pressure of A the value

P (A) = sup
µ∈Mσ

{
h(µ) +

∫

B
A(x)dµ(x)

}
.

A probability which attains such maximum value is called equilibrium state for A.

Theorem 3 (Variational Principle). Let A ∈ Hα be a Hölder continuous potential and
λA be the maximal eigenvalue of LA, then

log λA = P (A) = sup
µ∈Mσ

{
h(µ) +

∫

B
A(x)dµ(x)

}
.

Moreover the supremum is attained on the Gibbs measure, i.e. the measure µA that
satisfies L∗

Ā
(µA) = µA.

Therefore, the Gibbs state and the equilibrium state for A are given by the same
measure µA, which is the unique fixed point for the dual Ruelle operator associated to
the normalized potential Ā.

The analyticity of the variation of eigenvalue with respect to the potential can be
obtained from results considered in [32].

Theorem 4 (Pressure as Minimax). Given a Hölder potential A

P (A) = sup
µ∈Mσ

[
inf
u∈C+

{∫

B
log

(LAu(x)

u(x)

)
dµ(x)

}]
.

Remark: The entropy of a probability measure supported on periodic orbit can be

−∞. Indeed, supposeM = [0, 1], andAc : [0, 1]N → R given byAc(x) = log
(

c
1−e−c e

−cx1

)
.

We have that for each c > 0, the function Ac is a C1 normalized potential (there-
fore belongs to Hα), which depends only on the first coordinate of x. Note that
LAc(1) = 1. Let µ be the Dirac Measure on 0∞. We have h(µ) ≤ −

∫
Acdµ =

−Ac(0∞) = − log
(

c
1−e−c

)
→ −∞ when c → ∞. This shows that h(µ) = −∞. An

easy adaptation of the arguments can be done to prove that, in this setting, invariant
measures supported on periodic orbits have entropy −∞.

Relations with Kolmogorov Entropy:
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Let us consider the construction of the entropy by partitions method, in the case M is
finite. We begin by remembering that, by the Kolmogorov-Sinai Theorem, the classical
entropy of µ, which we will denote by H(µ), is given by

(3) H(µ) = lim
n→∞

− 1

n

∑

i1,...,in

µ([i1...in]) log (µ([i1...in])) .

Proposition 5. Let M = {1, ..., d} and ν =
d∑

i=1

piδi be the a-priori probability on M .

For any Gibbs measure µ:

(a)

H(µ) = hν(µ)−
d∑

i=1

log(pi).µ([i]),

(b)

hν(µ) = − lim
n→∞

1

n

∑

i1,...,in

µ([i1...in]) log

(
µ([i1...in])

pi1 ...pin

)

where
[i1...in] = {x ∈MN : x1 = i1, ..., xn = in}.

In particular, it follows from item (a) above that, when pi = 1
d , for all i, we have

hν(µ) = H(µ)− log(d) .

The above proposition can be interpreted in the following way: in the classical definition
of Kolmogorov entropy it is considered the a-priori measure ν =

∑∞
i=1 δi on M , which

is not a probability. The expression above shows that in a consistent way hν(µ) ≤ 0

(with ν =
∑d
i=1 pi δi) and H(µ) ≥ 0. There is no contradiction, it is just a different

point of view. We point out that in the case the state space is not countable, then, it is
definition hν(µ) which makes sense.

Markov Chains with values on S1:

Now we recall the concept of Markov measures and show that the entropy defined
above is an extension of the concept of entropy for Markov measures, as introduced in
[20].

Let K : M2 → R, θ : M → R, satisfying

(4)

∫

M

K(x1, x2)dν(x2) = 1, ∀x1 and

∫

M

θ(x1)K(x1, x2)dν(x1) = θ(x2) ,∀x2 .

We call K a transition kernel and θ the stationary measure for K. As in [20], we define
the absolutely continuous Markov measure associated to K and θ, as

(5) µ(A1...An ×MN) :=

∫

A1...An

θ(x1)K(x1, x2)...K(xn−1, xn) dν(xn)...dν(x1),

for any cylinder A1...An ×MN.
The next proposition show us the importance of a.c. Markov measures:

Proposition 6. a) Given a Hölder continuous potential A(x1, x2) (not necessarily
normalized) depending on two coordinates, there exists a Markov measure that
is Gibbs for A.
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b) The converse is also true: given an absolutely continuous Markov measure de-
fined by K and θ, there exists a certain Hölder continuous normalized potential
A(x1, x2), such that the Markov measure defined by θ and K is the Gibbs mea-
sure for A.

Therefore, any a.c. Markov measure is Gibbs for a potential depending on two vari-
ables, and conversely, any potential depending on two variables has a Gibbs measure
which is an a.c. Markov Measure.

In other words, if we restrict our analysis to potentials that depend just on the first
two coordinates, we have that the set of a.c. Markov Measures coincides with the set of
Gibbs measures.
Proof:

(a) Given a potential A(x1, x2), non-normalized, as in [20] define θA : M → R by

(6) θA(x1) :=
ψA(x1) ψ̄A(x1)

πA
,

and a transition KA : M2 → R by

(7) KA(x1, x2) :=
eA(x1,x2) ψ̄A(x2)

ψ̄A(x1)λA
,

where ψA and ψ̄A are the eigenfunctions associated to the maximal eigenvalue λA of the
operators

LAψ(x2) =

∫

M

eA(x1,x2) ψ(x1)dν(x1) and L̄Aψ(x1) =

∫

M

eA(x1,x2) ψ(x2)dν(x2)

and πA =
∫
M
ψA(x1)ψ̄A(x1)dν(x1).

Then, by the same arguments used to prove theorem 16 of [2], we obtain that the
Markov measure µA defined by (5) (considering KA and θA) is Gibbs for A, i.e. a fixed
point for the dual Ruelle operator L∗

Ā
, where Ā = A+ logψA(x1)− logψA(x2)− log λA.

(b) Let K and θ satisfying (4), and define A = logK, we have L̄A(1) = 1 which
implies λA = 1 and ψ̄A = 1. Let ψA be maximal eigenfunction for LA.

Using (7), we get KA(x1, x2) = eA(x1,x2) = K(x1, x2). Define θA = ψA
πA

. We have
that θA is an invariant density for K, therefore θA = θ. Then, also by theorem 16 page
of [2], we have that the Markov measure defined by K and θ is Gibbs for A.

Next proposition shows that the concept of entropy introduced in 2 is a generalization
of the concept of entropy defined in [20], which could only be applied to a.c. Markov
measures:

Proposition 7. Let µ be the Markov measure defined by a transition kernel K and a
stationary measure θ, given in (5). The definition of entropy given in [20]:

S(θK) = −
∫

M2

θ(x1)K(x1, x2) log(K(x1, x2))dν(x1)dν(x2) ≤ 0

coincides with the present definition 2.
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4. An application to the non-compact case

An interesting example of application of the above theory is the following: consider
M0 = {zi, i ∈ N} an increasing infinite sequence of points in [0, 1) and suppose that
z∞ := 1 = limi→∞ zi. We will also suppose z1 = 0. Therefore, each point of M0 is
isolated, and there is only one accumulating point z∞ = 1. We consider the induced
euclidean metric then M = M0 ∪ {1} is a compact set. The state space M0 can be
identified with N, and M has a special point z∞ = 1 playing the role of the infinity. Let
B0 = MN

0 and B = MN. Note that B0 is not compact.
Some results in Thermodynamic Formalism for the shift with countable symbols (see

[30] [6]) can be recovered from our previous results as we will see.
The main point here is that we can take advantage of the previous results on B = MN,

but in the end, the measures we get need to have support on B0 = MN
0 .

Lemma 2. Suppose that A : B0 → R is a Hölder continuous potential. Then it can be
extended as a Hölder continuous function A : B → R.

Now let us fix an a-priori measure ν :=
∑
i∈N piδzi on M (or M0), where pi > 0 and∑

i∈N pi = 1. In fact, we have that z∞ = 1 belongs to the support of µ, but is not an
atom of µ. All other points of M (i.e. the points of M0) are atoms for ν. On this way
for each Hölder continuous potential A : B0 → R we can consider the following Transfer
Operator on C(B0):

LA(w)(x) :=

∫

M

eA(ax)w(ax)dν(a) =
∑

i∈N
eA(zix)w(zix)pi.

Using last lemma and the results of previous sections one can show:

Proposition 8. Let A : B0 → R be a Hölder potential. Then
(a) there exists a positive number λA and a positive Hölder function ψA : B0 → R,

such that, LAψA = λAψA.
If we consider the normalized potential Ā = A+ logψA − logψA ◦ σ − log λA, then

(b) there exists an unique fixed point µA for L∗
Ā

, which is a σ-invariant probability
measure on B0.

(c) the measure

ρA =
1

ψA
µA

satisfies L∗A(ρA) = λAρA. Therefore, ρA is an eigen-measure for L∗A.
(d) for any Hölder function w : B0 → R, we have that, in the uniform convergence

topology,
LnA(w)

(λA)n
→ ψA

∫

B0

w dρA,

and

LnĀω →
∫

B0

ωdµA .

Now let us compare this setting with some results contained in [30]. The operator
LA can be written as

LA(w)(x) =
∑

i

eA(zix)w(zix)pi =
∑

i

eA(zix)+log(pi)w(zix),
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that is, the Classical Ruelle Operator with potentialB := A+log(P ), where P (y1, y2, y3, ...) =
P (y1) = pi, if, y1 = zi. We denote this operator by LB , or, LA+log(P ).

Clearly (A + log(P ))(zi, y2, y3, ...) → −∞, when i → +∞, because pi → 0, when,
i→ +∞. Furthermore, if we define

V arn(B) = sup{|B(x)−B(y)| : x1 = y1, ..., xn = yn},

then, there exists C > 0, such that, V arn(B) ≤ C 1
2nα , for any n ≥ 1. This means that

B is locally Hölder continuous (see [30]).
Define

Zn(B, a) :=
∑

σn(y) = y
y1 = a

eSnB(y).

Proposition 9. Fix a ∈M0, then, there exists a constant Ma and an integer Na, such
that, for any n > Na:

Zn(B, a)

(λA)n
∈ [M−1

a ,Ma]

In this way, we can say that B = A+log(P ) is positive recurrent (see [30] Definition
2). Following [30] Theorem 4 we get a Ruelle-Perron-Frobenius Theorem (as in Theorem
8 above). It follows from the above proposition that λA is the Gurevic pressure of B
(see [30] definition 1).

We would like to point out some differences on the topology considered in our set-
ting with the classical one used in the theory of Thermodynamic Formalism with state
space N. The set MN

0 can be identified with NN, but the metric space MN
0 is differ-

ent from the metric space NN with the discrete product topology. Here, we consider
a distance (induced in the subset M0 ∪ {z∞} ⊂ [0, 1]), such that, for any two points
x = (x1, x2, ...), y = (y1, y2, ...) ∈MN

0

d(x, y) =
∑

n∈N

1

2n
d[0,1](xn, yn).

On the other hand, the metric considered in [30] is of the form: for two points x, y ∈ NN

d̃(x, y) =
1

2n
, if x1 = y1, ..., xn−1 = yn−1, xn 6= yn.

Using that the diameter of [0, 1] is one, it follows that d(x, y) ≤ d̃(x, y). In particular,

any convergent sequence on the metric d̃ is a convergent sequence on the metric d, and
any continuous/Hölder function A for the metric d is a continuous/Hölder function for

the metric d̃. But the same is not true in the opposite direction. This is a subtle question.
Results in [30] and here are obtained under slight different hypothesis. Anyway, in
physical applications this is probably a not very important point.

Considering the dual space, it follows from the relation d(x, y) ≤ d̃(x, y) that any

open set for the metric d is an open set for the metric d̃. Then, the Borel sigma-algebra

generated by d is contained in the Borel sigma-algebra generated by d̃. on the order
hand, the cylinder sets [30] are closed sets for the metric d, therefore, they belong to the
sigma-algebra generated by d. In this way, the Borel sigma-algebra generated by d, or,

by d̃, is the same.
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HOMOCLINIC TANGENCIES FROM SPIRALLING PERIODIC

POINTS

C. A. MORALES

Abstract. In this short note we prove that every surface diffeomorphism with
infinitely many periodic points with nonreal eigenvalues can be approximated by

ones with homoclinic tangencies. This provides a converse of the result [3].

1. Introduction

A surface diffeomorphisms is a diffeomorphism of class C1 of a compact connected two-
dimensional Riemannian manifold. A periodic point of a surface diffeomorphism f is a
point p in the surface for which there is n ∈ N+ satisfying fn(p) = p. The minimal of such
n is the so-called period of p denoted by np. The eigenvalues of p will be those of the linear
isomorphism Dfnp(p). We will say that p is a saddle if it has eigenvalues of modulus less
and bigger than 1 simultaneously. The invariant manifold theory [1] asserts that every
saddle p comes equipped with a stable and an unstable manifold formed by those points
whose positive and negative orbits converge to that of p respectively. A homoclinic
tangency is a point where such manifolds have a nontransverse intersection. We will
work with the so-called C1 topology in the space of C1 diffeomorphisms measuring the
distance between diffeomorphisms and their corresponding derivatives.

It was recently proved that every surface diffeomorphism with homoclinic tangencies
can be approximated by diffeomorphisms exhibiting periodic points with purely imagi-
nary eigenvalues [3]. This together with the classical work by Newhouse [2] suggests that
every surface diffeomorphism with homoclinic tangencies can be approximated by diffeo-
morphisms exhibiting infinitely many periodic points with nonreal eigenvalues. What we
shall prove here is just the converse assertion, namely, that every surface diffeomorphism
exhibiting infinitely many periodic points with nonreal eigenvalues can be approximated
by diffeomorphisms with homoclinic tangencies. We can also compare our result with
[5] proving that every C2 surface diffeomorphism with infinitely many sinks or sources
with unbounded periods can be C1 approximated by ones with homoclinic points.

2. Statements and proofs

Let f be a surface diffeomorphism. We define the 1-preperiodic set of f , P ∗
1 (f), as the

set of points x for which there are sequences fn → f and xn → x such that xn is a
saddle of fn, ∀n (c.f. [8]).

To prove our result we will need the following lemma.

Lemma 2.1. The set of accumulation points of the periodic points with nonreal eigen-
values of a surface diffeomorphism f is contained in P ∗

1 (f).

Proof. Take any of such accumulation points x. Then, there is an infinity sequence xn
of periodic points with nonreal eigenvalues of f with xn → x. We have three cases to
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consider, namely, every xn has eigenvalues of modulus 1 or either every xn is a sink (i.e.
its eigenvalues have modulus less than 1), or every xn is a source (i.e. a sink for f−1).

In the first case, as remarked in p. 976 of [7], we can find a diffeomorphism’ s
sequence gn → f and a sequence yn → x such that yn is a saddle of gn for all n.
Therefore, x ∈ P ∗

1 (f).
In the second case, if the periods nxn

are bounded, we obtain that x itself is a periodic
point. In such a case, if x has no eigenvalues of modulus 1, then x must be a saddle thus
x ∈ P ∗

1 (f). Otherwise, x has an eigenvalue of modulus 1 and then the aforementioned
remark in p. 976 in [7] yields a subsequence nk of positive integers and a sequence
fk → f so that xnk

is a saddle of fk for all k. It then follows from the definition that
x ∈ P ∗

1 (f). Therefore, we can assume that nxn
→ ∞. In such a case a result by Pliss

(Theorem 3.1 in [6]) yields at once a sequence nk ∈ N and a sequence fk → f so that
xnk

is a saddle of fk. It then follows from the definition that x ∈ P ∗
1 (f).

In the third case we proceed as in the second but with f−1 instead of f to obtain
x ∈ P ∗

1 (f). The lemma follows. �

We also need the following lemma whose proof is contained in Pujals and Sambarino
[7] (see also [8]).

Lemma 2.2. For every surface diffeomorphism f which cannot be approximated by dif-
feomorphisms with homoclinic tangencies there are a neighborhood U of P ∗

1 (f) and a tan-
gent bundle splitting TUM = EU ⊕FU over U with dim(E) = 1 such that Df(x)(Ex) =
Ef(x) and Df(x)(Fx) = Ff(x) for all x ∈ U ∩ f−1(U).

Now we can state our main result.

Theorem 2.3. Every surface diffeomorphism exhibiting infinitely many periodic points
with nonreal eigenvalues can be approximated by diffeomorphisms with homoclinic tan-
gencies.

Proof. Let f be a surface diffeomorphism. By Lemma 2.1 we have that the set of accu-
mulation points of the periodic points with nonreal eigenvalues is contained in P ∗

1 (f).
If f cannot be approximated by diffeomorphisms with homoclinic tangencies, we obtain
the splitting in the neighborhood U of P ∗

1 (f) in Lemma 2.2. Since such a splitting clearly
prevents the existence of an infinite sequence of periodic points with nonreal eigenvalues
converging to some point of P ∗

1 (f), we conclude that there are no such accumulation
points, and so, there exists only a finite number of such periodic points. This ends the
proof. �
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ON THE DISCRETE BICYCLE TRANSFORMATION

S. TABACHNIKOV AND E. TSUKERMAN

1. Introduction

The motivation for this paper comes from the study of a simple model of bicycle
motion. The bicycle is modeled as an oriented segment in the plane of fixed length `,
the wheelbase of the bicycle. The motion is constrained so that the segment is always
tangent to the path of the rear wheel; this non-holonomic constraint is due to the
fact that the rear wheel is fixed on the frame, whereas the front wheel can steer. See
[8, 10, 13, 15] and the references therein.

Figure 1. Bicycle correspondence. The cusped curve is the rear track,
the two smooth curves are front tracks in the bicycle correspondence
(figure courtesy of R. Perline).

If the rear wheel path γ is prescribed, and the direction of motion is chosen, the front
wheel path Γ is constructed by drawing the tangent segments of length ` to γ. Note that
the rear track may have cusp: they occur when the steering angle equals 90◦. Changing
the direction of motion to the opposite yields another front track, say, Γ′. We say that
the curves Γ and Γ′ are in the bicycle correspondence.1 See Figure 1.

If the front wheel path Γ is prescribed then the rear wheel follows a constant-distance
pursuit curve, and its trajectory is uniquely determined, once the initial position of the
bicycle is chosen. A monodromy map MΓ,` arises that assigns to every initial position
of the bicycle its terminal position. If Γ is a closed curve then MΓ,` is a self-map of a

1One can also call this Darboux or Bäcklund transformation, but we shall use the “bicycle”

terminology.
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circle of radius `, uniquely defined up to conjugation. The bicycle monodromy MΓ,` is
a Möbius transformation [9, 10, 13].

All of the above can be extended to the motion of a segment in higher dimensional
Euclidean spaces and even Riemannian manifolds (see [12] for elliptic and hyperbolic
planes). In the forthcoming paper [16], we shall discuss Liouville integrability of the
bicycle transformation in dimensions 2 and 3.

In this paper, following [11, 14], we study a discrete version of the bicycle corre-
spondence. Let V = (V1, V2, . . . ) be a polygon in Rn, and let V1W1 be a seed segment
of length ` (so now ` is twice the lenght of the bicycle frame). The next point W2 is
constructed in the plane spanned by V1, V2,W1 as follows: one parallel translates point
W1 along the vector V1V2 to point U , and then reflects point U in the line W1V2 to ob-
tain a new point W2. In other words, the plane quadrilateral V1V2W1W2 is an isosceles
trapezoid with |V1V2| = |W1W2| and |V1W1| = |V2W2| = `, see Figure 2. Once the point
W2 is constructed, one continues the process, shifting the index by one, etc.2

UW1

W2

V1 V2

Figure 2. Discrete bicycle correspondence

We call the above described correspondence between polygons V and W the discrete
bicycle correspondence and denote it by B`(V,W ). In the continuous limit, the polygons
V and W become the front tire tracks Γ and Γ′, and the discrete bicycle correspondence
becomes the above described bicycle correspondence between smooth curves.

Our ultimate goal is to establish Liouville integrability of the discrete bicycle corre-
spondence and to describe its dynamics in detail. In this paper, we make steps in this
direction. Let us list basic properties of the discrete bicycle correspondence.

Let V be a closed k-gon in Rn (that is, Vi+k = Vi for all i). The polygon W is
not necessarily closed, and the discrete bicycle monodromy MV,` arises, similarly to the
continuous case.

Theorem 1. The monodromy MV,` : Sn−1 → Sn−1 is a Möbius transformation of the
sphere of radius `.

Thus, fixed points of the monodromy MV,` correspond to closed polygons W in the
discrete bicycle correspondence with V .

Theorem 2. Let V and W be closed polygons in Rn in the discrete bicycle correspon-
dence. Then, for every λ, the monodromies MV,λ and MW,λ are conjugated to each
other.

2The definition in [11, 14], given in 3-dimensional case, involves another, twist, parameter.
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Theorem 2 implies that the invariants of the conjugacy class of the monodromy,
viewed as functions of the “spectral parameter” λ, are integrals of the discrete bicycle
correspondence. We refer to them as the monodromy integrals.

The next theorem states that the discrete bicycle correspondences with different
length parameters commute with each other (“Bianchi permutability”). Recall that
we write B`(V,W ) to indicate that polygons V and W are in the discrete bicycle corre-
spondence with the length parameter `.

Theorem 3. Let V,W, S be closed k-gons in Rn such that B`(V,W ) and Bλ(V, S) hold.
Then there exists a closed polygon T such that B`(S, T ) and Bλ(W,T ) hold.

In the case of 3-dimensional space, Theorems 1-3 are not new: in [14], they are proved
using quaternions. We give different proofs in Section 2.

V. Adler [1, 2] studied complete integrability of a correspondence on the space of
polygons in Euclidean space called the recutting of polygons. The recutting Ri of polygon
V at ith vertex is the reflection of Vi in the perpendicular bisector hyperplane of the
segment Vi−1Vi+1 . Recuttings of k-gons form a group with generators Ri, i = 1, . . . , k
and the relations

R2
i = 1, RiRj = RjRi for |i− j| ≥ 2, and RiRi+1Ri = Ri+1RiRi+1,

where the indices are understood cyclically.
The recutting is closely related to the discrete bicycle correspondence. In Section 3,

we show that certain integrals of the recutting, discovered by Adler, are integrals of the
discrete bicycle correspondence. To do so, we construct a discrete analog of the rear
track trajectory, a chain of mutually tangent spheres.

We also have the following result relating the discrete bicycle correspondence and the
recutting.

Theorem 4. 1) The monodromy is preserved by the recutting. In particular, the mon-
odromy integrals are also integrals of the recutting.
2) The discrete bicycle correspondence commutes with the recutting.

To illustrate the first claim of Theorem 4, a parallelogram and the corresponding kite
have the same monodromy, see Figure 3.

A

B

C

D

E

Figure 3. The parallelogram ABCD and the kite AECD have the
same monodromy

Theorems 1-4 are proved in Section 2.
Consider the low-dimensional situation. If the dimension equals 2 then the discrete

bicycle monodromy belongs to SL(2,R). Then one has the trichotomy: MV,` may
be elliptic, parabolic, and hyperbolic. In the last case, MV,` has two fixed points,
and one can choose one (say, the attracting one) to construct a closed polygon W in
the discrete bicycle correspondence with V (with length parameter `). According to
Theorem 2, MW,` is again hyperbolic, and one may iterate the construction by choosing
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the other fixed point of MW,` (otherwise, one gets back to V ). Thus, the discrete bicycle
correspondence becomes a map on polygons, and we write T`(V ) = W .

In dimension three, the discrete bicycle monodromy belongs to SL(2,C). If the
monodromy is not the identity, it has two fixed points (perhaps, coinciding), and once
again, one can consider the discrete bicycle correspondence as a mapping of the space
of polygons in R3.

In Sections 4 and 5, we study the discrete bicycle transformation on plane polygons.
We prove that the discrete bicycle transformation is defined on convex cyclic polygons
only if the length parameter does not exceed the diameter of the circumcircle, and in
this case, the transformation is a rotation about the circumcenter. We also compute the
eigenvalues of the discrete bicycle monodromy and derive a criterion for the monodromy
to be parabolic.

In Section 5, we give a complete description of the dynamics of the discrete bicycle
transformation on plane quadrilaterals. As an application, we classify the so-called
bicycle (4k, k)-gons (see Section 5 for definition).

2. Proofs of basic properties

Proof of Theorem 1. Recall that the Mob̈ıus group O(n, 1) consists of linear isometries
of the pseudo-Euclidean space Rn,1, and it acts projectively on Sn−1, the spherization
of the null cone; it is also the group of isometries of n-dimensional hyperbolic space (in
the hyperboloid model).

Let M be the monodromy along segment V1V2 in Figure 2. We need to show that
M ∈ O(n, 1).

Let u, v and x be the unit vectors along V1W1, V2W2 and V1V2, respectively, and let
|V1V2| = a. The reflection of vector u in vector ξ is given by the formula

v =
2u · ξ
|ξ|2 ξ − u.

Applying this to ξ = ax− `u, we obtain

(1) v =
u+ 2a2(x·u)

`2−a2 x− 2a`
`2−a2x

`2+a2

`2−a2 −
2a`(x·u)
`2−a2

.

On the other hand, a matrix from O(n, 1) has the form
(

A ξ
ηt λ

)

where A is an n× n matrix, ξ and η are n-vectors, and the following relations hold:

AtA = E + η ⊗ ηt, At(ξ) = λη, ξ · ξ = λ2 − 1,

where E is the unit matrix, and η ⊗ ηt is the rank one matrix obtained by multiplying
a column and a row vectors. The projective action of such a matrix is given by the
formula:

(2) u 7→ A(u) + ξ

η · u+ λ
.

We observe that (1) has the form (2) with

A = E +
2a2

`2 − a2
x⊗ x, ξ = η = − 2a`

`2 − a2
x, λ =

`2 + a2

`2 − a2
,

which completes the proof. 2
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In dimension two, one identifies the unit circle with the real projective line via stereo-
graphich projection from point (−1, 0). Then Möbius transformations become fractional-
linear. If α is the angular coordinate on S1 then x = tan(α/2) is the respective affine
coordinate on RP1. In Figure 2, assume that V1V2 is horizontal, the direction of V1W1

is α and that of V2W2 is β. If x = tan(α/2) and y = tan(β/2) then the monodromy is
given by the formula

y =
`+ a

`− ax,
or

M` =

(
`+ a 0

0 `− a

)
.

In general, if the direction of V1V2 is φ then

(3) M` =

(
`+ a cosφ −a sinφ
−a sinφ `− a cosφ

)
.

Now we prove a property of isosceles trapezoids that is fundamental for what follows.
Let ABCD be a plane isosceles trapezoid, see Figure 4. We call the closed quadrilateral
ABDC, made of the lateral sides and diagonals of a trapezoid, a Darboux butterfly.

B

D

C

A

Figure 4. A Darboux butterfly

Lemma 2.1 (Butterfly Lemma). The monodromy (with any length parameter `) along
a Darboux butterfly is the identity. Conversely, if the monodromy along a closed quadri-
lateral is the identity for some value of ` then the quadrilateral is a Darboux butterfly.

Proof. The first statement of the lemma is 3-dimensional: if w is a test vector at vertex
A then the respective vectors at all other vertices (the “transports” of w along the
quadrilateral) belong to the 3-dimensional space, spanned by the plane of the trapezoid
and the vector w.

In fact, it suffices to consider the case when w is in the plane of the trapezoid. Indeed,
in dimension three, the monodromy is considered as an orientation preserving isometry
of hyperbolic space acting on the sphere at infinity. If such an isometry has more than
two fixed points then it is the identity.

In dimension two, we shall prove that the monodromy along the polygonal path ABD
equals the monodromy along the path ACD if and only if ABDC is a Darboux butterfly.
Without loss of generality, assume that AD is horizontal. Let a, b, c, d be the length of
the segments AB,BD,AC,CD, and let α, β, γ, δ be the angles made with the positive
horizontal axis. Let |AD| = g.

The product of the matrices from equation (3) is
(
`− b cosβ −b sinβ
−b sinβ `+ b cosβ

)(
`− a cosα −a sinα
−a sinα `+ a cosα

)
,
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so we have the monodromy

(4) M(a, b, α, β) =

(
`2 − lg + ab cos(α− β) −ab sin(α− β)

ab sin(α− β) `2 + lg + ab cos(α− β)

)
.

For equality to hold, we must have

M(a, b, α, β) = k(`)M(c, d, γ, δ)

for some constant k(`) dependent only on `. Therefore

`2 − `g + ab cos(α− β)

`2 − `g + cd cos(γ − δ) =
ab sin(α− β)

cd sin(γ − δ) =
`2 + `g + ab cos(α− β)

`2 + `g + cd cos(γ − δ) .

Set X = `2 + ab cos(α− β) and Y = `2 + cd cos(γ − δ). Then

X − `g
Y − `g =

X + `g

Y + `g
,

hence X = Y and

(5) ab cos(α− β) = cd cos(γ − δ), ab sin(α− β) = cd sin(γ − δ).
The second equation (5) implies that the signed area of triangle ABD is equal to that

of triangle ACD, so that the quadrilateral ABDC has a total signed area of zero. It also
follows that tan(α−β) = tan(γ−δ), so that α−β = γ−δ or α−β = γ−δ±π. Since the
signed areas are equal, the angles must be equal, and it follows that the quadrilateral is
cyclic, and thus a Darboux butterfly.

Note that if the equality holds for one (non-zero) value of ` then it holds for all values
of `.

Finally, consider a non-planar quadrilateral ABDC with the trivial monodromy (for
some value of `). Assume that the monodromy along ABD and ACD are equal. Denote
this monodromy by M . Then M preserves the segments that lie in the plane ABD and
in the plane ACD, and hence, in their intersection, the line AD. In the plane ABD,
the monodromy M is given by formula (4). If the horizontal axis is an eigendirection
then ab sin(α − β) = 0. This implies that the segments AB and BD are collinear, a
contradiction. 2

As a consequence of Butterfly Lemma, for every n, we can construct a family of
2n-gons with identity monodromy for all values of `. These polygons are obtained by
attaching Darboux butterflies to each other along the common sides, see Figure 5.

Figure 5. Constructing polygons with identity monodromy

Now we are in a position to prove the rest of the theorems.

Proof of Theorem 2. It follows from the Butterfly Lemma that, in Figure 2, one has:

MW1W2,λ = MV2W2,λMV1V2,λM
−1
V1W1,λ

.
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Taking the composition over the closed polygon V yields the result. 2

Proof of Theorem 3. Consider the points V1,W1, S1, and let T1 be the point such
that V1W1T1S1 is a Darboux butterfly. Consider the discrete bicycle transformation of
the segment V1V2 along the Darboux butterfly V1W1T1S1. According to the Butterfly
Lemma, the resulting quadrilateral, say, Q, is closed and, according to Theorem 2, it
has the trivial monodromy (for any length parameter). Hence, by the Butterfly Lemma
again, Q is a Darboux butterfly as well.

It is clear from Figure 2 that the discrete bicycle transformation of the segment V1W1

along V1V2 is the same as the discrete bicycle transformation of the segment V1V2 along
V1W1. It follows that three of the vertices of Q are V2,W2 and S2. Denote the fourth
vertex by T2.

A continuation of this process yields a closed polygon T satisfying the assertion of
the theorem. 2

Proof of Theorem 4. An equivalent description of recutting Vi 7→ V ′i is that the
quadrilateral Vi−1ViVi+1V

′
i is a Darboux butterfly.

To prove the first statement, we use Butterfly Lemma:

MVi−1V ′i Vi+1,λ = MVi−1ViVi+1V ′i Vi+1,λ = MVi−1ViVi+1,λ.

For the second statement, letW be be a polygon in the discrete bicycle correspondence
with V . Let V ′iW

′
i be the discrete bicycle transformation of the segment Vi−1Wi−1 along

the segment Vi−1V
′
i . Since Vi−1ViVi+1V

′
i is a Darboux butterfly, the discrete bicycle

transformation takes V ′iW
′
i to Vi+1Wi+1. Thus the polygon . . .Wi−1W

′
iWi+1 . . . is in

the discrete bicycle correspondence with . . . Vi−1V
′
i Vi+1 . . .

We want to show that the recutting of W on ith vertex yields W ′i or, equivalently,
that Wi−1WiWi+1W

′
i is a Darboux butterfly. According to Butterfly Lemma, we need

to show that the monodromy along the closed polygon Wi−1WiWi+1W
′
i is the identity.

Indeed, using that the monodromy of each Darboux butterfly is trivial, we obtain:

MWi−1WiWi+1W ′iWi−1,λ = MWi−1Vi−1ViWiViVi+1Wi+1Vi+1V ′iW
′
iV
′
i Vi−1Wi−1,λ

= MWi−1Vi−1ViVi+1V ′i Vi−1Wi−1,λ = Id,

and we are done. 2

3. Integrals

As we mentioned earlier, the discrete bicycle transformation preserves the conjugacy
equivalence class of the monodromy Mλ, thus yielding the monodromy integrals. These
integrals do not change if a polygon is acted upon by an isometry of the ambient space.
We plan to study the monodromy integrals in a forthcoming paper. In this section,
we study the integrals introduced in [1, 2] as integrals of the recutting. One of these
integrals, J(V ), is not preserved by isometries. The other integral, A(V ), was described,
in the 3-dimensional case, in [14].

Given a closed polygon V , consider the vector J and the bivector A given by the
formulas

J(V ) =
∑

i

(|Vi+1|2 − |Vi−1|2)Vi =
∑

i

|Vi|2(Vi−1 − Vi+1),

A(V ) =
∑

i

Vi ∧ Vi+1,
(6)
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where the sums are cyclic. In dimension 2, A(V ) is the signed area of the polygon V .

Theorem 5. Both A and J are integrals of the discrete bicycle transformation.

As a preparation to the proof, we describe a discrete counterpart to the rear bicycle
track (the middle curve with cusps in Figure 1).

We shall consider collections of spheres such that the first one is tangent to the second,
the second to the third, ... , and the last one is tangent to the first. We call such a
collection a chain. The radii of the spheres are signed. By convention, if two spheres
have an exterior tangency then their radii have the same sign, and if the tangency
is interior then the radii have the opposite signs. We allow infinite radii, that is, we
consider hyperplanes as spheres as well. An infinite radius has no sign (equivalently,
one may consider the curvatures, not excluding zero curvature form consideration). A
chain is called oriented if one can choose the signs of the radii consistent with the sign
convention. That is, a chain is oriented if and only if the number of interior tangencies
is even, see Figure 6.

Figure 6. An oriented and a non-oriented chain of four circles

In what follows, we use half-integers as the indices for the centers of the spheres and
of their radii. Consider an oriented chain of spheres with centers Pj and signed radii
rj . Denote by Qi the tangency point of the adjacent spheres with centers Pi− 1

2
and

Pi+ 1
2
. Let Vi and Wi be the two points on the line Pi− 1

2
Pi+ 1

2
located at distance ` from

Qi. The choice of labels is consistent for all i: if the segments ViWi and QiPi+ 1
2

have

the same orientations then the segments Vi+1Wi+1 and Qi+1Pi+ 1
2

have the opposite

orientations, and vice versa.

Lemma 3.1. The polygons V and W are in the discrete bicycle correspondence. Con-
versely, given polygons V and W in the discrete bicycle correspondence, let Pi+ 1

2
be the

intersection point of the lines Vi+1Wi+1 and ViWi. Then there exists an oriented chain
of spheres centered at points Pj, such that the tangency points Qi are the midpoints of
the segments ViWi.

The construction is illustrated in Figure 7.

Proof. By construction, a homothety centered at Pi+ 1
2

takes Vi to Wi and Wi+1 to Vi+1.

For example, in Figure 7, the homothety with the coefficient

−
`− r 3

2

`+ r 3
2

,
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centered at P 3
2
, takes V1W2 to W1V2. Since |ViWi| = |Vi+1Wi+1| = 2`, the quadrilateral

ViWiVi+1Wi+1 is a Darboux butterfly.
Conversely, by construction,

|Pi+ 1
2
Wi| = |Pi+ 1

2
Vi+1|, |Pi+ 1

2
Vi| = |Pi+ 1

2
Wi+1|,

hence |Pi+ 1
2
Qi| = |Pi+ 1

2
Qi+1| := ri+ 1

2
where Qi is the midpoint of the segment ViWi.

The sphere with this radius passes through points Qi and Qi+1 and is orthogonal to
the lines Pi+ 1

2
Qi and Pi+ 1

2
Qi+1. Thus one obtains a chain of spheres, and this chain is

oriented. 2

7/2

V
V

V

V

V

W

W

W

W

W

1
2

3

4

5

1

2

3

4

5

P

P

P

P

P

Q

Q

Q

Q

Q

1

2

3

4

5
1/2

3/2

5/2

9/2

Figure 7. Polygons V and W are in the discrete bicycle correspondence

The polygon Q is the discrete rear bicycle track. We apply Lemma 3.1 to prove
Theorem 5.

Proof of Theorem 5. Given an oriented chain with centers at points Pj and signed
radii rj (where j is half-integer), the tangency points Qi have the following coordinates:

Qi =
ri+ 1

2
Pi− 1

2
+ ri− 1

2
Pi+ 1

2

ri− 1
2

+ ri+ 1
2

(note that this formula does not change if all radii are negated). Then the points Vi and
Wi are given by the formula

(7)
(ri+ 1

2
− `)Pi− 1

2
+ (ri− 1

2
+ `)Pi+ 1

2

ri− 1
2

+ ri+ 1
2

,

where the positive ` gives Vi and the negative ` gives Wi.
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To prove the invariance of A, we need to show that A is an even function of `. Indeed,
using formula (7), we find that the odd (linear in `) part of A is

∑ (Pi+ 1
2
− Pi− 1

2
)× (ri+ 3

2
Pi+ 1

2
+ ri+ 1

2
Pi+ 3

2
)

(ri− 1
2

+ ri+ 1
2
)(ri+ 1

2
+ ri+ 3

2
)

+

(ri+ 1
2
Pi− 1

2
+ ri− 1

2
Pi+ 1

2
)× (Pi+ 3

2
− Pi+ 1

2
)

(ri− 1
2

+ ri+ 1
2
)(ri+ 1

2
+ ri+ 3

2
)

=

∑ Pi+ 1
2
× Pi+ 3

2

ri+ 1
2

+ ri+ 3
2

−
∑ Pi− 1

2
× Pi+ 1

2

ri− 1
2

+ ri+ 1
2

= 0,

as needed.
To prove that J is invariant, one makes a similar computation. Let ei be the unit

vector from Qi to Pi+ 1
2
.

One has Vi = Qi + `ei and Wi = Qi − `ei. Hence

|Vi|2 = `2 + 2` Qi · ei + |Qi|2.
It follows that

|Vi+1|2 − |Vi−1|2 = |Qi+1|2 − |Qi−1|2 + 2` (Qi+1 · ei+1 −Qi−1 · ei−1),

and the odd (linear in `) part of J is

(8)
∑

(|Qi+1|2 − |Qi−1|2) ei + 2(Qi+1 · ei+1 −Qi−1 · ei−1) Qi.

Rewrite negative (8) as
∑
|Qi|2(ei+1 − ei−1) + 2Qi · ei(Qi+1 −Qi−1) =

∑
|Qi|2((ei+1 + ei)− (ei + ei−1)) + 2Qi · ei(Qi+1 −Qi−1).

(9)

Using the formulas

Qi−1 = Qi − ri− 1
2
(ei + ei−1), Qi+1 = Qi + ri+ 1

2
(ei + ei+1),

Pi− 1
2

= Qi − ri− 1
2
ei, Pi+ 1

2
= Qi + ri+ 1

2
ei,

rewrite (9) as
∑

(|Qi|2 + 2ri+ 1
2
Qi · ei)(ei+1 + ei)− (|Qi|2 − 2ri− 1

2
Qi · ei)(ei−1 + ei) =

∑
(|Pi+ 1

2
|2 − r2

i+ 1
2
)(ei+1 + ei)−

∑
(|Pi− 1

2
|2 − r2

i− 1
2
)(ei−1 + ei) = 0,

as needed. 2

Remark 3.2. One has the following relation between the integrals A and J :

(10) Dξ(J)(V ) = −2A(V ) · ξ = 2
∑

i

(Vi · ξ) (Vi−1 − Vi+1),

where Dξ is the directional derivative along a vector ξ and where dot is the Euclidean
pairing of 2-vectors and vectors. Of course, (10) is also an integral for every vector ξ.

Remark 3.3. The integral A is invariant under parallel translations, but J is neither
invariant under parallel translations nor commutes with them. In dimension two, we
adjust the integral J so that it commutes with parallel translations and thus becomes
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a “center”, associated with a polygon. Namely, rotate J(V ) through 90◦ and divide by
four times the area:

1

4A(V )

(∑
(y2
i yi+1−yiy2

i+1 +x2
i yi+1−x2

i+1yi),
∑

(xix
2
i+1−x2

ixi+1 +xiy
2
i+1−xi+1y

2
i )
)
,

where Vi = (xi, yi) and the sums are cyclic. We call this point the circumcenter of mass
of the polygon V and denote it by CCM(V ).

A justification of this terminology is as follows. Consider a triangulation of the
polygon V , and let Oi be the circumcenter of ith triangle. Then CCM(V ) is the center
of mass of the points Oi, taken with the weight equal to the (oriented) area of ith
triangle. The result does not depend on triangulation. This construction is mentioned
in [1]; we plan to study it in detail in a forthcoming paper [17].

Let us mention, without proof, two properties of CCM(V ). First, if V is an equi-
lateral polygon then the circumcenter of mass coincides with the center of mass. This
agrees with the observation, made in [4] that, in our terminology, the discrete bicycle
transformation of an equilateral polygon preserves its center of mass.

Second, in the continuous limit, as V becomes a curve γ, the circumcenter of mass
of V tends to the center of mass of the homogeneous lamina bounded by γ. As a
consequence, the continuous bicycle transformation preserves the center of mass.

We plan to study the monodromy integrals in a separate paper. We comment on
these integrals in dimension two in the next section.

4. In the plane

In this section, we consider the discrete bicycle transformation in the plane. We start
with a simple observation: for an inscribed polygon, a rotation about the circumcenter
is a discrete bicycle transformation, see Figure 8.

3

V    

V    

V    

W

W

W

1

1

2

2
3

Figure 8. Triangles V and W are in the discrete bicycle correspondence

Our first result concerns convex inscribed polygons.

Theorem 6. Let V be a convex inscribed polygon, and let d be the diameter of the
circumcircle. The discrete bicycle monodromy MV,` is elliptic for ` > d, parabolic for
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` = d, and hyperbolic for ` ∈ (0, d). In the last case, the discrete bicycle transformation
is a rotation about the circumcenter.

Proof. As we mentioned, if ` ∈ (0, d) then a rotation about the circumcenter is a discrete
bicycle transformation.

Let W = T`(V ). Then W has the same perimeter and the same oriented area as
V , see Theorem 5. It is known that, among polygons with given side lengths, there
exists a unique area maximizing one, and this is an inscribed convex polygon. It follows
that W is inscribed, and hence congruent to W . It follows from Theorem 5 that the
circumcenter of W coincides with that of V , see Remark 3.3. It follows that W is a
rotation of V about the circumcenter. 2

In particular, Theorem 6 completely described the discrete bicycle transformation on
triangles.

Next we consider a 2k-gon whose sides lie, in an alternating fashion, on two concentric
circles. In the limiting case, the two concentric circles may become two parallel lines.

Proposition 4.1. Let C1 and C2 be concentric circles with the center O (or parallel
lines). Let the odd vertices of a 2k-gon lie on C1 and the even ones on C2. Let W1 be
a point of C2. Then the discrete bicycle transformation of V with the initial segment
V1W1 is a closed 2k-gon whose odd vertices lie on C2 and the even ones on C1. The
second iteration of this discrete bicycle transformation sends V to an isometric polygon.

Proof. Reflect V1 in the perpendicular bisector of the segment W1V2 to obtain W2, and
continue in the same way, see Figure 9. Let the lower case letters denote the angular
coordinates of the respective points. Then

w2 = w1 + v2 − v1, w3 = w2 + v3 − v2 = w1 + v3 − v1,

etc. It follows that w2k+1 = w1 + v2k+1 − v1 = w1, hence the polygon W is closed.
We see that the discrete bicycle transformation T is the composition of two commut-

ing transformations: the rotation through the angle w1 − v1, and the involution that
interchanges the points of C1 and C2 on the same radial ray. Hence T 2 is a rotation.

The argument for parallel lines is analogous, and the resulting polygon W is obtained
from V by a glide reflection. In this case, the orbit of the polygon is unbounded. 2

2

V1

V

W1

W2

Figure 9. W2 is the reflection of V1 in the perpendicular bisector of W1V2
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Note that, in this construction, the polygon Q, whose vertices are the midpoints of
the segments ViWi (see Lemma 3.1), is inscribed in a circle with the center O. We also
have the following consequence of the proof.

Corollary 4.2. If the polygon in the preceding Proposition is a rhombus then its image
under the bicycle transformation is a congruent rhombus.

Now we discuss the monodromy integrals for plane polygons. The monodromy along a
side is given by formula (3); the full monodromy M is the product of these monodromies
over the consecutive sides of the polygon. The monodromy is defined only up to a
multiplicative factor, and the invariant quantity is

Tr2(M)

det(M)
,

considered as a function of `. Note that the determinant of the matrix (3) equals `2−a2,
that is, is also an integral. Thus Tr(M) is an integral.

Proposition 4.3. Consider a k-gon whose sides have the lengths a1, . . . , ak and the
directions α1, . . . , αk. Then

Tr(M) = 2(`k + c1`
k−1 + c2`

k−2 + · · ·+ ck)

with all odd coefficients c1, c3, . . . equal to zero. If k is even then the free term ck equals

a1 . . . ak cos(α1 − α2 + · · · − αk).

One also has:

c2 = −1

2

∑
a2
i .

Proof. One has

M =

k∏

i=1

(`E + aiA(αi))

where

A(α) =

(
cosα − sinα
− sinα − cosα

)
.

Therefore

Tr(M) =

k∑

j=0

`k−jai1 . . . aijTr(A(αi1) . . . A(αij )).

Notice that

(11) A(α)A(β) =

(
cos(α− β) sin(α− β)
− sin(α− β) cos(α− β)

)
,

a rotation matrix. More generally, the product of an odd number of the matrices A(αi)
is traceless, and the product of an even number is a rotation through the alternating
sum of the respective angles. This implies the first two claims.

For the last claim, let u1, . . . , uk be the vectors of the sides of the polygon. Using
(11), we find that

c2 =
∑

i<j

ui · uj .

One has:
∑
ui = 0. Taking dot with itself yields:

0 =
∑

ui · ui + 2
∑

i<j

ui · uj .
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Thus

c2 = −1

2

∑
a2
i ,

as claimed. 2

Corollary 4.4. The quantity cos(α1−α2 + · · ·−αk) is an integral of the discrete bicycle
transformation on even-gons.

Let polygons V and W be in the discrete bicycle correspondence. Let

αi = ∠Vi−1ViWi = ∠Vi−1Wi−1Wi,

see Figure 10. If one knows the cyclic sequence of angles αi then one can construct W
from V : indeed, the lengths of all the segments ViWi are equal to 2`.

V

_i ei
`i qi

V

V
W i

i+1
iï1

Wi iï1

Figure 10. Notations for Proposition 4.5

The angles αi satisfy a first order nonlinear difference equation with periodic coeffi-
cients. Let θi = ∠Vi−1ViVi+1 and ci = |Vi−1Vi|.
Proposition 4.5. One has

(12) 2` cos

(
αi − αi−1 + θi−1

2

)
= ci cos

(
αi + αi−1 − θi−1

2

)
.

Proof. Let

βi = ∠Wi−1Vi−1Vi = ∠Wi−1WiVi, φi = ∠Wi−1Vi−1Wi = ∠ViWiVi−1.

Then 2φi = π − αi − βi. Since ∠WiViVi+1 = βi+1, one has βi+1 = θi − αi. Therefore

(13) φi =
π

2
− αi − αi−1 + θi−1

2
, βi + φi =

π

2
− αi−1 + αi − θi−1

2
.

By Sine Rule in triangle Vi−1ViWi,

2`

sin(βi + φi)
=

ci
sinφi

,

or

2` cos

(
αi − αi−1 + θi−1

2

)
= ci cos

(
αi + αi−1 − θi−1

2

)
,

as claimed. 2

As an application of Proposition 4.5, we compute the eigenvalue of the fixed point of
the monodromy map of the polygon V corresponding to the pair of polygons V,W in
the discrete bicycle correspondence. Since the monodromy is a Möbius transformation,
the eigenvalues of its two fixed points are reciprocals of each other.
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Theorem 7. The eigenvalue in question equals

n∏

i=1

|Vi−1Wi|
|ViWi−1|

=

n+1/2∏

j=1/2

|`+ rj |
|`− rj |

.

In particular, the monodromy is parabolic if and only if

n∏

i=1

|Vi−1Wi| =
n∏

i=1

|ViWi−1| or

n+1/2∏

j=1/2

|`+ rj | =
n+1/2∏

j=1/2

|`− rj |.

Proof. To compute the eigenvalue, one linearizes equation (12): if ui is a variation of αi
then the linearization is as follows:

2`(ui − ui−1) sin

(
αi − αi−1 + θi−1

2

)
= ci(ui + ui−1) sin

(
αi + αi−1 − θi−1

2

)
,

and hence

ui

[
2` sin

(
αi − αi−1 + θi−1

2

)
− ci sin

(
αi + αi−1 − θi−1

2

)]
=

ui−1

[
2` sin

(
αi − αi−1 + θi−1

2

)
+ ci sin

(
αi + αi−1 − θi−1

2

)]
.

By elementary geometry of the trapezoid in Figure 4.5 and formulas (13), one has:

2` sin

(
αi − αi−1 + θi−1

2

)
=

1

2
(|Vi−1Wi|+ |ViWi−1|),

ci sin

(
αi + αi−1 − θi−1

2

)
=

1

2
(|Vi−1Wi| − |ViWi−1|).

Therefore

ui|ViWi−1| = ui−1|Vi−1Wi|,
which implies the first formula for the eigenvalue.

For the second formula, note that a homothety centered at point Pi+1/2 takes segment
ViWi+1 to segment Vi+1Wi, see Figure 7. The coefficient of this homothety is |` +
ri+1/2|/|`− ri+1/2|, and we obtain the second formula for the eigenvalue.

It remains to notice that the monodromy is parabolic if and only if the two reciprocal
eigenvalues coincide. 2

Remark 4.6. The continuous analogs of Proposition 4.5 and Theorem 7 are contained
in [13]. Namely, the continuos version of (12) is the differential equation

dα

dx
+

sinα

`
= κ(x)

where α(x) is the angle made by the bicycle frame with the front wheel trajectory, x is
the arc length parameter along this trajectory, and κ(x) is the curvature of this curve.
The endpoint of the segment of length ` describes the rear wheel trajectory.

The continuos version of Theorem 7 states that the eigenvalues of the bicycle mon-
odromy are e±length(γ) where γ is the rear wheel trajectory, and the length is algebraic:
the sign changes after one traverses a cusp. In particular, the monodromy is parabolic
if and only if the rear track has zero length.
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5. Case study: plane quadrilaterals

In this section, we describe the dynamics of the discrete bicycle transformation on
plane quadrilaterals.

We have a trichotomy according to the position of the circumcenter of mass, see
Remark 3.3. Consider a quadrilateral ABCD. The first case is when the diagonals AC
and BD are not parallel. Let O be the intersection point of the perpendicular bisectors
of these diagonals, see Figure 11 on the left.

Lemma 5.1. O is the circumcenter of mass of the quadrilateral ABCD.

Proof. The circumcenters of the triangles ABD and BCD lie on the perpendicular
bisector of the segment BD, and the circumcenters of the triangles ABC and ACD lie
on the perpendicular bisector of the segment AC. Hence O = CCM(ABCD). 2

2A

B

C

D

O

C1C

C

B D

C

C

1

2

A

Figure 11. Two types of quadrilaterals: the circumcenter is finite or infinite

In the first case, A and C lie on one circle, say, C1, and B and D on another circle,
C2, centered at O. Denote their radii by r1 and r2, and assume that r1 ≥ r2.

The second case is when the diagonals are parallel but the quadrilateral is not a
Darboux butterfly, see Figure 11 on the right. In this case, the two concentric circles
are replaced by two parallel lines, and the center O is at infinity. Although both radii
are infinite, their difference r1 − r2 is still defined and equals the distance between the
parallel lines. Note that, in this case, the quadrilateral ABCD has zero area.

The third case is when the quadrilateral is a Darboux butterfly. In this case, there
exists an infinite family of pairs of concentric circles C1, C2 such that A,C ∈ C1 and
B,D ∈ C2. The centers of these circles lie on the common perpendicular bisector of the
segments AC and BD, including the point at infinity, when the circles become parallel
lines.

Theorem 8. Let ABCD be a quadrilateral. If ABCD is not a Darboux butterfly then
the discrete bicycle monodromy about the quadrilateral is elliptic for ` ∈ (0, r1 − r2) ∪
(r1 + r2,∞), hyperbolic for ` ∈ (r1 − r2, r1 + r2), and parabolic for ` = r1 ± r2. For `
in the hyperbolic or parabolic range, the discrete bicycle correspondence is induced by a
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point A′ ∈ C2, as described in Proposition 4.1. If ABCD is a Darboux butterfly then
the monodromy is the identity. For every starting point A′, there exists a circle (or
straight line) C2 that passes through A′, and the discrete bicycle correspondence is again
described by Proposition 4.1.

Proof. If ` ∈ [r1 − r2, r1 + r2] then there exist two points A′ ∈ C2 such that |AA′| = `
(these two points coincide for ` = r1 ± r2), and Proposition 4.1 describes the discrete
bicycle transformation.

Conversely, assume that A′B′C ′D′ is a discrete bicycle transformation of ABCD.
Let l1, l2, l3 and l4 be the perpendicular bisectors of the segments A′B,B′C,C ′D and
D′A, respectively. Let Ri be the reflection in the line li, i = 1, 2, 3, 4. By definition of
the bicycle monodromy,

B′ = R1(A), C ′ = R2(B), D′ = R3(C), A′ = R4(D),

see Figure 9. Note also that

B = R1(A′), C = R2(B′), D = R3(C ′), A = R4(D′).

We claim that the lines l1, l2, l3, l4 are concurrent (as a particular case, the four lines
may be parallel).

Consider the composition F = R3◦R2◦R1: it is either a reflection or a glide reflection.
We claim that the former is the case. Two given congruent line segments AA′,D′D are
related by just one odd isometry. Since AA′D′D is an isosceles trapezoid, this isometry
is a reflection.

Since R3 ◦R2 ◦R1 is a reflection, the lines l1, l2 and l3 are concurrent. Applying the
same argument to l2, l3, l4, we conclude that all four lines are concurrent.

To fix ideas, let us assume that the intersection point of the lines l1, l2, l3, l4 is finite
(the case of parallel lines is similar). Denote this point by Q. We claim that Q = O,
the circumcenter of the quadrilateral ABCD.

Indeed, R2 ◦ R1(A) = C, hence Q lies on the perpendicular bisector of the diagonal
AC. Likewise, R3 ◦ R2(B) = D, hence Q lies on the perpendicular bisector of the
diagonal BD. Thus Q = O.

Since A′ = R1(B), it follows that A′ ∈ C2, and we are in the situation of Proposition
4.1.

It remains to consider the case of a Darboux butterfly. For any starting point A′,
we can find a circle C2 through A′, B and D with the center O on the perpendicular
bisector of the segments AC and BD. Then another circle C1, centered at O, passes
through A and C, and we are in the situation described in Proposition 4.1. 2

Remark 5.2. The preceding argument provides an alternative proof of the fact that
the monodromy of a Darboux butterfly is the identity for all `.

We now discuss an application of Theorem 8 to the following problem in “bicycle
mathematics”. Suppose one is given two closed curves, the front and rear bicycle tracks.
Can one always determine in which direction the bicycle went? Usually, one can, but
sometimes one cannot: consider, for example, two concentric circles.

Describing such pairs of “ambiguous” bicycle tracks is an interesting and difficult
problem, and only partial results are available. This problem is equivalent to Ulam’s
problem of describing uniform (2-dimensional) bodies that float in equilibrium in all
positions. We refer to [3, 4, 8, 18, 19] for the literature on this intriguing topic.
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A discrete version of this problem was introduced in [15]. Define a bicycle (n, k)-gon
as an equilateral n-gons whose k-diagonals have equal length. More precisely, if the
polygon is V1V2 . . . Vn then we require that ViVi+1Vi+k+1Vi+k be a Darboux butterfly
for all i (as usual, the indices are understood cyclically). The problem is to describe
bicycle (n, k)-gons, in particular, to determine for which pairs (n, k) such a polygon
must be regular. See also [6, 7].

For example, it is shown in [15] that bicycle (n, 2)-gons, (2k+ 1, k)-gons, and (3k, k)-
gons are regular. On the other hand, an example of a non-regular bicycle polygon
is shown in Figure 12. This construction generalizes to all pairs (n, k) and yields 1-
parameter families of bicycle (n, k)-gons with even n and odd k. Note that the even
and the odd vertices of a polygon in Figure 12 lie on two concentric circles and that the
polygons have dihedral symmetry.

h

Figure 12. A bicycle (12, 3)-gon: h is a parameter of the construction

Let ` be the length of the k-diagonal of a bicycle (n, k)-gon, and let S be the cyclic
relabeling of the vertices: Vi 7→ Vi+1. One can restate the definition in terms of the
discrete bicycle transformation T`: V is a bicycle (n, k)-gon if T`(V ) = Sk(V ).

The next result is a further step toward classification of bicycle polygons.

Theorem 9. If k is even then a bicycle (4k, k)-gon is regular. If k is odd then the
even vertices of a bicycle (4k, k)-gon are equally spaced on a circle and its odd vertices
are equally spaced on a concentric circle, that is, the polygon is obtained from a regular
2k-gon by the construction depicted in Figure 12.

Proof. Given a bicycle (4k, k)-gon V , consider the rhombus V0VkV2kV3k. The dis-
crete bicycle transformation with the length parameter V0V1 takes this rhombus to
V1Vk+1V2k+1V3k+1, to V2Vk+2V2k+2V3k+2, and so on.

Let O be the center of the rhombus V0VkV2kV3k, and let C1 and C2 be the concentric
circles centered at O such that V0, V2k ∈ C1 and Vk, V3k ∈ C2. By Corollary 4.2, all the
consecutive rhombi are congruent, and V1 ∈ C2, V2 ∈ C1, V3 ∈ C2, V4 ∈ C1, etc.

Therefore, if k is even, then Vk ∈ C1, and hence C1 = C2. It follows that the rhombus
is a square and V is a regular 4k-gon. If k is odd then the even vertices of V form a
regular 2k-gon inscribed into C1, and the odd ones form a regular 2k-gon inscribed into
C2. Thus V is obtained from a regular 2k-gon by the construction in Figure 12. 2

Acknowledgments. We have discussed the discrete bicycle transformation with
many a mathematician, and we are grateful to them all. In particular, it is a pleasure to



ON THE DISCRETE BICYCLE TRANSFORMATION 219

acknowledge interesting discussions with I. Alevi, A. Bobenko, T. Hoffmann, U. Pinkall,
B. Springborn, Yu. Suris, and A. Veselov. This project originated during the program
Summer@ICERM 2012; we are grateful to ICERM for support and hospitality. S. T.
was partially supported by the NSF grant DMS-1105442.

References

[1] V. Adler, Cutting of polygons. Funct. Anal. Appl. 27 (1993), 141–143.
[2] V. Adler, Integrable deformations of a polygon. Phys. D 87 (1995), 52–57.

[3] J. Bracho, L. Montejano, D. Oliveros, A classification theorem for Zindler carrousels. J. Dynam.

Control Systems 7 (2001), 367–384.
[4] J. Bracho, L. Montejano, D. Oliveros, Carousels, Zindler curves and the floating body problem.

Period. Math. Hungar. 49 (2004), 9–23.
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Abstract. The stability of a discrete-time complex network-based Markov process
model for virus spreading with quarantine is studied on the basis of a (S → I → Q →
S) state automaton. Size independent spectral properties of the underlying nonlinear
dynamics are identified, and conditions for extinction are derived in dependence of
quarantine rates, infection probability, recovery and interaction rate. Numerical
simulations are presented to illustrate the underlying basic bifurcation behavior,
whose understanding is the first step towards the development of adequately tailored
control strategies for these kind of problems.

1. Introduction

One of the main concerns when having to face the spread of infectious diseases is
how to control their propagation. Historically, many methods have been proposed for
this end, as for instance, the isolation of the infected individuals, or in other words
introducing quarantine [1],[2],[3],[4],[5].

Modeling the spread of infectious diseases among individuals has been a relevant
problem during many years.. In their classical work Kermack and McKendrick [6] gave
birth to the so called SIR model that divides the population in three different compart-
ments or groups: Susceptible individuals, i.e. healthy individuals that are capable of
contracting the disease, Infective individuals that have contracted the disease and are
the agents to transmit and spread the disease, and Removed (or Recovered) individuals
that were infected but become immune or died. As many infections do not confer any
immunity, a simplified version of the SIR model was created, the so-called SIS model.
In this model, the total population N is divided in two groups or compartments, the
group of susceptible individuals S and the the group I of infectious individuals.

In the field of computer virus propagation, Kephart and White proposed one of the
first models [7, 8], the so-called homogeneous model in which communications among
individual computers (nodes) were modeled by directed graphs (symbolizing connection).
Using a rate of infection and a death rate they were able to calculate the infection
threshold. One of the main flaws in this theory was supposing the network homogeneity.
Experimental evidence shows hat real world computer networks are not homogeneous
and follow a power law structure instead [9, 10]. That means that the number of
connections (the degree k of the node) the different nodes may have, follow a distribution
of the form P (k) ∝ k−γ where γ is known as the power-law exponent. In this kind of
networks, there exist nodes with very high connectivity, but the majority of the nodes
have low connectivity.
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Authors like Pastor-Satorras and others have extensively studied infection spread in
these kind of networks [11, 12, 13, 14, 15], using the model developed by Barabasi and
Albert [16]. Nevertheless, their results are rather concerned with the case of γ = 3
what does not hold for many networks.

Using also the Mean Field Approximation Model (MFA), that consider nodes with
the same degree as dynamically equivalent , they were able to calculate the epidemic
threshold . Although this approach is quite interesting, it is not applicable in many
realistic cases because nodes with the same degree not necessarily behave the same way
.

The use of complex and dynamical networks on the other hand provided a new impulse
in modeling that give new insights in understanding the dynamics of infectious diseases
[17, 18].

The notion of epidemics can be defined as an outbreak of a disease over a short time
period. The disease is called endemic if it persists in a population over a long period
of time. In [1] six modifications of standard SIS and SIR endemic models are proposed
that include a class Q of quarantined and isolated individuals that do not infect the
susceptible individuals in class S. When the members of S become infected they pass
to the class I, and after a period of time some of them return to S while others are
transferred to the class Q and remain there until they are no longer infectious. This
model is called SIQS. In another type of the model proposed in [1] permanent immunity
is conferred by transferring the infected individuals to a class R of recovered individuals.
Additionally births, natural deaths and immigration effects are considered that produce
a growth of the set S of susceptible individuals. These modifications of the model yields
a variable size of the total population. Under these new conditions the thresholds as
well as the associated equilibria and their stability are studied.

In [3] models of infectious disease are developed that incorporate the movement of
individuals over a range of spatial scales. A general model for a disease that can be
transmitted between different species and multiple patches is proposed, and the behavior
of the system is studied for the case that the spatial component consists of a ring of
patches. The influence of various parameters on the spatial and temporal spread of
the disease is numerically analyzed, and focus is spent on quarantine in the form of
travel restrictions. Furthermore it was remarked that very often mathematical models
of disease spread tend to ignore spatial dynamics , unless the spatio-temporal spread
of epidemic diseases was noticed early on since Athens in 430 B.C. It was highlighted
that at a local scale, contacts between infective and susceptible individuals lead to
the propagation of the epidemics, but in a larger scale, it is through contacts between
individuals living in distinct regions that a disease becomes spatially mobile and then the
problem becomes more complex. To model mathematically the spread of a disease under
such circumstances partial differential equations are frequently used and the problem is
approached as a diffusion phenomena. Typical assumptions are that (i) there is diffusion
of infection-bearing individuals in a susceptible population, and (ii) the receptors of the
disease are fixed and the infectious agent diffuses among them.

The diffusion mathematical approach is not well adapted to some situations as can be
those concerning the spread of disease through sparsely populated regions, with several
species having distinct rates of mobility and different migration patterns. One example
of this last situation is the propagation of the bubonic plague or the avian influenza.
For more details of their mathematical model see [3].
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In [19] it is mentioned that in absence of vaccines or medicines a good method for try-
ing to control the propagation of a disease is the quarantine by isolation. One epidemic
of this kind is the SARS(Severe acute respiratory syndrome). Their paper discusses the
application of the optimal quarantine and isolation strategies for SARS outbreak control
via the Pontryagins Maximum Principle. They construct a multigroup SARS transmis-
sion model for traveling population and introduce pairs of control variables in terms of
the quarantine and isolation strategies. A number of infected individuals and a linear
cost and a quadratic cost on the controls are imposed. Based on that the SARS disease
spreading is simulated and the results obtained enablethe illustration of the importance
of the early quarantine and isolation strategies, and the necessity of the observation
and quarantine of travelers to control the outbreaks of epidemics. They claim that the
early quarantine and isolation strategies, as well as the observation and quarantine of
travelers, are critically important to contain the epidemics.

On the other side many research efforts has been done during the last ten years con-
cerning the application of these mathematical models in the behavior of other complex
networks as for instance the internet. Recently with the constant augmentation in the
number of internet users as well as the growth in the complexity of such networks [16],
[20], [9],[21], [22] new security problems have appeared [23], [12], [13], [14], [24] in the
scene and there is a lack of adequate security methods for facing attacks under this
new setting. These new environments are for instance the P2P networks, sensor net-
works, social nets or wireless networks, where information is to be stored, generated
and retrieved. So under this new environments it can be very important to study and
model how the information is spread or how to keep the spreading of a virus under
control in such a way that the information remains being useful under these vulnerable
circumstances. In [18], [25] it is studied the problem of information survival threshold
in sensor and P2P networks, modeling the problem as a non-linear dynamical system
and using fixed point stability theorems [26]. A closed form solution is obtained that
depends on an additional parameter, the largest eigenvalue of the dynamical system
matrix. In sensor networks for instance, the nodes can loss their communication links
and the nodes can stop working because of a system failure produced by a virus infection
and quarantine process or a system maintenance procedure. Under such conditions they
try to answer the question under what conditions a datum can survive in a network.
Given that the nodes as well as the links can fail with some probability the obvious
model can be a Markov chain, but such a model can grow in complexity very quickly
because the number of possible states becomes 3N where N is the number of states. To
avoid this mathematical problem, one alternative is to model the system as a non-linear
dynamical system.

Concerning the modalities of contact that we are going to take into account in our
mathematical model and simulations we can mention the following ones [17]:

• Contact process , i.e. each node intends once to contact each neighbor (and
hence there is a contact probability)

• Reactive process , i.e. each node intends infinitely many times to contact each
neighbor (and hence the contact probability is equal to one)

• Intermediate types of contact.

In this work, we follow the theoretical framework for contact-based spreading of
diseases in complex networks [17, 18] with additional quarantine state. Our formula-
tion is based on probabilistic discrete-time Markov chains and applies to weighted and
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Figure 1. State transition diagram associated to the SIQS mechanism.

unweighted complex networks. Within this context it is possible to quantify the micro-
scopic probabilistic dynamics at the individual level. Global virus extinction conditions
are derived for the three-state Markov process including susceptible-infected-quarantine
states, thus generalizing the ones reported in previous studies on SIS dynamics [17, 18].
The theoretical findings are illustrated and corroborated with numerical simulations.
The presented results may constitute the basis for future development of immunization
and vaccination policies.

The paper is organized as follows: In Section 2, the mathematical model for the SIQ
process is introduced and the associated fixed points are identified. In Section 3, global
extinction conditions are derived and discussed in the light of previous ones reported for
the SIS process. In Section 4, numerical simulation studies are presented that illustrate
the theoretical results developped in Section 3. In Section 5, conlusions are presented.

2. The SIQ Model

In this section the SIQ model is presented and the associated fixed points are identi-
fied.

2.1. Model equations. Considering the classic SIS model for virus spread in com-
plex networks [17, 18] with intermediate quarantine state Q as illustrated in the state
automata depicted in Figure 1, the following mathematical model is obtained as an
adaptation from [17, 18]:

si(t+ 1) = ζi(t)si(t) + µqi(t)
pi(t+ 1) = (1− τ)pi(t) + (1 − ζi(t))si(t)
qi(t+ 1) = τpi(t) + (1− µ)qi(t)

, i = 1, . . . , N (1)

si(t) + pi(t) + qi(t) = 1 (2)

where si(t) is the probability of being susceptible at time t,

ζi(t) =
∏

j 6=i

[1− βrijpi(t)] (3)
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is the probability of not being infected by any neighbor, β is the probability of infection
during a single contact,

rij = aij(t)


1−

(
1− 1

∑N
i=1 Aij

)λ

 (4)

[17] is the connection probability which depends on the number of contact intents (or
interaction rate) λ, with A ∈ RN×N being the time-varying adjacency matrix represent-
ing interconnections between the N nodes of the network. pi is the probability of being
infected, τ the internment probability associated to quarantine, qi is the probability of
being in quarantine, and µ is the recovery rate.

The interconnection type model (4) is a generalization of the two classical cases: (i)
the contact process (with λ = 1) for which in each time step exactly one contact is
established between connected nodes, and (ii) the reactive process (with λ → ∞) where
any connected nodes are in continuous contact. The maximum value rij = 1 is attained
for the reactive process. Obviously, the spectral properties of the associated matrix

R = {rij}i,j (5)

will depend on the interaction rate λ, and consequently the dynamic behavior of the
solutions of (1) shall depend on λ as well.

Given the conservation-like property (2), it can be easily seen that, for any node i,
all the trajectories of the dynamics (1) are constraint to the triangle set (see Figure 2)

T = {x ∈ [0, 1]3 : 1 + x1 + x2 + x3 = 0}. (6)

Obviously the same is true for the mean probabilities

ρs =
1

N

N∑

i=1

si, ρp =
1

N

N∑

i=1

pi, , ρq =
1

N

N∑

i=1

qi. (7)

Solving the equation (2) for si followed by substitution into the dynamics equations
(1), the following effective dynamics is obtained

pi(t+ 1) = (1− τ)pi(t) + (1− ζi(t))(1 − pi(t)− qi(t))
qi(t+ 1) = (1 − µ)qi(t) + τpi(t)
si(t) = 1− pi(t)− qi(t).

, i = 1, . . . , N (8)

2.2. Fixed points. Subtitute the fixed-point relation

pi(t+ 1) = pi(t) = pi, qi(t+ 1) = qi(t) = qi, si(t+ 1) = si(t) = 1− pi − qi (9)

into the dynamics equations (8) to obtain

0 = −τpi + (1− ζi)(1 − pi − qi)

0 = −µqi + τpi,

si = 1− pi − qi,

ζi = Πj 6=i[1− rijβpj ].

Solving the second equation for qi and substituting the result into the first equation
yields

qi =
τ

µ
pi, pi =

1− ζi
τ + (1 + τ/µ)(1 − ζi)

The solution for si follows directly from the above equations.
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Figure 2. Triangle set T (6) containing all trajectories possible for any
node i with extinction state xe (11) (lower left vertex), and the second
fixed point which moves with decreasing ω towards xe.

Introducing the factor

ωi = (1− ζi) (10)

the fixed-points are given by

xi = [pi, qi, si]
′ =

[
µωi

µτ + (µ+ τ)ωi
,

τωi

µτ + (µ+ τ)ωi
,

µτ

µτ + (µ+ τ)ωi

]

where ωi = 1 − ζi. From this equation, we can identify two solutions, the extinction
state

xe = [0, 0, 1]′ (11)

for ωi = 1− ζi = 0, and a survival state xs 6= 0 for 0 < ωi = 1− ζi ≤ 1. Obviously, the
maximum value for ωi is 1, with associated fixed point

x∗ = (p∗, q∗, s∗) =

(
µ

µ+ τ + µτ
,

τ

µ+ τ + µτ
,

τµ

µ+ τ + µτ

)
(12)

This fixed point is the same for any node i and moves towards xe for decreasing ωi (see
Figure 2), with xsi not necessarily being equal to xsj for i 6= j when 0 < ωi < 1.

3. System dynamics

In this section, the basic dynamic properties of system (1) are analyzed and sufficient
conditions for the global asymptotic stability of the extinction state are derived.

As an illustrative step, consider the dynamics of trajectories born close to the extinc-
tion state xe, meaning that

pi(t) ≈ ǫi(t), qi(t) ≈ θi(t), 0 ≤ ǫi, θi ≪ 1. (13)
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Substituting (13) into the dynamics (8) and neglecting higher order terms, the following
local approximation is obtained

ǫi(t+ 1) ≈ β
∑

j 6=i rijǫi(t) + (1− τ)pi(t)

θi(t+ 1) ≈ τǫi(t) + (1− µ)θi(t)
(14)

or equivalently in vector form
[

ǫ(t+ 1)
θ(t+ 1)

]
≈
[

(1− τ)IN + βR 0
τIN (1− µ)IN

] [
ǫ(t)
θ(t)

]
(15)

where

ǫ(t) = (ǫ1(t), . . . , ǫN (t))′, θ(t) = (θ1(t), . . . , θN (t))′. (16)

This linear dynamics are asymptotically stable if and only if the eigenvalues of the
associated matrix

A =

[
(1 − τ)IN + βR 0

τIN (1 − µ)IN

]
(17)

are contained in the open unit circle, i.e.

eig(A) ∈ C1 = {ω ∈ C : |ω| < 1}. (18)

In terms of the quadratic form associated to the matrix A, this condition is equivalent
to

〈x,Ax〉 < 〈x, INx〉 , (19)

or equivalently,

〈x, (I−A)x〉 > 0 (20)

Given the triangular structure of the matrix A (17), this last condition holds if

τ > βmax |eig(R)|, µ > 0. (21)

Note that this condition is necessary and sufficient for local stability. Actually, given
that for small values of ε the dynamical behavior is dominated by the linear dynamics
(15), if the eigenvalues of the matriz A are positive, the linear, and hence the nonlinear
dynamics are unstable.

As a preliminary step towards the derivation of global stability conditions, consider
the following Lemma.

Lemma 1. The following bound holds for the probability of being infected (3)

1− ζi(t) ≤ β
∑

j 6=i

rijpj(t). (22)

Proof: Given that 0 ≤ β, rij , pj ≤ 1 the following holds:

ζi(t) =Πj 6=i[1− βrijpj(t)] = 1− β
∑

j 6=i

rijpj(t) +O2(p)−O3(p)

≥1− β
∑

j 6=i

rijpj(t).

QED.
The next theorem generalizes the preceding local result for the extinction fixed point

stability, and states sufficient conditions for the global extinction.
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Theorem 1. Consider the SIQ model (1). The extinction state xe = (1, 0, 0)′ (11) is a
global attractor for any node i in the set T if the following conditions hold

τ > βmax |eig(R)|, µ > 0. (23)

If τ < βmax |eig(R)| and µ ≥ 0, the extinction state state is a repulsor.

Proof: Write the dynamics (8) in vector form
[

p(t+ 1)
q(t+ 1)

]
=

[
(1− τ)IN 0

τIN (1− µ)IN

] [
p(t)
q(t)

]
+

[
φ(t)
0

]
(24)

where

p(t) =(p1(t), . . . , pN (t))′, q(t) = (q1(t), . . . , qN (t))′,

φ(t) =[(1 − p1 − q1) (1− ζ1 (t)) , . . . , (1− pN − qN ) (1− ζN (t))]′.

According to the Lemma 1, the solutions of the global nonlinear p-dynamics in (24)
are bounded as follows

pi(t+ 1) =(1 − τ)pi(t) + (1− pi(t)− qi(t))[1 − ζi(t)]

=(1 − τ)pi(t) + [1− ζi(t)]

≤(1 − τ)pi(t) + β
N∑

j=1

rij(t)pj(t)

implying that the solutions pi(t) are bounded by solutions of the linear dominating
dynamics, i.e.

pi(t) ≤ zi(t), zi(t) = (1− τ)zi(t) + β

N∑

j=1

rij(t)zj(t), i = 1, . . . , N. (25)

In vector notation (with z2i = qi), the linear dominating dynamics are given by
[

z1(t+ 1)
z2(t+ 1)

]
=

[
(1− τ)IN+βR 0

τIN (1− µ)IN

] [
z1(t)
z2(t)

]
. (26)

or equivalently,

z(t+ 1) = Az(t), z(t) = (z′1(t), z
′
2(t))

′ (27)

with A given in (17). By virtue of this bound for the right hand side of the nonlinear
dynamics (24), the following holds

[
p(0)
q(0)

]
=

[
z1(0)
z2(0)

]
⇒

∣∣∣∣
∣∣∣∣
[

p(t)
q(t)

]∣∣∣∣
∣∣∣∣ ≤

∣∣∣∣
∣∣∣∣
[

z1(t)
z2(t)

]∣∣∣∣
∣∣∣∣ ∀ t ≥ 0. (28)

This in turn implies that

lim
t→∞

||(z′1(t), z′2(t))′)|| = 0 ⇒ lim
t→∞

||(p′(t), q′(t))′|| = 0. (29)

On the other hand, the linear dynamics (27) are asymptotically stable if the conditions
(21) hold. Consequently, the conditions (23) are sufficient for the global asymptotic
stability of the extinction state xe (11).

The second affirmation follows directly from the analysis of the linearization (15).
QED.

It is noteworthy that the first condition (23) of Theorem 1 is the one corresponding to
the extinction condition for the SIS dynamics relating the recovery rate to the infection
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rate, reported in several studies (see [17, 18] and references therein), but with one
important difference: here, the recovery parameter µ is involved only in the second
condition, while the first one relates the rate of internment of infected nodes τ and the
infection probability (depending on β and R).

When the first condition of Theorem 1 is satisfied, and µ > 0, the rate of conver-
gence to the extinction state will depend on the difference between τ and the prod-
uct βmax eig(A), as well as the value of µ, in the sense that for larger values of
τ − βmax eig(A) and µ the convergence is faster than for small values. This follows
directly from the triangular form of the dynamics matrix A (17) and the fact that the
associated linear dynamics represents introduces an upper bound (27) for the nonlinear
dynamics (8).

4. Numerical simulations

In order to illustrate the preceding theoretic assessments, in this section numerical
simulation results are presented for a population of N = 10.000 nodes and four repre-
sentative cases:

(1) (τ, β, µ, λ) = (0.6, 0.15, 0.5, 1) satisfying the stability conditions (23) and illus-
trating their sufficiency.

(2) (τ, β, µ, λ) = (0.6, 0.5, 0.5, 1): (i) illustrating the sufficiency of the conditions
(23), and (ii) verifying the improved convergence rate.

(3) (τ, β, µ, λ) = (0.6, 0.15, 0.5, 1.5) violating the stability conditions (23) due to an
increment in the maximum eigenvalue of the matrix R (5).

(4) (τ, β, µ, λ) = (0.45, 0.15, 0.5, 1) violating the stability condition (23) due to in-
sufficient internment rate τ .

The variables represented in the figures are the mean probabilities of being susceptible
(ρs), infected (ρp), and in quarantine (ρq) (7).

4.1. Extinction cases. The simulation results corresponding to the parameter set

(τ, β, µ, λ) = (0.6, 0.15, 0.5, 1) (30)

are shown in Figure 3, illustrating the global convergence to the extinction state xe (in
the origin of the (ρs, ρq)-phase portrait).

For comparison purposes, in Figure (4) are presented the trajectories for the param-
eters τ, β, λ given in (30) and two different values of µ: (i) µ1 = 0.15 (black line), and
(ii) µ2 = 0.5 (grey line), and initial conditions pi(0) = si(0) = 0.1, qi = 0.9 i = 1, . . . , N .
The simulations illustrate that the convergence rate becomes about three times faster
with increasing recovery rate µ2 ≈ 3µ1, in accordance to the theoretical developments
presented in section 2.2.

4.2. Non-extinction cases. For the purpose of illustrating the necessity of the condi-
tion pair (23) first consider the parameter set

(τ, β, µ, λ) = (0.6, 0.15, 0.5, 1.5) (31)

which is different from the previous one (30) due to a higher interaction rate λ in the
generalized interaction process mechanism (4). The corresponding simulation results are
presented in Figure 5, showing the projection of the trajectories onto the (ρp, ρq)-phase
plane. As can be seen in Figure 5, due to the higher interaction rate, the extinction
state is not reached and the virus survives in the network. This is due to the fact that
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Figure 3. Projection onto the (ρp, ρq)-phase plane of the trajectories
associated to the parameter set (30).
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Figure 4. Time evolution of the mean probability ρs of being suscep-
tible for (τ, β, λ) as given in (30) and two different values of the recovery
rate; µ1 = 0.15 (discontinuous black curve), and µ2 = 0.5 (continuous
grey curve).
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Figure 5. Projection onto the (ρp, ρq)-phase plane of the trajectories
associated to the parameter set (31).

the eigenvalue of the matrix R (5) increased with the increase in λ and the threshold
condition (23) is violated.

Next, to illustrate the influence of the relation between τ and β consider the parameter
set

(τ, β, µ, λ) = (0.45, 0.15, 0.5, 1) (32)

which distinguishes from the first one (30) in that τ < β. The projection of the corre-
sponding trajectories onto the (ρp, ρq)-phase plane are shown in Figure 6, illustrating
that the extinction state xe is not reached. This behavior is due to the fact that the
threshold condition (23) is violated due to an insufficient internment rate τ .

These simulation result illustrate the necessity of the threshold condition (23) and
the complex interplay between the system parameters τ, β, λ.

5. Conclusions

The stability of virus transmission in free-scale networks with quarantine mechanism
was analyzed. Extinction conditions were derived which are structurally independent
of the population size. This analysis provides basic knowledge about the structural de-
pendence of the virus propagation on the internment rate associated to quarantine, and
identifies the complex interplay between internment rate, recovery rate, infection prob-
ability and interaction frequency (the number of intents made by each node to contact
its neighbors). Some basic properties of the associated system spectrum and the basic
bifurcation behavior were identified, and numerical simulation studies were presented to
illustrate the theoretical findings. The presented analysis is an important preliminary
step for the design of control strategies in order to identify optimal quarantine politics.
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Figure 6. Projection onto the (ρp, ρq)-phase plane of the trajectories
associated to the parameter set (32).
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BREAKING NONLINEARITY WITH PARTIAL BLEACHING

SIMPLIFIES THE ANALYSIS OF BIOMOLECULE TRANSPORT

OBSERVATIONS IN INTACT CELLS.

EMILIANO PÉREZ IPIÑA AND SILVINA PONCE DAWSON

Abstract. Diffusion is one of the main transport processes that occur inside cells

determining the spatial and time distribution of relevant action molecules. In most

cases these molecules not only diffuse but also interact with others as they get trans-
ported. Under certain conditions the net resulting transport is still approximately

diffusive but with an effective (concentration-dependent) rather than free diffusion

coefficient. By fluorescently-labeling the biomolecules it is possible to use optical
techniques to infer the rate at which this net transport occurs in intact cells. In-

terpreting the experimental results is complicated since effective coefficients are not

unique. In this paper we discuss how some coefficients are derived from intrinsically
linear problems while others are not. We then show how, when probing transport in

intact cells with optical techniques, we can obtain one or another type of coefficient
by partially bleaching the population of tagged biomolecules. This provides a useful

tool to extract more quantitative information from a living system with minimum

disruption.

1. Introduction

Diffusion is key to many physiologically relevant processes. The transport of infor-
mation within cells usually involves changes in the concentration of signaling agents.
These messengers most likely diffuse inside the cells but also interact with other species
as they move. By fluorescently-labeling the messengers it is possible to use optical tech-
niques to infer their transport rate in intact cells. Ideally, one would be willing to follow
individual molecules as they get transported. However, this is not possible in many
relevant cases. The problem then becomes nonlinear since the biomolecules compete for
the same interacting partners. This is reflected in the fact that the net transport over
a sufficiently large observation volume is characterized by effective diffusion coefficients
that depend on free diffusion coefficients, reaction rates and concentrations. As shown
in [4], effective coefficients are not unique. The single molecule coefficient, Dt, deter-
mines the time-dependence of a single (tagged) molecule mean-square displacement. The
collective coefficient, Du, determines the rate at which concentration inhomogeneities
spread out with time. They are both concentration-dependent weighted averages of the
free diffusion cofficients of the species involved but they can take on arbitrarily different
numerical values depending on the problem. In this paper we discuss how the single
molecule coefficient is derived from intrinsically linear problems while the collective one
comes from a nonlinear problem that is subsequently linearized. We then show how,
when probing transport in intact cells with optical techniques, we can obtain one or the
other coefficient by partially bleaching the population of tagged biomolecules.

Two optical techniques that are commonly used in intact cells to estimate diffusion
coefficients of biomolecules are Fluorescence Recovery After Photobleaching (FRAP) [1]

234
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and Fluorescence Correlation Spectroscopy (FCS) [2]. In FRAP the fluorescence is
bleached (“deleted”) inside a region and from its subsequent recovery the rate at which
marked biomolecules diffuse back into the region can be inferred. FCS monitors flu-
orescence fluctuations in a small observation volume. Computing the autocorrelation
function of the fluctuations around the mean the correlation timescales can be inferred
and the diffusion coefficients associated to them can be derived. These techniques give
either free or effective coefficients depending on whether the tagged biomolecules diffuse
freely or interact with partners. As shown in [3, 4], FRAP gives Dt and as shown in [5],
FCS gives Du and, in certain cases, Dt as well [5]. In what follows we show in which
circumstances the transport dynamics is described by either one of these coefficients and
how partial photobleaching allows to “highlight” one or the other experimentally. To
this end we consider the simplest possible model which still gives an useful insight into
a problem of great relevance for the quantitation of biological observations.

2. The underlying biophysical model

We consider the simplest possible model with species that diffuse and react, some
of which are fluorescent. Namely, we assume that there are free particles, Pf , “traps”
or binding sites, S, and bound particles, Pb. Free and bound particles can either be
tagged (i.e., fluorescent, indicated with the superscript t) or untagged (indicated with
the superscript u). Both tagged and untagged particles interact with S according to the
scheme:

P tf + S
kon←−−→
koff

P tb ,

Puf + S
kon←−−→
koff

Pub .(1)

Free particles, bound particles and traps diffuse with free coefficients Df , DS and DS ,
respectively. It is implicit in the latter that S is massive enough so that the diffusion rate
of a single S molecule or of a bound particle, Pb, is the same. The evolution equations
for the concentrations, P tf , P tb , Puf , Pub and S, are then given by:

∂P tf
∂t

= Df∇2P tf − konP tfS + koffP
t
b ,

∂P tb
∂t

= DS∇2P tb + konP
t
fS − koffP tb ,

∂S

∂t
= DS∇2S − kon(P tf + Puf )S + koff (P tb + P tb ),

∂Puf
∂t

= Df∇2Puf − konPuf S + koffP
u
b ,

∂Pub
∂t

= DS∇2Pub + konP
u
f S − koffPub .(2)

Both for FRAP and FCS the spatially uniform equilibrium solution, Pfeq, Pbeq, Seq, is
relevant. It satisfies:

PfeqSeq = KDPbeq,

Pfeq + Pbeq = PT ,

Seq + Pbeq = ST ,(3)
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where KD ≡ koff/kon and PT and ST are the total concentrations of particles and
binding sites, respectively. Tagged and untagged equilibrium concentrations are such
that Pfeq = P tfeq+Pufeq, Pbeq = P tbeq+Pubeq, P

t
feqSeq = KDP

t
beq, and PufeqSeq = KDP

u
beq.

2.1. The equations of FCS. FCS monitors fluorescence fluctuations in a small obser-
vation volume which is determined by how the sample is illuminated. From the analysis
of these fluctuations it is possible to estimate the rate at which the fluorescent species
and its interacting partners enter and leave the observation volume. In order to quantify
these rates it is necessary to have a theoretical model of the main quantity that is ob-
tained with the experiments (the auto-correlation function). In the theory, the intensity
distribution of the illumination spot is assumed to be given by:

(4) I(r) = I(0)e
− 2r2

w2
r e
− 2z2

w2
z ,

where I(0) is the illumination intensity at r = 0, (r, z) are cylindrical coordinates with
z the spatial coordinate along the beam propagation direction and r a radial coordinate
in the perpendicular plane. wz and wr are the sizes of the beam waist along z and
r respectively, in general, wz > wr. The fluorescence collected from the illuminated
volume at any given time, F (t), is then related to the number of fluorescent molecules
that are inside the volume at that time. To be more specific, in the case of the simple
model considered in this paper, F (t) is given by:

(5) F (t) =

∫
QI(r)

(
P tf (r, t) + P tb (r, t)

)
d3r,

if both free and bound particles have the same photophysical properties. In Eq. (5) the
concentrations are computed at time, t, and spatial point, r and the parameter, Q, takes
into account the detection efficiency, the fluorescence quantum yield and the absorption
cross-section at the wavelength of excitation of all the fluorescent particles.

Fluctuations around the mean fluorescence, 〈F (t)〉, are characterized by the time-
averaged autocorrelation function (ACF) which is given by:

(6) G(τ) =
〈δF (t)δF (t+ τ)〉

〈F (t)〉2 ,

where δF (t) = F (t) − 〈F (t)〉. For the model considered here, an expression for G(τ)
can be written in terms of the solutions of Eqs. (2) linearized around the equilibrium
solution. These linearized equations read:

∂δP tf
∂t

= Df∇2δP tf − kon(SeqδP
t
f + P tfeqδS) + koffδP

t
b ,(7)

∂δP tb
∂t

= DS∇2δP tb + kon(SeqδP
t
f + P tfeqδS)− koffδP tb ,(8)

∂δS

∂t
= DS∇2δP tb − kon(SeqδPf + PfeqδS) + koffδPb,(9)

∂Puf
∂t

= Df∇2δPuf − kon(SeqδP
u
f + PufeqδS) + koffδP

u
b ,(10)

∂δPub
∂t

= DS∇2δPub + kon(SeqδP
u
f + PufeqδS)− koffδPub ,(11)

where Pf = P tf + Puf , Pb = P tb + Pub , δP t,uf,b = P t,uf,b − P t,uf,b,eq and δS = S − Seq.

In order to compute G(τ) the solution of Eqs. (7)–(11) is computed in Fourier space
and written in terms of branches of eigenvalues, λ(q), and eigenvectors, χ(q), where q
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is the wavenumber vector, i.e., the variable in Fourier space conjugate to the spatial
coordinate, r [6, 5]. If all particles are fluorescent (i.e, if Puf = Pub = 0 and Pf = P tf ,

Pb = P tb + Pub ), the dynamics is described by Eqs. (7)–(9) with Pf = P tf and Pb = P tb .
Fitting the theoretical ACF to the one derived from the experiments it is possible to
infer a series of timescales from which some transport rates can be estimated.

2.2. The equations of FRAP. In FRAP the system is at equilibrium and, at t = 0,
the fluorescence in a region is turned off (the particles are bleached by means of a very
intense laser beam). From the point of view of the system variables this means that
P tf (t = 0) = P tb (t = 0) = 0 in the photobleached region. The equilibrium condition,

on the other hand, implies that Puf (t = 0) + P tf (t = 0) = Pfeq everywhere in space.

Thus, ∂(Puf + P tf )/∂t|t=0 = ∂(Pub + P tb )/∂t|t=0 = ∂S/∂t|t=0 = 0 so that S = Seq,

Puf + P tf = Pfeq, and Pub + P tb = Pbeq for all time. Therefore, the 5 nonlinear coupled

equations describing the evolution of Puf , P tf , Pub , P tb and S reduce analytically, as

in [3, 4], to the following linear equations:

∂P tf
∂t

= Df∇2P tf − konP tfSeq + koffP
t
b ,(12)

∂P tb
∂t

= DS∇2P tb + konP
t
fSeq − koffP tb ,(13)

∂Puf
∂t

= Df∇2Puf − konPuf Seq + koffP
u
b ,(14)

∂Pub
∂t

= DS∇2Pub + konP
u
f Seq − koffPub ,(15)

while S = Seq everywhere in space for all times. In the experiments the fluorescence
in a localized region is bleached and is subsequently monitored. From its recovery with
time the net transport rate of the fluorescent species is inferred. In order to estimate
this rate it is necessary to fit the observations with an analytical expression. The latter
can be obtained for the model by computing Eq. (5) over the observed region.

3. Effective diffusion coefficients and theories of FCS and FRAP

3.1. FCS when all particles are fluorescent. If all particles are fluorescent, the
branches of eigenvalues of Eqs. (7)–(9) are:

λ1 = −DSq
2

λ2 = −1

2

(
koff + kon(Pfeq + Seq) + (DS +Df ) q2

)
+

1

2

√
.

λ3 = −1

2

(
koff + kon(Pfeq + Seq) + (DS +Df ) q2

)
− 1

2

√
.,(16)

with
√
. =

√
(Df −DS)

2
q4 + 2q2 (Df −DS) koff (a− h) + ν2, ν = koff (a + h), a ≡

Seq/KD and h ≡ ST /Seq. Given Eqs. (3) h satisfies h = 1 + Pf/KD so that a + h =
1 + Seq/KD + Pf/KD. The first eigenvalue, λ1, corresponds to diffusion with the free
diffusion coefficient of the traps, S. The second one, in the long time or long wavelength
(q → 0) limit is also diffusive:

(17) λ2 ≈ −Duq
2
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with the effective coefficient that we call collective [4]:

(18) Du =
(koff + konPfeq)Df + konSeqDS

koff + kon (Pfeq + Seq)
=

Df +
S2
eq

KDST
DS

1 + S2
eq/(KDST )

.

This coefficient describes the long time decay dynamics of a small perturbation to the
equilibrium solution. The third eigenvalue is not diffusive and describes a rapid expo-
nential decay (λ3 ≈ −(koff + konSeq + konPfeq) for q → 0). Under the assumption
that the correlation length is much smaller than the distance between fluorescent par-
ticles so that fluctuations in the concentrations of the fluorescent species (δC1 ≡ δPf ,
δC2 ≡ δPb) satisfy 〈δCj(r, t)δCk(r, t)〉 ∝ δjkδ(r− r′), 1 ≤ j, k ≤ 2 and that fluctuations
in the number of fluorescent particles of a given species follow a Poisson distribution [6],
i.e., that 〈δCj(r, t)δCk(r, t)〉 = 〈Cj〉δjkδ(r− r′), 1 ≤ j, k ≤ 2, G(τ) can be written as:

G(τ) = G1(τ) +G2(τ) +G3(τ),(19)

G1(τ) =
GoS(

1 +
τ

τS

)√
1 +

τ

w2τS

(20)

G2(τ) =
Pfeq

4hkoffP 2
T

∫
d3q

(2π)3
e−W (q)+λ2τ ×

(
2ν +

√
.+

ν2 − (DS −Df )2q4

√
.

)
(21)

G3(τ) =
Pfeq

4hkoffP 2
T

∫
d3q

(2π)3
e−W (q)+λ3τ ×

(
2ν −√.− ν2 − (DS −Df )2q4

√
.

)
(22)

where

(23) GoS =
P 2
beq

VeffP 2
TST

,

with Veff the effective sampling volume, τS = w2
r/(4DS) and W (q) ≡ w2

rq
2
r/4 +w2

zq
2
z/4

with qr and qz the variables in Fourier space that are conjugate to r and z, respectively
and q2 = q2

r + q2
z , the wavenumber squared. When the observation volume is such that

many reactions occur during the typical time it takes for the particles to diffuse out of it,
the system is in the “fast reaction limit”. In such a case, the ACF can be approximated
by [5]:

(24) G(τ) =
GoS(

1 +
τ

τS

)√
1 +

τ

w2τS

+
Goef(

1 +
τ

τu

)√
1 +

τ

w2τu

where GoS and τS are the same as before, τu = w2
r/(4Du) and Goef is given by:

(25) Goef =
1

VeffPT
−

P 2
beq

VeffP 2
TST

.

We see in Eq. (24) that the third component of the ACF is lost in this limit. Thus, the
timescales that can be extracted from the ACF (i.e., from the experiments) are diffusive
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and associated to the eigenvalues, λ1 and λ2, from which the free diffusion coefficient of
the traps, DS , and the collective diffusion coefficient, Du, can be estimated.

3.2. FRAP. FRAP is most commonly used to analyze diffusion in two space dimensions
(e.g. proteins diffusing on the plasma membrane). In the fast reaction limit and for a
circular bleach spot of radius w, the fluorescence in this circular region can be written
in terms of modified Bessel functions as [3, 7]:

(26) F (t) = exp(−τD/2t)
(
Io

(τD
2t

)
+ I1

(τD
2t

))
,

where τD = w2/Dt with

(27) Dt =
koffDf + konSeqDS

koff + konSeq
=
Df +

Seq

KD
DS

1 + Seq/KD
.

If diffusion in three dimensions is considered, instead, the fluorescence can be written
as [8]:

F (t) = F0

∑

`≤0

m3/2(−β)`

`!

1

m+ b`+ (b`mt/τD)

× 1√
m+ b`+ (b`mt/(RτD))

(28)

where τD = w2
r/(8Dt), R = w2

z/w
2
r , wr and wz as in (4), m the number of photons

required to generate a fluorescence photon, b the number of photons absorbed in a
bleaching event, β the bleach depth parameter that depends on the bleaching action
cross section, the average of the peak intensity at the center of the focal spot and the
bleaching pulse duration. In either case, the diffusion coefficient that is recovered is the
single particle effective coefficient given by Eq. (27) which is also the one that appears
in the constant of proportionality between the mean square displacement of a single
marked particle and the time elapsed [4].

3.3. Effective coefficients and optical techniques. As discussed in [5] and in the
previous Section, in the limit of fast reactions, FRAP and FCS (the latter in the case in
which all particles are fluorescent) give information on two different effective diffusion
coefficients. FRAP allows the estimate of Dt and FCS, when all particles are fluorescent,
gives information on Du. Dt and Du are formally very similar. They both derive
from the eigenvalues of a system of equations that are very similar among themselves:
Eqs. (7)–(9) with Pf = P tf and Pb = P tb for FCS and Eqs. (12)–(15) for FRAP. We

must first note that the latter is formed by two uncoupled sets: Eqs. (12)–(13) and
Eqs. (14)–(15) which solutions only differ in their initial conditions. Thus, for FRAP,
there are two relevant branches of eigenvalues which, written in terms of wavenumbers,
read:

(29) λ1,2 = −1

2

(
koff + konSeq + (DS +Df )q2

)
± 1

2

√
β,

with β = α2 + 2(Df −DS)q2(konSeq − koff ) + (Df −DS)2q4 and α = koff + konSeq.
Approximations to the eigenvalues in the fast reaction limit can be obtained by taking
q → 0. In this limit only λ1 is relevant for the recovery of the fluorescence and it is
given by:

(30) λ1 ≈ −
(
koffDf + konSeqDS

koff + konSeq

)
q2 = −Dtq

2,
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with Dt given by Eq. (27). The difference between Du and Dt or, equivalently, between
Eqs. (17) and (30) is due to the intrinsic nonlinearity of the reaction term in Eqs. (2).
Then, when these equations are linearized around the equilibrium solution, as done in
the theory of FCS, the term konSeqδPf + konPfeqδS arises instead of konSeqδPf , the
type of term that appears in the “FRAP” Eqs. (12)–(15) which are linear from the very
beginning.

Even though Dt and Du are formally very similar between themselves and coincide
in certain limits, they can also have arbitrarily different numerical values depending on
the parameters [4]. In fact, we believe that this potential difference is the reason that
underlies the huge discrepancies between the diffusion coefficient of the protein Bicoid
determined with FRAP [9] and with FCS [10]. Bicoid (Bcd) is one of the most widely
studied morphogens. Its distribution is determinant for the organization of the anterior-
posterior axis in Drosophila embryos [11]. About 80 minutes after egg deposition a
stable Bcd gradient is established with larger Bcd concentrations at the anterior pole
and an exponential decay towards the posterior end. This exponential distribution is
consistent with the so called SDD model in which the protein is synthesized at the
anterior end and subsequently diffuses and is degraded throughout the embryo. Within
this model the Bcd diffusion coefficient is key to set the timescale over which the Bcd
gradient forms and becomes stable. The estimates of this coefficient obtained with
FRAP were too small to account for the establishment of the gradient within SDD
model and the experimentally observed times [9]. FCS, on the other hand, gave several
values one of which was compatible with the SDD model [10]. Our interpretation of
these experimental results is based on the theory described in this paper. Namely, we
think that both the FRAP and the FCS estimates are correct and that their difference
is perfectly understandable in terms of reactions of Bcd with binding sites [12]. This
points to the importance of having the right theory to interpret experimental results
and quantitate physical parameters of interest.

It is the nonlinearities intrinsic to the reactions that are ultimately responsible for
the disparity of the estimates one of which describes the diffusion of individual Bcd
molecules (the messengers) and the other one that of their population (the message) [4].

4. FCS. Partial bleaching and the recovery of both effective
coefficients.

It is clear from the previous Sections that when molecules diffuse and react at least
two effective diffusion coefficients characterize their transport dynamics even for the
very simple biophysical model given by Eqs. (2). FRAP and FCS, on the other hand,
allow the estimate of either one of these coefficients which are weighted (concentration-
dependent) averages of the free coefficients of the species involved. The single molecule
coefficient, Dt, determines the time dependence of the mean square displacement of a sin-
gle marked particle while the collective one, Du, gives the rate at which a concentration
inhomogeneity spreads out with time. If, however, all the particles are distinguishable
from the rest (e.g. by being fluorescently labeled) the rate at which the inhomogeneity
spreads out is determined by Dt instead. We thus see that there is a connection between
distinguishability and whether Dt or Du rules the dynamics. This, in turn, is related
to the fact that Dt is derived for intrinsically linear equations while Du is obtained for
nonlinear equations that are linearized around an equilibrium solution. The relation-
ship between linearity and Dt is confirmed by the fact that for a problem in which the
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particles simply switch between two states:

(31) Pf
k1←−−→
k2

Pb

and diffuse with Df while they are in the form Pf and with DS if they are in the form
Pb, the diffusive eigenvalue is given by λ = −(k2Df+k1DS)q2/(k2+k1). The connection
between linearity and distinguishability suggests that by marking a subset of unmarked
particles (or, equivalentely, photobleaching some of the fluorescently labeled particles)
one should be able to go from a situation in which Du rules the dynamics to another one
that is ruled by Dt. In fact, it was found in [5] that if fluorescent and non-fluorescent
particles coexist so that P tfeq = fPfeq, P

t
beq = fPbeq, in the fast reaction limit, the ACF

can be approximated by:

G(τ) =
Gocoll(

1 +
τ

τu

)√
1 +

τ

w2τu

+
Gosm(

1 +
τ

τt

)√
1 +

τ

w2τt

+
GoS(

1 +
τ

τS

)√
1 +

τ

w2τS

,(32)

where

(33) Gosm =
1− f
VefP tT

, Gocoll = fGoef ,

with Goef , GoS , τS and τu defined as before and τt = w2
r/(4Dt). Thus, having both

fluorescent and non-fluorescent particles FCS can give information on both Du and Dt.
We now discuss how this can be understood in terms of the (diffusive) eigenvalues of
Eqs. (7)–(8).

In order to go on with the discussion it is better to introduce a change of variables.
Namely, we will work with Pf = P tf + Puf , Pb = P tb + Pub , ST , P tf and P tb . In these new

variables the matrix of the linear problem defined by Eqs. (7)–(8) reads:
(34)


Df∇2 − konSeq koff + konPfeq −konPfeq 0 0
konSeq Df∇2 − koff − konPfeq konPfeq 0 0

0 0 DS∇2 0 0
0 konP

t
feq −konP tfeq Df∇2 − konSeq koff

0 −konP tfeq konP
t
feq konSeq Df∇2 − koff



.

Three blocks determine the branches of eigenvalues:

(35)

[
Df∇2 − konSeq koff + konPfeq

konSeq Df∇2 − koff − konPfeq

]
,

(36)
[
DS∇2

]
,

(37)

[
Df∇2 − konSeq koff

konSeq Df∇2 − koff

]
.
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The one of Eq. (36) gives the eigenvalue associated to DS . The one of Eq. (35) gives the
eigenvalue associated to the collective effective coefficient, Du, in the long wavelength
limit. The one of Eq. (37) gives the eigenvalue associated to the single molecule effective
coefficient, Dt, in the long wavelength limit. It is also the matrix that is obtained in
FRAP (see Eqs. (12)–(15)). The difference between Eq. (35) and Eq. (37) is solely
due to the nonlinearity of the reaction term. Eq. (34) highlights the fact that optical
distinguishability breaks up the nonlinearity of the reaction scheme and, in this way,
allows the single molecule effective coefficient, Dt, to be present in the ACF, as shown in
Eq. (32). Furthermore, since the relative weight of the terms of the ACF associated to Dt

and Du depends on the fraction of fluorescent particles, f (see Eq. (32)) photobleaching
provides a tool by which the experimentalist can switch between situations in which
either Du or Dt can be extracted from the experiment.

5. Discussion and Conclusions

The diffusion of biomolecules plays a relevant role for the transport of information
inside cells. Most often, biomolecules do not diffuse freely inside cells but also react
with binding sites. This interaction usually introduces nonlinearities in the equations
that rule the dynamics of the problem. The net resulting transport that occurs over
long times is still approximately diffusive but with effective (concentration-dependent)
rather than free diffusion coefficients. In [4] we showed that two different effective
diffusion coefficients, the single particle, Dt, and the collective one, Du, can describe
this transport dynamics depending on the situation. They are both weighted averages
of the free coefficient of the particles, Df , and of the traps, DS , but they can have
arbitrarily different numerical values. Dt is the simplest and most intuitive between the
two, but which one is obtained from experiments depends on the experimental situation.
Diffusion rates in cells can be estimated experimentally using optical techniques and
fluorescentely tagged biomolecules. Two widely used such techniques are FRAP and
FCS. In [5] we compared which effective coefficients can be estimated with each of
these techniques when the biomolecules diffuse and react with non-fluorescent “traps”.
In FRAP, fluorescent and non-fluorescent versions of the moelcules of interest coexist
and the technique estimates the single molecule coefficient, Dt. FCS gives the free
trap diffusion coefficient, DS , and Du if only the fluorescent version of the particles is
present and it gives Dt as well if non-fluorescent particles are present too. We have
discussed in this paper how the coexistence of fluorescent and non-fluorescent molecules
of the same species uncouples the variables of the problem and, in this way, the relevant
eigenvalues that rule the eventual diffusive dynamics go from depending on the collective
effective coefficient to depending on the the single particle one. Roughly speaking,
distinguishability breaks the non-linear coupling. Therefore, photobleaching a subset of
the fluorescently labeled particles in FCS experiments one can go from a situation in
which only Du can be estimated to another in which mainly information on Dt can be
extracted. This provides a useful tool to extract more quantitative information from
a living system with minimum disruption. There has been some controversy lately on
the rate at which, Bicoid, a key morphogen for the establishment of the dorso-ventral
axis in fly embryos, diffuses [9, 10]. In our view [12], a mechanistic underlying theory
as the one analyzed in this paper allows to interpret apparently disparate results within
a unified framework. This points to the importance of having dynamical biophysical
models to interpret and quantitate biological experiments.



Breaking nonlinearity with partial bleaching 243

Acknowledgements: This research has been supported by UBA (UBACyT 20020100100064),
ANPCyT (PICT 2010-1481 and PICT 2010-2767), CONICET (PIP 5131). We acknowl-
edge useful conversations with L. Sigaut and A. Colman-Lerner.

References

[1] Axelrod, D., Ravdin, P., Koppel D.E., Schlessinger J. , Webb, W.W., Elson, E.L. and Podelski,

T.R. Lateral motion of fluorescently labeled acetycholine receptors in membranes of developing

muscle-fibers Proc. Natl. Acad. Sci (USA) 73 (1976) pp. 4594 – 4598
[2] Magde, D., Elson, E. and Webb, W. W. Thermodynamic Fluctuations in a Reacting System

Measurement by Fluorescence Correlation Spectroscopy Phys. Rev. Lett 29 (1972) pp. 705-
708

[3] Sprague, B.L., Pego, R.L., Stavreva, D.A. and McNally, J.G. Analysis of Binding Reactions by

Fluorescence Recovery after PhotobleachingBiophys. J. 86 (2004) pp. 3473-3495
[4] Pando, B., Dawson, S. P., Mak, D. O. D. and Pearson, J. E. Messages diffuse faster than mes-

sengers. Proc. Natl. Acad. Sci (USA) 103 (2006) pp. 5338-5342
[5] Sigaut, L., Ponce, M. L., Colman-Lerner, A. and Dawson, S. P. Optical techniques provide in-

formation on various effective diffusion coefficients in the presence of traps. Phys. Rev. E 82
(2010) 051912, 11 pages

[6] Krichevsky, O. and Bonnet, G. Fluorescence correlation spectroscopy: the technique and its ap-
plications Rep. Prog. Phys. 65 (2002) pp. 251-297

[7] Soumpasis, D.M. Theoretical analysis of fluorescence photobleaching recovery experiments Bio-
phys. J. 41 (1983) pp. 95-97

[8] Brown, EB, Wu, ES, Zipfel, W and Webb, WW Measurement of Molecular Diffusion in Solution

by Multiphoton Fluorescence Photobleaching Recovery Biophys. J. 77 (1999) pp. 2837-2849
[9] Gregor, T., Wieschaus, E. F., McGregor, A. P., Bialek, W. and Tank, D. W. Stability and nuclear

dynamics of the bicoid morphogen gradient. Cell 130 (2007) pp. 141-152
[10] Abu-Arish, A., Porcher, A., Czerwonka, A., Dostatni, N. and Fradin, C. High Mobility of Bicoid

Captured by Fluorescence Correlation Spectroscopy: Implication for the Rapid Establishment of
Its Gradient. Biophys. J. 99 (2010) pp. L33-L35

[11] Driever, W. and Nussleinvolhard, C. A Gradient of Bicoid Protein in Drosophila Embryos. Cell
54 (1988) pp. 83-93

[12] Sigaut, L., Pearson, J.E., Colman-Lerner, A. and Dawson, S. P. Messages do diffuse faster than

messengers: FCS and FRAP yield consistent estimates of Bcd effective diffusion. (to be pub-
lished)

Departamento de F́ısica, FCEN-UBA e IFIBA, CONICET-UBA
E-mail address: emperipi@df.uba.ar

Departamento de F́ısica, FCEN-UBA e IFIBA, CONICET-UBA

E-mail address: silvina@df.uba.ar
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