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Volumen 15, Junio 2016, Páginas 35–89
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Introduction

The aim of this text is to present some applications of intersection theory to the
global study of holomorphic foliations in projective spaces.
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Holomorphic foliations are an offspring of the geometric theory of polynomial dif-
ferential equations. Following the trend of many branches in Mathematics, interest
has migrated to global aspects. Instead of focusing on just one curve, or surface, or
metric, or differential equation, try and study their family in a suitable parameter
space. The geometry within the parameter space of the family acquires relevance.
For instance, the family of hypersurfaces of a given degree correspond to points in
a suitable projective space; geometric conditions imposed on hypersurfaces, e.g.,
requiring it to be singular, usually correspond to interesting subvarieties in the pa-
rameter space, e.g., the discriminant. Hilbert schemes have their counterpart in
the theory of polynomial differential equations, to wit, the spaces of foliations.

The last few years have witnessed an important development of the study of
holomorphic foliations. Works of Jouanolou, [32],[33] Cerveau, [5],[6] Lins-Neto,
[37],[38], Pereira [7], [9],[41], Cukierman [10],[11],[12], Calvo-Andrade [2],[3] Gómez-
Mont [26], [23],[24],[25] and others have focused on global aspects, clarifying ques-
tions regarding the (non–)existence of algebraic leaves, description of components
for the spaces of foliations of codimension ≥ 1, etc.

Our point of view follows the line of classical enumerative geometry, which treats
questions such as: How many plane curves pass through an appropriate number of
points in general position? How many space curves varying in a given family are
incident to an appropriate number of lines in general position? Find the degree of
the space of planes curves having a singularity of given order; compute the degree
of the variety of hypersurfaces containing linear subspaces, or conics, or twisted
cubics, and so on . . .

In this work we consider similar questions for holomorphic foliations.

Holomorphic foliations of degree d on the complex projective plane P2 are de-
fined by nonzero twisted 1–forms, ω =

∑
aidZi, with homogeneous polynomials

ai(Z0, Z1, Z2) of degree d+ 1, up to scalar multiples, satisfying
∑
aiZi = 0. The

parameter space of foliations of degree d is a projective space PN (the coordinates
being the coefficients of the ais) (cf. (2.4), (2.6), p. 48). The scheme of singularities
of ω is defined by the homogeneous ideal generated by the ai.

It is well known that a general foliation of degree d on P2 has exactly d2 + d+ 1
singularities, all non-degenerate. So it makes sense to try and study the geometry
of the set of foliations with degenerate singularities.

We show how to find the degrees of the subvarieties of PN corresponding to
foliations displaying certain degenerate singularities. Given an integer k ≥ 2 we
study the locus, Mk ⊂ PN , of foliations with a singularity of order ≥ k. These
are foliations defined in local coordinates by a holomorphic 1–form that can be
written as ω = akdx+bkdy+higher order terms, with ak(x, y), bk(x, y) homogeneous
polynomials of degree k. It turns out that Mk is the birational image of an explicit
projective bundle over P2. Using tools from intersection theory, we find a formula
for the degree of Mk.

Another interesting type of non-generic foliation presents a so called dicritical
singularity of order k: require akx + bky to vanish. This defines a closed subset
Dk ⊂Mk.

A geometric interpretation for the degree of the above subvarieties is as follow:
Requiring a leaf of a foliation to be tangent to a fixed line at a given point defines
a hyperplane in the parameter space PN . Therefore, the degree of each of the loci
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Dk ⊂ Mk ⊂ PN can be reinterpreted loosely as the number of foliations with a
singularity of the specified type and further tangent to the appropriate number of
flags (point, line) in P2. It turns out that the degrees of Dk,Mk are expressed as
explicit polynomials in k, d.

This fits nicely into the tradition of classical enumerative geometry: answers
to questions such as determining the number of plane algebraic curves that have
singularities of prescribed orders, besides having to pass through an appropriate
number of points in general position, are often given by so called “node” polynomi-
als. There is a wealth of results and conjectures on generating functions for counting
suitably singular members of linear systems of curves on surfaces, cf. Götsche [22],
Kleiman and Piene [35]. We hope similar results can be formulated in the setting
of foliations.

Continuing the analogy with enumerative geometry, let us recall that, while a
general surface of degree d ≥ 4 in P3 contains no line –in fact, only complete
intersection curves are allowed, those that do contain some line correspond to a
subvariety of codimension d− 3 and degree

(
d+1

4

)
(3d4 + 6d3 + 17d2 + 22d+ 24)/4!

in a suitable PN .
Similarly, motivated by Jouanolou’s celebrated theorem to the effect that a gen-

eral holomorphic foliation, say in P2, of degree d ≥ 2 has no algebraic leaf [32],
we show that those foliations that do have, e.g., an invariant line, correspond to a
subvariety of codimension d− 1 and degree 3

(
d+3

4

)
in a suitable PN .

The rest of these notes is dedicated to the study of the spaces of foliations having
certain invariant algebraic subvarieties. First we impose linear subspaces, and then
quadrics.

The general philosophy is to find a suitable complete parameter space for the
families of foliations satisfying some of the above conditions: bad singularity, or
invariant subvariety of a given type. Then, using techniques of intersection theory
we compute their dimension and degree. In the case of foliations with a degenerate
singularity (resp. with some invariant linear subspace) the construction of the
parameter space is very explicit. In fact, in the case of singularities, we describe
the parameter space as the image in the space of foliations of natural projective
bundles over P2. For invariant linear subspaces, we also get a projective bundle over
a Grassmannian. Actually, these bundles are projectivizations of vector bundles,
the characteristic classes of which we are able to determine.

The case of foliations having an invariant quadric turns out to be subtler and
hints at the difficulties to handle degrees higher than one. We make and do in-
voking the classical complete quadrics. In short, we blowup the projective space
parametrizing the family of quadrics along the locus corresponding to singular
quadrics. In this way we find a compactification of the space of foliations hav-
ing an invariant quadric, with enough information to compute its degree.

Next we survey the contents of each section.
In Section 1 we give, for the reader’s convenience, a brief introduction to intersec-

tion theory in projective spaces and Grassmannians. We define the Chow group of
a scheme and describe it for the case of projective bundles and Grassmannians. We
also review Fulton’s construction of Chern and Segre classes asociated to a vector
bundle. We list some of their properties that should help the reader to understand
the computations developed in the rest of this text.
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Section 2 contains the basic notions of holomorphic foliations of dimension one,
as well as of codimension one, in projective spaces. We give references to the
literature and definitions and results that will be needed in the sequel.

In Section 3 we find formulas for the dimension and degree of the space of
foliations of degree d in P2 that have a degenerate singularity. In the first part we
find parameter spaces for foliations having a singularity of given order k ≥ 2. In
the second part we study foliations with a dicritical singularity of order k.

Section 4 is dedicated to the study of foliations having some invariant algebraic
subvariety. In the first part we find parameter spaces for the variety of foliations in
Pn having an invariant linear subspace of given dimension. Using this description
we obtain formulas for its dimension and degree. In the second part we find a
compactification of the space of foliations having a smooth invariant conic in P2.
In this way, we get formulas for its dimension and degree.

We include an appendix intended to be a glossary of basic concept and construc-
tions needed in the text, such as vector bundles, Cartier divisors, Grassmannians,
etc...

There are many natural generalizations of the material covered here. For in-
stance, we could impose flags of invariant subvarieties. Indeed, the general foliation
in P3 that leaves invariant some plane does not need to leave any invariant curve
therein. So it makes sense to ask for the degree of the space of foliations that leave
invariant, say a flag plane ⊃ line, or plane ⊃ conic, . . .

Another interesting direction is to study the imposition, say of a given class of
curves, to be contained in the scheme of singularities, cf. G.N. Costa, [8].

Extension to the case of higher order differential equations can be pursued fol-
lowing the ideas in M. Falla’s thesis, [15]. In Chapter 5 of [20], we find formulas for
the degree and codimension of the space of second order equations having a line as
solution.

Most of the matterial covered here is taken from my thesis [16], and was published
in [20], with my advisor Israel Vainsencher, cf. also [17], [18].

1. Intersection Theory in Grassmannians

In this Section we introduce briefly the Chow group of a scheme. We define
Chern and Segre classes associated to a vector bundle, and discuss some of their
properties. We give an explicit description of the Chow groups of the projective
space Pn and the Grassmannian G(k, n), that is all we will need in the course. The
reference for this material is [21], [46].

All schemes are of finite type over a field, usually the complex numbers C. Variety
means reduced and irreducible (i.e., integral) scheme; likewise for subvarieties.

1.1. Cycles.

1.1.1. Definition. Let X be a scheme. The group of cycles of dimension k
of X is the free abelian group generated by the closed subvarieties of dimension k
in X. It will be denoted by CkX. The group of cycles is the graded group

C∗ =
⊕
k

CkX.
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By definition, each k−cycle c ∈ CkX can be written in a unique way as a linear
combination with coefficients in Z,

c =
∑
V

nV · V,

where V runs in the collection of closed subvarieties of X of dimension k. Here, the
coefficient nV ∈ Z is zero except for finitely many V ′s.

Recall that if W ⊆ X is an irreducible component, then the local ring OX,W of
X along W is artinian. Therefore, its length l(OX,W ) is finite. The fundamental
cycle of X is defined by

(1.1) [X] =
∑
W

l(OX,W )W,

where W runs over the set of irreducible components of X.

1.2. Rational equivalence. Let V be a variety and W ⊂ V a subvariety of codi-
mension one. Set A = OV,W , the stalk of the structure sheaf OV at W . Thus, if
U = Spec(R) ⊂ V is any affine open subset with non empty intersection with W ,
the ring OV,W is just the localization Rp, where p is the prime ideal corresponding
to the subvariety W ∩ U of U .

Denote by R(V ) the field of rational functions on V .

1.2.1. Definition. Let r ∈ R(V ) be a non-zero rational function.
The order of r along a subvariety W ⊂ V of codimension one is defined by the

formula
ordW (r) = l(A/〈a〉)− l(A/〈b〉)

where A = OV,W , and r = a/b, with a, b ∈ A. Here l(M) is the length of the module
M over A.

It can be shown that ordW (r) does not depend on the representation r = a/b,
and that it is furthermore additive:

ordW (rr′) = ordW (r) + ordW (r′) ∀r, r′ ∈ R(V )∗.

1.2.2. Definition. The cycle of a rational function r ∈ R(V )∗ is defined by

[r] =
∑
W

ordW (r) ·W

where the sum extends over the collection of closed subvarieties of codimension one
of V .

One checks that the sum is finite, i.e., ordW (r) = 0 except for finitely many
W ′s.

1.2.3. Example. An obvious example is to consider the function f(t) = tn in k[t].
If p ∈ A1 is a point, we have A = k[t](mp) = k[t](t−p). In these case A/〈tn〉 = 0

if p 6= 0 (because t is invertible in A) and A/〈tn〉 ' k ⊕ kt ⊕ · · · ⊕ ktn−1 if p = 0.
Therefore

ord0(tn) = l(A/〈tn〉) = n

as expected.
The cycle of tn is

[tn] =
∑
p

ordp(t
n) · p = n.0 .
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1.2.4. Definition. Let X be a scheme. The group of k-cycles rationally
equivalent to zero is the subgroup RkX ⊂ CkX generated by the cycles of rational
functions of closed subvarieties of X of dimension k + 1.

The Chow group of X is the graded group,

A∗X =
⊕
k

AkX =
⊕
k

CkX/RkX

Two cycles are said to be rationally equivalent to each other if they represent
the same class modulo R∗X.

1.2.5. Remark.
If X is of pure dimension n, then AiX = 0 for i < 0 and for i > n. Moreover,

AnX = CnX is the free abelian group generated by the irreducible components of
X. If X is a variety of dimension n, we have AnX = CnX = Z.

1.2.6. Examples.

(1) An−1An = 0, because any divisor in An is the zero locus of a polynomial
(i.e., a function in An).

(2) A0An = 0 for n > 0. In fact, if P ∈ An, we can choose a linear function r
on a line through P that vanishes exactly at P . Therefore [r] = [P ], and
[P ] ∈ R0An.

(3) AkAn = 0 for k < n, see Proposition (1.5.3, p. 43).
(4) An−1Pn = Z · h, the free abelian group generated by h, the class of a hy-

perplane. Indeed, let Fd be a homogeneous polynomial of degree d and let
Z(Fd) be the corresponding hypersurface. Let [Z(Fd)] denote its funda-
mental cycle (1.1). Consider the rational function r := Fd/F

d
1 ∈ R(Pn).

Then [r] = [Z(Fd)]−d·[Z(F1)], i.e., [Z(Fd)] ∼ d·[Z(F1)]. Since h = [Z(F1)]
clearly is not torsion, An−1Pn is freely generated by h.

(5) In general, for 0 ≤ k ≤ n, AkPn = Z · [Pk], the free abelian group generated
by the class of a linear subspace of dimension k, see Proposition 1.5.3.

(6) Let X be a smooth projective curve. Then we have

C0X = Div(X) and A0X = Pic(X) .

(7) If X has pure dimension n, an element of Cn−1(X) is a Weil divisor, and
the quotient group An−1(X) is the group of Weil divisor classes. In this
sense the Chow groups can be viewed as a generalization of Weil divisors
classes.

1.3. Direct Image. Given a morphism f : X → Y of schemes, we shall define a
natural homomorphism of groups f∗ : C∗X → C∗Y . Moreover, if f is proper then
f∗(R∗X) ⊂ R∗Y , thereby inducing a homomorphism A∗X → A∗Y .

1.3.1. Definition. A morphism f : X → Y is proper if it is separated and
universally closed, i.e., for all Z → Y , the morphism induced by fiber product,

X ×Y Z → Z

takes closed sets to closed sets.
A scheme X is complete if the structural morphism X → Spec(C) is proper.

Properness corresponds to compact fibers in the classical topology, while com-
pleteness is the algebraic translation of compactness in the classical topology. For
another characterization and properties of proper morphism consult [31].
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We will use proper morphism in order to guarantee that the image of a variety
is a closed subset.

1.3.2. Definition. Let f : V → W be a dominant morphism of varieties. We
define the degree of f as

deg(f) =

{
0 if dimV > dimW

[R(V ) : R(W )] if dimV = dimW

Observe that in the case dimV = dimW , the function fields R(V ) and R(W )
are finitely generated field extensions with the same transcendence degree over C.
Hence deg(f) is finite.

We can interpret the deg(f) as the degree of the covering or as the number of
points in a fiber of f .

1.3.3. Definition. Let p : X → Y be a proper map of schemes. Let V ⊂ X be a
closed subvariety and W := p(V ). Let f : V → W be the map induced by p. We
put

p∗(V ) = deg(f) ·W ∈ C∗W.
We extend it by linearity to a homomorphism

p∗ : C∗X → C∗Y,
called direct image of p.

1.3.4. Examples.

(1) If X is complete, then any morphism f : X → Y is proper. Examples of
complete varieties are Pn, G(k, n), and any projective bundle P(E) associ-
ated to a vector bundle E over a complete base. See p. 83

These are in fact the varieties which we will use in the text.
(2) A1 is not complete. Indeed, the map p : A1 → pt is not proper: consider

p̂ : A2 → A1, p̂(x, y) = x. Then p̂({xy = 1}) = A1\{0} that is not closed. In
this case there are no direct image map, becauseA0(A1) = 0→ A0(pt) = Z,
i.e. the class of a point is zero in A0(A1) but non zero in A0(pt).

(3) The same occurs for the inclusion A1 → P1. This map is not proper, and
there are no direct image, because the class of a point is zero in A0(A1)
but non zero in A0(P1) = Z.

1.3.5. Theorem. Let p : X → Y be a proper map. Then the direct image map
p∗ : C∗X → C∗Y preserves rational equivalence, i.e, we have p∗(R∗X) ⊂ R∗Y .

Proof. See [21, Theorem 1.4. p. 11 ]. �

Using this result we can define the direct image of a morphism at the Chow
group level.

1.3.6. Definition. Let p : X → Y be a proper map. The direct image homo-
morphism is the induced homomorphism

p∗ : A∗X → A∗Y.
1.3.7. Definition. Let X be a complete scheme, and f : X → pt be the natural
proper map. For any 0−cycle α ∈ A0(X) we define the degree of α to be f∗(α) ∈
A0(pt) = Z. We write

deg(α) =

∫
X

α .

The degree is the number of points counted with the appropriate multiplicity.
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1.3.8. Proposition. The direct images are functorial, i.e., if f : X → Y and
g : Y → Z are proper maps, then (g ◦ f)∗ = g∗ ◦ f∗. In particular, if p : X → Y is
a proper map of complete schemes, we have∫

X

α =

∫
Y

p∗(α),∀α ∈ A0(X).

1.4. Inverse Image. Let f : X → Y be a flat morphism (cf. [31]). We shall
define a homomorphism f∗ : C∗(Y ) → C∗(X) that preserves rational equivalence,
i.e., f∗(R∗(Y )) ⊂ R∗(X), and therefore induces a homomorphism

f∗ : A∗(Y )→ A∗(X).

1.4.1. Definition. Let V ⊂ Y be a subvariety. The inverse image cycle of V
under f is defined by

f∗V = [f−1(V )].

The right hand side above is the fundamental cycle ((1.1, p. 39)) of the closed sub-
scheme f−1(V ) ⊆ X. We extend it by linearity to obtain a homomorphism

f∗ : C∗(Y )→ C∗(X).

We say that f : X → Y is of relative dimension n if for each subvariety W of
Y , any component V of f−1(W ) is of dimension

dimV = n+ dimW.

It is the case of any fibration, and these will be the morphisms that we will work
with in the text.

A flat morphism will be assumed to have relative dimension n for some n. We
register the following

1.4.2. Proposition. Let f : X → Y be a flat morphism of relative dimension n.
Then for each closed subscheme Z ⊆ Y of pure dimension k, we have

f∗[Z] = [f−1Z] in Ck+nX.

We list out the principal examples of flat morphisms that occur in this text.

1.4.3. Examples.

(1) Any open imbedding.
(2) The structure map of a vector bundle, or a projective bundle to its base.
(3) The projection X × Y → X where Y is a pure dimensional scheme.

Flat families (fibers of flat morphisms) are the adequate notion to work with
families of schemes, for example, for flat families of subschemes in Pn the fibers have
constant Hilbert polynomial (this mean that numerical invariants as dimension,
degree etc, are preserved)

1.4.4. Proposition. Let f : X → Y be a flat morphism of relative dimension
n. Then f∗ : CkY → Ck+nX and f∗(RkY ) ⊂ Rk+nX. Therefore we obtain a
homomorphism

f∗ : AkY → Ak+nX.

The inverse image is functorial. By this we mean that, if f : X → Y , and g : Y → Z
are flat morphisms of schemes, then

(g ◦ f)∗ = f∗ ◦ g∗.

Proof. See [21, Theorem 1.7, p. 19]. �
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The inverse image is compatible with proper direct images:

1.4.5. Proposition. Let be given a Cartesian diagram,

X ×Y Y ′ :X ′
f ′ //

g′

��

Y ′

g

��
X

f // Y

where f is flat of relative dimension n and g is proper. Then f ′ (resp. g′) is flat
of relative dimension n (resp. proper) and we have

g′∗f
′∗ = f∗g∗ : CkY ′ −→ Ck+nX.

1.5. Excision. The following proposition is a very useful tool that allows us to
compute the Chow groups of An and Pn.

1.5.1. Proposition. Let i : Z ↪→ X, j : U ↪→ X the inclusion maps of a closed
subscheme Z and its complement U . Then we have the following exact sequence:

A∗Z
i∗−→ A∗X

j∗−→ A∗U → 0.

Proof. �

1.5.2. Lemma. Let X be a scheme and let p : X × An → X be the projection.
Then

p∗ : A∗X −→ A∗(X × An)

is surjective.

Proof. See [21, Proposition 1.9, p. 22]. �

Using these two results we can compute the Chow groups of An and Pn.

1.5.3. Proposition.

(1) AiAn = 0 for all i 6= n, and AnAn = Z.
(2) AiPn = Z[Pi], the free group generated by the class of a dimension i sub-

space Pi ⊂ Pn for all 0 ≤ i ≤ n.

Proof. We already know (1.2.6, p. 40) that AnAn = Z and An−1An = 0. If i < n−1,
by the lemma above we have a surjective map Ai−n+1A1 � Ai(A1 × An−1). But
Ai−n+1A1 = 0 for i < n− 1. This proves (1).

We prove (2) using induction and the excision sequence

AiPn−1 −→ AiPn −→ AiAn = 0.

By induction AiPn−1 = Z[Pi]. Hence AiPn is generated by [Pi]. It remains to
prove that m[Pi] = 0 in AiPn implies m = 0. Suppose

m[Pi] =
∑

mk[rk]

for some integers mk and some rational functions rk ∈ R(Vk), where Vk’s are
subvarieties of Pn of dimension i+1. Set Z :=

⋃
Vk, then m[Pi] = 0 in AiZ. There

exists a finite map p : Z → Pi+1 (e.g., induced by a linear projection). We find

mp∗[Pi] = 0 in AiPi+1

which is torsion free. Hence m = 0 as desired. �
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1.5.4. Definition. Let α =
∑k
i=0mi · [Pi] be a cycle in Pn. If mk 6= 0 we define

the degree of α by the formula

deg(α) = mk.

1.6. Chern classes. In this section we define Chern classes associated to a vector
bundle E over a scheme X (cf. Appendix A.1). These classes are constructed as
operators on the Chow groups A∗X. See [21, Chapter 3].

1.6.1. Definition. Let X be a scheme, and E a vector bundle over X of rank e.
The i−th Chern class of E is a homomorphism

ci(E) ∩ : AkX → Ak−iX

characterized by the following five properties:

(1) c0(E) = 1 (= identity operator).
(2) (Naturality) If f : Y → X is a flat morphism, then

f∗(ci(E) ∩ α) = ci(f
∗E) ∩ f∗α

for all cycle α ∈ A∗X and all i. Here f∗E is the pull-back of E by f (cf.
Appendix A.1.3).

(3) (Whitney sum) If

0→ E ′ −→ E −→ E ′′ → 0

is an exact sequence of vector bundles, then

ci(E) =
∑
r+s=i

cr(E ′)cs(E ′′).

(4) (Normalization) If E is a line bundle, and D is a Cartier divisor on X such
that OX(D) ' E (see Appendix A.2), then

c1(E) ∩ [X] = [D].

(5) (Projection formula) If f : Y → X is a proper morphism, then

f∗(ci(f
∗E) ∩ α) = ci(E) ∩ f∗α

for all α ∈ A∗Y .

1.6.2. Remarks. (1) Since Ai(X) = 0 for i < 0, we see that ci(E) is nilpotent.
(2) It is a fundamental (and nontrivial) fact that if E , E ′ are vector bundles, then
the operators ci(E) and cj(E ′) commute.
(3) We will also see that ci(E) = 0 if i > e = rk(E).

1.6.3. Definition. Let E be a vector bundle over a scheme X.
The total Chern class of E is

c(E) = c0(E) + c1(E) + · · ·

By the above remark, we see that this sum is finite and c(E) = 1 + c1(E) + · · ·
is an invertible element of the endomorphism ring of A∗X.

We define the total Segre class of E as the formal inverse of c(E),

s(E) = c(E)−1 = 1 + s1(E) + · · · .
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1.6.4. Remark. Expanding s = 1 + s1 + · · · = 1/(1 + c1 + · · · ) we find s1 =
−c1, s2 = c21− c2, etc. Each si(E) defines a homomorphism AkX → Ak−iX. It can
be proved that

si(E) ∩ α = p∗(c1(OE(1))e−1+i ∩ p∗α)

for α ∈ AkX, where e = rk(E) and p : P(E) → X is the projection (see Appendix
A.3).

In fact the formula can be taken as the definition of Segre class.(cf. [21])
Recall the definition of degree of a cycle (Definition 1.5.4). We have that if

X ⊂ Pn is a subscheme of pure dimension k and degree d then

d = deg(hk ∩ [X])

where h = c1(OPn(1)).
As an application of the definition and properties of Chern and Segre classes, we

shall prove a lemma that will be a very usefull tool in the sequel.

1.6.5. Lemma. Let V be a vector space of dimension N+1. Let E be a subbundle
of the trivial bundle X × V over a variety X of dimension n. Consider P(E) the
projective bundle associated to E, and PN = P(V ). Consider the following diagram:

P(E)

q1

}}

q2

""
X PN

.

Let M ⊆ PN denote the image of q2. Suppose that q2 is generically finite. Then

deg(q2) degM =

∫
sn(E) ∩ [X].

Proof. Set for short δ = deg(q2). Hence q2∗[P(E)] = δ[M ]. Now we have

degM =

∫
Hν ∩ [M ] =

1

δ

∫
Hν ∩ q2∗[P(E)]

=
1

δ

∫
q∗2H

ν ∩ [P(E)] =
1

δ

∫
H̃ν ∩ [P(E)]

where ν = dim(P(E)) = dimM, H = c1(OPN (1)), H̃ = c1(OE(1)).
Set e = rk(E). Thus ν = e− 1 + n. Hence∫

H̃ν ∩ [P(E)] =

∫
q1∗(H̃

ν ∩ q∗1 [X]) =

∫
sn(E) ∩ [X]

by Remark 1.6.4. The proof is complete. �

The following Lemma will be used repeatedly in order to prove the generic in-
jectivity of certain maps.

1.6.6. Lemma. In the situation of the previous lemma, in order to prove that
q2 is generically one to one, it suffices to find a point [v] ∈ M such that the fiber
q−1
2 ([v]) consists of one reduced point.

Proof. If we prove the existence of such point [v], by the theorem on the dimension
of fibers (see [43, Chapter I §6.3]) there exists an open set U in M such that the fiber
over each point in U has dimension zero, (U 6= ∅ because [v] ∈ U). Therefore q2 is
generically finite. Shrinking U we may assume (i) U is affine, say with coordinate
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ring A and (ii) the restriction of q2 over q2
−1U is finite (cf. [31, ex.11.2, p. 280]).

It follows that q2
−1U is affine, with coordinate ring B which is an A-module of

finite type. Now for each point u ∈ U with corresponding maximal ideal mu ⊂ A,
the fiber q2

−1u = Spec(B/muB) is finite and consists of dimC(B/muB) points
counted with multiplicity. By semicontinuity, this vector space dimension attains a
minimum over an open subset. Since the fiber over y = [v] consists of one reduced
point, that mininum is precisely one and we are done. �

Notice that reducedness of q2
−1([v]) required above means that the tangent map

of q2 is injective.
Chern classes and Segre classes of vector bundles can be effectively computed

with appropriate tools. The principal one is the splitting principle that we state in
the following proposition. This, together with the next lemma give us a handy way
to compute Chern classes.

1.6.7. Proposition. (The splitting principle) Let E be a vector bundle over a
scheme X. Then there exists a flat map f : X ′ → X such that

(1) the induced homomorphism f∗ : A∗X → A∗X ′ is injective.
(2) f∗E admits a filtration by vector subbundles

Ee = 0 ⊂ · · · ⊂ E1 ⊂ E0 = f∗E

whose successive quotients are line bundles, Li = Ei−1/Ei.

Proof. See [21, § 3.2.]. �

1.6.8. Lemma. Let E be a vector bundle endowed with a filtration as in the
proposition above. Put λi = c1(Li) and define

σ1 =
∑
i λi,

σ2 =
∑
i<j λiλj ,

...
σe = λ1 · · ·λe,

the elementary symmetric functions. Then we have

c(E) = Πe
1(1 + λi), that is,

ci(E) =

{
σi for 1 ≤ i ≤ e;
0 for i > e.

Proof. See [21, Remark 3.2.3. p. 54.]. �

Using the splitting principle, we see that in order to show formulas involving
Chern classes we can suppose that the vector bundle E has a filtration with line
bundle quotients. In fact, the Chern classes of E are the same as of

⊕
Li. The

classes λi = c1(Li) are the Chern roots of E . The Chern classes are the symmetric
elementary functions of the chern roots {λi}.

1.6.9. Proposition.

(1) Dual bundles. The Chern classes of the dual bundle E∨ are given by the
formula

ci(E∨) = (−1)ici(E).
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(2) Twisted bundles. Suppose that L is a line bundle, and rk(E) = e, then

ce(E ⊗ L) =

e∑
i=0

c1(L)ice−i(E).

�
The following proposition is the key to many interesting geometric applications

of Chern classes.
Let E be a vector bundle of rank e over a scheme X. We say a section s of E → X

is regular at a point x ∈ X if there is a local trivialization of E around x such that
s is given by (s1, . . . , se) where either some si is a unit or the si ∈ OX,x form a
regular sequence. This means that s1 is a nonzero divisor at the stalk OX,x and
each si is a nonzero divisor in OX,x/〈s1, . . . , si−1〉. We say s is regular if it is so at
each point. If X is a smooth variety, regularity of s is tantamount to requiring the
scheme of zeros Z(s) to be either empty or of the correct codimension e = rk E .

1.6.10. Proposition. Let E be a vector bundle of rank e over a scheme X of pure
dimension n. Let s be a regular section of E. Then

ce(E) ∩ [X] = [Z(s)] in An−eX.

1.6.11. Example Let X be a vector field in Pn that defines a regular section of
T Pn. Then Z(X ) = scheme of singularities of X , is a finite set. To compute the
number of singularities we can use the proposition to obtain∫

cn(T Pn) ∩ [Pn] =

∫
[Z(X )].

We shall return to this in the next Section.

1.7. Some Chow groups. In this section we give explicit description of the Chow
groups of projective vector bundles (in particular for Pn) and Grassmannians.

1.7.1. Proposition. Let E be a vector bundle of rank e over a scheme X. Then

A∗P(E) ' A∗(X)[H]

〈He + c1(E)He−1 + · · ·+ ce−1(E)H + ce(E)〉
where H = c1(OE(1)), see Appendix A.3.

In particular we have, for Pn = P(Cn+1)

A∗Pn ' Z[h]/〈hn+1〉

where h = c1(OPn(1)).

Proof. See [21, Ex. 8.3.4, p. 141], [46, Ch. 10].. �

1.7.2. Proposition. Let G(k, n) the Grassmannian of k-planes of Pn. We have

A∗G(k, n) ' Z[a, b]/〈a∗b∗ − 1〉

where a = (a1, . . . , ak), b = (b1, . . . , bn−k) are indeterminates, a∗ = 1+a1 +· · ·+ak,
b∗ = 1 + b1 + · · ·+ bn−k.

Proof. See [46, Ch. 10]. �

Exercise 1. Write explicitly the above relations for G(1, 3).
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2. Holomorphic Foliations in Projective Spaces

In this Section we introduce the basic notions of foliations of dimension one (re-
spectively, codimension one) in Pn. We review the definitions of degree, singularity,
order of a singularity and invariant subvarieties, in the way that will be used in the
text.

Throughout this work Sd will denote the vector space of homogeneous polyno-
mials of degree d in the (n+ 1) homogeneous coordinates Z0, . . . , Zn. We have

Sd = Symd Čn+1 ; dimSd =

(
d+ n

n

)
.

We will identify

S1 = Čn+1 ' Ω0Cn+1

the vector space with basis

{dZ0, . . . , dZn} .
Similarly, we will identify

(2.1) S∨1 = Cn+1 ' T0Cn+1

the vector space with basis {
∂

∂Z0
, . . . ,

∂

∂Zn

}
.

2.1. Tangent and cotangent bundles of Pn. The tangent bundle of Pn is de-
termined by the Euler exact sequence,

(2.2) 0→ OPn −→ OPn(1)⊗ Cn+1 −→ T Pn → 0.

The first map is

1 7→ (Z0, . . . , Zn),

The second map is defined by

F = (F0, . . . , Fn) 7→ δF ,

where δF is the derivation δF (f/g) = f∇g−g∇f
g2 · (F0, . . . , Fn).

Dualizing the Euler sequence we have

(2.3) 0→ ΩPn −→ OPn(−1)⊗ Čn+1 −→ OPn → 0.

The rightmost map is given by (f0, . . . , fn) =
∑
fidZi 7→

∑n
i=0 fiZi. Recall that

the sections of OPn(−1) over an open subset U ⊂ Pn are given by fractions F/G
such that F,G are homogeneous polynomials of degrees degF = degG − 1 and G
has no zeros over U . Thus each fiZi in the sum is of degree zero, i.e., a function.

2.2. Dimension one foliations.

2.2.1. Definition. A dimension one foliation in Pn is a nonzero global section
of T Pn ⊗OPn(d− 1) for some d ≥ 0 modulo non-zero complex multiples.

Let us denote

(2.4) V1,n,d = H0(Pn, T Pn ⊗OPn(d− 1))

and

F(1, n, d) = P(V1,n,d).

Then a dimension one foliation is an element X ∈ F(1, n, d).
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Tensoring the Euler sequence by OPn(d− 1) we obtain

(2.5) 0→ OPn(d− 1)→ OPn(d)⊗ Cn+1 → T Pn(d− 1)→ 0.

Taking global sections in the last sequence and using that H1(Pn,OPn(d−1)) = 0
([31, Chapter III, Theorem 5.1]) we obtain the following exact sequence:

0→ Sd−1 → Sd ⊗ S∨1 → H0(Pn, T Pn(d− 1))→ 0.

From this we deduce that a foliation is given in homogeneous coordinates by a
vector field

X = F0
∂

∂Z0
+ · · ·+ Fn

∂

∂Zn
,

where Fi are homogeneous polynomials of degree d, modulo multiples of the radial
vector field

R := Z0
∂

∂Z0
+ · · ·+ Zn

∂

∂Zn
.

We will denote by X an element in Sd ⊗ S∨1 , and X := X modulo Sd−1 ·R.
The Euler sequence gives us:

(2.6) V1,n,d '
Sd ⊗ S∨1
Sd−1 ·R

From this it is clear that

(2.7) N1,n,d := dimV1,n,d − 1 = (n+ 1)

(
d+ n

n

)
−
(
d− 1 + n

n

)
− 1

and

F(1, n, d) = PN1,n,d .

2.2.2. Definition. The degree of a foliation X ∈ F(1, n, d) is d.

For a geometric interpretation of the degree, take a hyperplane H in Pn. Define

T (X , H) = {p ∈ H | X (H)(p) = 0},

the set of tangencies of X with H. For a generic H, it can be seen that T (X , H)
has codimension one in H and the degree of X is the degree of T (X , H) ([39,
Chapter II §3]).

In fact, if we take a hyperplane defined by the equation

H := a0Z0 + · · ·+ anZn = 0

then T (X , H) is given in H by

X (H) := a0F0 + · · ·+ anFn = 0.

For H generic, the polynomial X (H) is not identically zero and has degree d.
Observe that in P2 the set of tangencies of a degree d vector field X with a

generic line is finite and consists of d points.

Exercise 2. The goal is to deduce the local expression of a vector field, using the
Euler sequence. Let

X = F0
∂

∂Z0
+ · · ·+ Fn

∂

∂Zn
be a degree d vector field. Set

Uj := {[Z0 : · · · : Zn] | Zj 6= 0} = {(z0, . . . , ẑj , . . . , zn) ∈ Cn}.
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Prove that we have the following local expression for X on Uj :

(2.8) XUj =
∑
i6=j

ai
∂

∂zi
=
∑
i6=j

(fi − zifj)
∂

∂zi
=
∑
i 6=j

fi
∂

∂zi
− fj

∑
i=1

zi
∂

∂zi

where fi is the dehomogenization of Fi with respect to Zj .

The notation Uj for the canonical open set Zj 6= 0 will be used in all the text.

2.2.3. Definition. We say that p ∈ Pn is a singularity of X if p is a zero of the
section

X : OPn → T Pn(d− 1).

Explicitly, using the local expression in (2.8), the singularities of X in Uj are the
common zeros of {ai | i 6= j}. Alternatively, using homogeneous coordinates, the
singularities of X are given by the ideal of 2×2−minors, ZiFj−ZjFi of the matrix(
Z0 ··· Zn
F0 ··· Fn

)
, cf. [14], i.e. the singularities are the points p where X (p) has the same

direction that R(p).

Exercise 3. Using the Euler sequence we can compute the number of singularities
of a generic vector field of degree d. The fact that X is generic implies that it has
isolated singularities (see [32]). By Proposition (1.6.10, p. 47) we have:

#Z(X ) = cn(T Pn(d− 1)).

Prove that a dimension one foliation of degree d in Pn has

dn + dn−1 + · · ·+ d+ 1

singularities (counting multiplicities). (Hint: use sequence (2.5, p. 49) and the prop-
erties of Chern classes.)

2.2.4. Definition. Order of a singularity.
Let p be a singularity of a vector field X . Suppose that p ∈ Uj and

XUj =

n∑
i=1

ai
∂

∂zi

is the local expression of X in Uj . Then the order (sometimes named algebraic
multiplicity) of the singularity p is

νp(X ) = min{orderp(ai) | i = 1, . . . , n}.

As usual, the order orderp(a) of a polynomial a at a point p means the order of
vanishing: min{s | ∂sa/∂zI(p) 6= 0, |I| = s}.

Exercise 4. Check that the order of a singularity is independent of the choice of
the open set Uj such that p ∈ Uj .

2.2.5. Definition. Invariant hypersurface.
Let Z ⊂ Pn be an irreducible hypersurface defined by a homogeneous polynomial

G of degree k, and X be a vector field of degree d. We say that Z is invariant by
X if

X (p) ∈ TpZ
for all p ∈ Z \ (Sing(Z) ∪ Sing(X )).

If Z is reducible, we say that it is invariant by X if and only if each irreducible
component of Z is invariant by X .
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Exercise 5.

(1) Prove that if G is irreducible, the above condition is equivalent to the
existence of a degree d− 1 homogeneuos polynomial H such that

dG(X ) = X (G) = GH.

Hint: Use the Hilbert’s Nullstellensatz.
(2) Prove that this condition does not depend on the representative of X in

Sd ⊗ S∨1 .
Hint: By the Euler relation we have that R(G) = k ·G.

(3) If G is reducible, and

G = Gr11 · · ·Grnn
is a decomposition of G into irreducible factors, prove that X (G) = HG for
some H if and only if for all i = 1, . . . , n we have X (Gi) = HiGi for some
H ′is.

2.2.6. Definition. Invariant algebraic subvariety.
If Z ⊂ Pn is an algebraic subvariety defined by the ideal IZ := 〈G1, . . . , Gr〉 and

X is a vector field, we say that Z is invariant by X if

X (p) ∈ TpZ

for all p ∈ Z \ (Sing(Z) ∪ Sing(X )).

Exercise 6. If IZ is saturated, this condition is equivalent to

dGi(X ) = X (Gi) ∈ IZ for all i = 1, . . . , r.

The hypothesis of the ideal to be saturated is necessary. For example Z(Z0) is
invariant by ∂

∂Z1
, but ∂

∂Z1
(Z0Z1) is not in the ideal 〈Z2

0 , Z0Z1, . . . , Z0Zn〉.

2.3. Codimension one foliations. In this section we define codimension one fo-
liations in Pn (i.e., foliations defined by integrable one forms in Pn). However, in
the text we only deal with codimension one foliations in P2, so we discuss this case
and the correspondence between vector fields and forms in P2. For further reading
see [38].

2.3.1. Definition. A projective one form of degree d in Pn is given by a
global section of ΩPn ⊗OPn(d+ 2), for some d ≥ 0.

As in the case of vector fields in Pn we will deduce an expression in homogeneous
coordinates for a form in H0(Pn,ΩPn ⊗OPn(d+ 2)).

Tensoring the (dual of the) Euler sequence (2.2) by OPn(d+ 2) we obtain

(2.9) 0→ ΩPn(d+ 2)→ OPn(d+ 1)⊗ S1 → OPn(d+ 2)→ 0

Taking global sections, and using that H1(Pn,ΩPn(d + 2)) = 0 we obtain the
following exact sequence:

0→ H0(Pn,ΩPn(d+ 2)) −→ Sd+1 ⊗ S1
ιR−→ Sd+2 → 0

where

ιR(
∑

AidZi) =
∑

AiZi
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is the contraction by the radial vector field. Hence H0(Pn,ΩPn(d + 2)) is the
kernel of ιR. It follows that a one form ω ∈ H0(Pn,ΩPn(d + 2)) can be written in
homogeneous coordinates as

ω = A0dZ0 + · · ·+AndZn

where the Ai’s are homogeneous polynomials of degree d+ 1 satisfying

A0Z0 + · · ·+AnZn = 0.

Notice that a one form induces a distribution of codimension one subspaces of
T Pn given by p 7→ Kerωp. However, this distribution is not necessarily integrable.
(A distribution is called integrable if there exists a smooth germ of hypersurface
U at p such that TqU = Kerωq, ∀ q ∈ U near p).

The condition to be integrable is expressed by Frobenius equation,

ω ∧ dω = 0.

For a geometric interpretation see [38] or [4].

2.3.2. Definition. A codimension one foliation is an integrable projective
one form modulo non zero complex multiples.

Denote
Vn−1,n,d = H0(Pn,ΩPn(d+ 2)).

A codimension one foliation is given by an element ω of

F(n− 1, n, d) := P(Vn−1,n,d)

such that ω ∧ dω = 0.

2.3.3. Remark. The condition ω ∧ dω = 0 translates into a system of quadratic
equations in P(Vn−1,n,d). They define the scheme of codimension one foliations of
degree d in Pn. Very little is known about it. The problem of determining their
irreducible components remains a rather challenging field of research, cf. [38].

Next we explain the local expression of a projective one form.
Let Uj denote the affine open set Zj 6= 0, with coordinates (z0, . . . , ẑj , . . . , zn).

The local expression of a one form

ω = A0dZ0 +A1dZ1 + · · ·+AndZn

on Uj is

ωUj = a0dz0 + · · ·+ âjdzj + · · ·+ andzn

where ai is the dehomogenization of Ai with respect to Zj .

2.3.4. Definition. The degree of a codimension one foliation is d if it is
given by a one form in F(n− 1, n, d).

Geometrically, if ω ∈ F(n−1, n, d), the degree is the number of tangencies of the
distribution induced by ω with a generic line in Pn. For example, suppose that ω
is given in U0 by

a1dz1 + · · ·+ andzn

and take the parametrized line ` = (t, 0, . . . , 0). Then the tangencies of ω with `
are given by the zeros of ω|` = a1(t, 0, . . . , 0)dt. In principle, a1 has degree ≤ d+ 1,
but the condition of contraction by the radial vector field gives us a0(t, 0, . . . , 0) =
−ta1(t, 0, . . . , 0), so a1(t, 0, . . . , 0) has degree ≤ d, and the number of points of
tangencies is d. For more detailed discussion see [38, Proposition 1.2.1 p. 21].
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2.3.5. Definition. The singularities of a projective one form ω are the zeros of
the section

ω : OPn → ΩPn(d+ 2).

Locally, if we write ω = a1dz1 + · · ·+ andzn, the scheme of singularities of ω is
defined by the ideal generated by a1, . . . , an. As a set, it consists of the common
zeros of the ai.

Exercise 7. As in the case of vector fields, show that a generic one form has
isolated singularities. Using the sequence (2.9) and Proposition 1.6.10 show that
the the number of singularities of a generic one form is the degree of the zero-cycle
cn(ΩPn(d+ 2)). Prove that this number is given by

(d+ 1)n − (d+ 1)n−1 + · · ·+ (−1)n−i(d+ 1)i + · · ·+ (−1)n.

2.3.6. Remark. In the case of integrable one forms, if n ≥ 3 the set of singularities
is not a finite set. In fact [32, p. 95] shows that there always exists a component of
the singular set that has codimension two.

2.3.7. Definition. (Order of a singularity.)
Let p be a singularity of ω. Suppose that p ∈ U0 and write

ω = a1dz1 + · · ·+ andzn

for the local expression of ω in U0. Then the order of the singularity p is

νp(ω) = min{ordp(ai) | i = 1, . . . , n}.

It can be easily checked that this is independent of the choice of the open set Uj .

Some authors use multiplicity of the singularity instead of order.
In what follows we restrict ourselves to the case n = 2.

2.3.8. Definition. (Dicritical singularity) Let ω ∈ H0(P2,ΩP2(d+2)) and suppose
that p ∈ P2 is a singularity of ω of order k. Let

ωp = akdx+ bkdy + h.o.t.

be a local expression of ω around p = (0, 0). We say p is dicritical of order k if

akx+ bky ≡ 0

(see [39, p. 47]). In the case k = 1, we say that p is a radial singularity.

Exercise 8. Prove that the dicriticity condition is equivalent to

ωp = f(x, y)(ydx− xdy) + h.o.t

for some homogeneous polynomial f of degree k − 1.

2.3.9. Definition. (Invariant hypersurface.)
Let W ⊂ P2 be an irreducible hypersurface defined by a homogeneous polynomial

G of degree k, and F a foliation defined by a one form ω. We say that W is
invariant by F if

TpW ⊂ kerωp

for all p ∈W \ (Sing(W ) ∪ Sing(ω)).
If W is reducible, we say that it is invariant by F if and only if each irreducible

component of W is invariant by F .
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If G is irreducible, the above condition is equivalent to the existence of a two-form
θ of degree d such that

dG ∧ ω = Gθ.

See [32, p. 99].

2.3.10. Definition. (Points of tangency with a hypersurface.)
In the definition above, if W is not invariant, the two-form dG∧ ω is not identi-

cally zero in W . The zeros of this form in W \ (Sing(W )) are the tangencies of
F with W .

2.4. Vector fields versus forms in P2. In P2, a foliation can be defined by a
vector field or by a one form.

In what follows we study one forms in P2 and their relation with vector fields.

Exercise 9. Prove that all one forms in P2 are automatically integrable i.e., if

ω = A0dZ0 +A1dZ1 +A2dZ2

with homogeneous Ai of same degree, then

ιR(ω) = 0 =⇒ ω ∧ dω = 0.

Hence a foliation of degree d in P2 can be given by a vector field

X ∈ H0(P2, T P2(d− 1))

or by a one form

ω ∈ H0(P2,ΩP2(d+ 2)).

2.4.1. Remark. The reason behind this correspondence is the following. Recall
that if E is a locally free sheaf of rank 2 we have a natural isomorphism

E ' E∨⊗
2
∧ E .

See [31, exercise 5.16 p. 127]. Taking E = ΩP2 we obtain

ΩP2 ' T P2(−3).

Thus ΩP2(d+ 2) ' T P2(d− 1).

If a foliation in P2 is given by a vector field

X = F0
∂

∂Z0
+ F1

∂

∂Z1
+ F2

∂

∂Z2

and by a one form

ω = A0dZ0 +A1dZ1 +A2dZ2,

we may express the F ′is in terms of the A′is and vice versa as follows.
Given X as above, the coefficients of ω are expressed by A0 = Z2F1 − Z1F2,

A1 = Z0F2 − Z2F0,
A2 = Z1F0 − Z0F1.

Given ω, the coefficients of the vector field X can be obtained from

dω = (d+ 2)(F0dZ1 ∧ dZ2 + F1dZ2 ∧ dZ0 + F2dZ0 ∧ dZ1)

This is a consequence of the acyclicity of the Koszul complex associated to the
regular sequence {Z0, Z1, Z2}. See [32, §1.5].
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Exercise 10. Prove that if ω and X define the same foliation in P2, then in U0 we
have

ωU0
= a1dz1 + a2dz2

and

XU0 = −a2
∂

∂z1
+ a1

∂

∂z2
.

This corresponds to the intuitive idea that the vector field and the form defining a
foliation are orthogonal to each other.

3. Foliations with degenerate singularities

If ω ∈ PN , (N = N1,2,d) defines a generic foliation of degree d in P2, its singu-
larities are all nondegenerate (see [32]); in particular, they have all order one. In
this Section we study foliations in P2 that have a degenerate singularity.

The first type of degeneration we will consider is to ask the order of the singularity
to be some k ≥ 2. The reader can easily check that, if ω1, ω2 are one forms that
have order ≥ k at a point p ∈ P2, the same holds true for any linear combination
a1ω1 + a2ω2, ai ∈ C. Thus, for fixed p, the condition is linear on the space of one
forms.

This leads us to the correspondence Wk ⊆ P2 × PN defined by the pairs (p, ω)
such that the order of ω at p is ≥ k. We define the locus Mk ⊂ PN of foliations
with a singularity of order at least k as the image p2(Wk) ⊂ PN by the second
projection.

As expected from the previous discussion, Wk is actually a projective subbundle
of P2×PN over P2. More precisely, we have that Wk = P(Mk), the projectivization
of a vector bundleMk over P2. We are able to determine its characteristic classes,
used to find the degree of Mk .

In Section 3.2 we study the space Dk ⊂ Mk of foliations that has a dicriti-
cal singularity of order k. Again, this is a closed condition, and we construct a
parametrization of that space. We find a vector subbundle Dk ⊂ Mk over P2,
such that the image by the second projection of P(Dk) is Dk. We determine the
characteristic classes of Dk, and with this at hand we can compute the degree of
Dk.

Requiring a leaf of a foliation to be tangent to a line at a given point defines a
hyperplane in PN . Thus, finding the degree of the loci Dk ⊂ Mk can be rephrased
loosely as calculating the number of foliations with a singularity of the chosen type
and further tangent to the appropriate number of flags (point, line) in P2. It turns
out that the degrees of Dk and Mk are expressed as explicit polynomials in k, d.

3.1. Singularities of prescribed order. In order to simplify the notation we set

V := V1,2,d = H0(P2,ΩP2(d+ 2)) and N := N1,2,d = dimV − 1 .

Fix k ≤ d + 1. In this section we describe a parameter space Mk ⊂ PN for the
locus of foliations of given degree d that have some singularity of order ≥ k. In fact
we obtain a filtration of PN ,

Md+1 ⊂ · · · ⊂M3 ⊂M2 ⊂M1 = PN .

In Proposition (3.1.3, p. 57) we show that the codimension of Mk in PN is

codMk = k(k + 1)− 2



56 VIVIANA FERRER

and

deg(Mk) =

∫
c2(Pk−1(ΩP2(d+ 2))) ∩ [P2]

where Pk−1(ΩP2(d + 2)) is the (k − 1)−jet bundle associated to ΩP2(d + 2), (cf.
Appendix (A.1.4, p. 81)).

Recall (Definition 2.3.7, p. 53) that if ω ∈ H0(P2,ΩP2(d + 2)), the order of a
singularity p ∈ P2 is

νp(ω) := min{orderp(a), orderp(b)},
where ωp = adx + bdy is a local expression of ω in a neighborhood of p with
x(p) = y(p) = 0.

Order one. Consider the map of fiber bundles over P2,

ev : P2 × V → ΩP2(d+ 2)

given by evaluation, ev(p, ω) = (p, ω(p)).
We claim that ev is surjective. In fact, it is sufficient to prove the surjectivity in

the fibers. For this suppose p = [0 : 0 : 1] and let λdx+ µdy ∈ Ωp(d+ 2). Then

ω := Zd2 (Z2λdZ0 + Z2µdZ1 − (Z0λ+ Z1µ)dZ2) ∈ H0(P2,ΩP2(d+ 2))

satisfies ω(p) = λdx+ µdy.

3.1.1. Remark. The fact that ΩP2(d+ 2) is generated by global sections can also
be proven with cohomological tools, cf. [32, Lemme 2.3.6, p. 90].

Set M := Ker(ev). Since ev is surjective, M is a subbundle of V of rank

rkM = dimV − 2 = N − 1 .

It fits into the following exact sequence

(3.1) 0→M−→ P2 × V −→ ΩP2(d+ 2)→ 0.

3.1.2. Definition. The universal singular set is the projective bundle associ-
ated to M, i.e., the incidence variety:

P(M) = {(p, [ω]) | p is singularity of [ω]} ⊂ P2 × PN .

Let us denote by p1, q the projections of P(M) in the first and second factor
respectively.

We have the diagram

P(M)

p1

||

q

""
P2 PN

where q is surjective (all foliations have singularities) and generically finite (a generic
foliation has isolated singularities) cf.[32].

We may compute the cardinality of a generic fiber of q (i.e., deg(q)) as follows.
Observe that q∗[P(M)] = deg(q)[PN ]. Write H := c1(OPN (1)). Using properties of
Chern classes and degree we have

deg(q) =

∫
s2(M) ∩ [P2].
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The equality follows by Lemma (1.6.5, p. 45), recalling that rk(M) = N−1. In this
way we retrieve the number of singularities of a general degree d foliation. Indeed,
by sequence (3.1) we have s2(M) = c2(ΩP2(d + 2)). From the Euler sequence we
find

c2(ΩP2(d+ 2)) = d2 + d+ 1.

Order k > 1. Recall the exact sequence (see Appendix (A.1.4, p. 81)) for the jet
bundles of ΩP2(d+ 2),

(3.2) 0→ Symn ΩP2 ⊗ ΩP2(d+ 2)→ Pn(ΩP2(d+ 2))→ Pn−1(ΩP2(d+ 2))→ 0

and the maps evn : P2 × V → Pn(ΩP2(d+ 2)).

Exercise 11.

(1) Prove that evn is surjective for all n ≤ d+ 1.
(2) Prove that evn(Ker(evn−1)) = Symn ΩP2 ⊗ ΩP2(d+ 2).

3.1.3. Proposition. For 1 ≤ k ≤ d+ 1, denote by

Mk = {[ω] ∈ PN | [ω] has a singularity of order at least k}.

Then we have

codPN (Mk) = k(k + 1)− 2

and

deg(Mk) =

∫
P2

c2(Pk−1(ΩP2(d+ 2))) .

Proof. Define

Mk = Ker
(
evk−1 : P2 × V → Pk−1(ΩP2(d+ 2))

)
.

In view of the previous exercise, we see that Mk is a vector subbundle of V of co-
rank equal to rkPk−1(ΩP2(d+2)). By construction, the projective bundle associated
to Mk is the incidence variety,

P(Mk) = {(p, [ω]) ∈ P2 × PN | p is a singularity of [ω] and νp(ω) ≥ k}.

Let q : P(Mk) → PN denote the projection in the second factor. We have Mk =
q(P(Mk)).

It is easy to check that q is generically injective (for k > 1) (cf. Lemma 3.1.4
below). It follows from Lemma 1.6.5, p. 45 that

deg(Mk) =

∫
s2(Mk) ∩ [P2].

Since by definition of Mk, s2(Mk) = c2(Pk−1(ΩP2(d + 2))), the second assertion
follows. The first assertion follows from the exact sequence (A.1), p. 81, and a
simple inductive argument. �

3.1.4. Lemma. For all 2 ≤ k ≤ d + 1 the projection q : P(Mk) → PN is
generically injective.

Proof. By Lemma 1.6.6, p. 45, we shall find a form ω of degree d+ 1 such that

(i): it has a unique singularity p of order k and
(ii): d(p,[ω])q is injective.
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Suppose that k > 2. We claim that the following form fulfills (i) and (ii):

ω = (Z
d−(k−1)
2 Zk−1

0 + Z
d−(k−1)
2 Zk−1

1 + Zd0 + Zd1 )(−Z1dZ0 + Z0dZ1).

Indeed, write F := Z
d−(k−1)
2 Zk−1

0 + Z
d−(k−1)
2 Zk−1

1 + Zd0 + Zd1 . In the chart U2 we
have

ω = (xk−1 + yk−1 + xd + yd)(−ydx+ xdy) := f · (−ydx+ xdy) := adx+ bdy.

Is clear that (0, 0) is a singularity of order k. Suppose that (α, β) ∈ U2 = C2 is
another singularity. Then we have

f(α, β) = αk−1 + βk−1 + αd + βd = 0.

On the other hand, if the first jet of ω at that point is zero we have

∂a

∂x
(α, β) = −β ∂f

∂x
(α, β) = −βαk−2(k − 1 + dαd−k+1) = 0

∂a

∂y
(α, β) = −β ∂f

∂y
(α, β) = −βk−1(k − 1 + dβd−k+1) = 0

∂b

∂x
(α, β) = α

∂f

∂x
(α, β) = αk−1(k − 1 + dαd−k+1) = 0

∂b

∂y
(α, β) = α

∂f

∂y
(α, β) = αβk−2(k − 1 + dβd−k+1) = 0.

Suppose that α 6= 0. Then ∂f
∂x (α, β) = 0. If (α, β) is a singularity of order greater

than two, then

∂2b

∂2x
(α, β) = α

∂2f

∂2x
(α, β) = αk−2((k − 1)(k − 2) + d(d− 1)αd−k+1) = 0

i.e.,

((k − 1)(k − 2) + d(d− 1)αd−k+1) = 0.

This, together with dαd−k+1 = −(k − 1) implies k − 2 − (d − 1) = k − 1 − d = 0
i.e., k = d + 1. It is easy to see that if k = d + 1 the unique singularity of order
≥ 1 is (0, 0). Therefore α = 0, and similarly β = 0.

On the other charts, for example in U0 the expression of the form is

(zd−k+1(1 + yk−1) + 1 + yd)dy.

It is easy to see that the singularities are of order less than two.
It remains to show that d(p,[ω])q is injective. For this, we consider a vector

((p1, p2), θ)) ∈ T(p,[ω])P(Mk), and we have to prove that θ = 0 implies p1 = p2 = 0.
The vector above is the tangent vector to a curve ([εp1 : εp2 : 1], ω + εθ) in

P(Mk) if and only if the point is a singularity of order ≥ k (working in C[ε]/〈ε2〉).
Suppose that Ji(ω + εθ)(εp1, εp2) = 0 for all i ≤ k − 1 (here Ji(ω) stands for

the part of order i of ω). It is easy to see that in this case, if θ = 0, Jk−1(ω +
εθ)(εp1, εp2) = 0 implies {

−εp2
∂k−1f
∂k−1x

(εp1, εp2) = 0

−εp1
∂k−1f
∂k−1x

(εp1, εp2) = 0.
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But ∂k−1f
∂k−1x

= ((k− 1)! + d(d− 1) · · · (d− k+ 2)xd−k+1). Hence the above equations
imply {

εp2(k − 1)! = 0

εp1(k − 1)! = 0

i.e., p1 = p2 = 0.
For k = 2, the form

ω := (Z0Z
d−1
2 + Z1Z

d−1
2 + Zd0 + (−Z1)d)(−Z1dZ0 + Z0dZ1)

has the required properties.
�

Employing the proposition above, we may now derive an explicit formula for the
degree of Mk ⊂ PN . We use Schubert, [34] to do the computations, see the script
in [16]. We find

3.1.5. Corollary. The degree of Mk is

1

2
k(k + 1)

[
(k2 + k − 1)

(
d2 − (2k − 3)d

)
+

1

4
(4k4 − 8k3 − 7k2 + 21k − 6)

]
.

�

3.2. Dicritical singularities. Recall that if ω ∈ H0(P2,ΩP2(d + 2)) and p is a
singularity of ω, we say that p is dicritical if the local expression of ω around p is

ωp = akdx+ bkdy + h.o.t

with akx + bky = 0 (Definition 2.3.8, p. 53). To have a dicritical singularity will
be shown to be a closed condition in PN . This will be rephrased shortly in a
coordinate-free manner.

In this section we describe the locus Dk of forms of given degree that have a
dicritical singularity of order k.

In Proposition (3.2.3, p. 60) we obtain that the codimension of Dk is

k(k + 2)

and the degree of Dk is given by the coefficient of the degree two part of

c(Pk−1(ΩP2(d+ 2)))c(Symk+1 ΩP2 ⊗OP2(d+ 2)).

3.2.1. Remark. Next we explain an invariant way to express the condition that
a singularity is dicritical.

Suppose that E is a vector bundle of rank 2. Then for all k ≥ 1 we have the
following exact sequence (e.g., see [13, Appendix 2 A2.6.1.]):

0→
2
∧ E ⊗ Symk−1 E → Symk E ⊗ E

Pk→ Symk+1 E → 0,

where the first map is given by

(a ∧ b⊗ c) 7→ (ac⊗ b)− (bc⊗ a)

and the second by
a⊗ b 7→ ab.

Say x, y form a local basis for E . Then for ak, bk ∈ Symk E , we have that
akx + bky = 0 in Symk+1 E if and only if there is some c ∈ Symk−1 E such that
ak ⊗ x + bk ⊗ y is equal to the image of x ∧ y ⊗ c, to wit, xc ⊗ y − yc ⊗ x. cf.
Exercise (8, p. 53).
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3.2.2. Lemma. For all 1 ≤ k ≤ d there exists a subbundle Dk of the trivial bundle
P2 × V such that

P(Dk) = {(p, [ω]) | p is a dicritical singularity of [ω] with νp(ω) ≥ k} ⊂ P2 × PN .

Proof. From the previous section we have the following diagram,

Symk ΩP2 ⊗ ΩP2(d+ 2)

��

��
Pk(ΩP2(d+ 2))

����

44 44
evk

Mk
// //

Jk

66 66

V // // Pk−1(ΩP2(d+ 2)).

where the map Jk is surjective in view of Exercise 11.
We obtain the surjective map

Mk

Tk

22 22
Jk // Symk ΩP2 ⊗ ΩP2(d+ 2)

Pk // Symk+1 ΩP2(d+ 2).

Explicitly, on the fiber over p ∈ P2 the map is as follows:

Tk(p, ω) = (p, akx+ bky)

where

ωp = akdx+ bkdy + h.o.t.

is the local expression of ω in a neighborhood of p with x(p) = y(p) = 0. Set

(3.3) Dk := ker
(
Mk

Tk // // Symk+1 ΩP2(d+ 2)
)

Thus Dk is a vector bundle of rank = rk(Mk)− (k+ 2). Recalling (3.2.1, p. 59),
we see that the projective bundle associated to Dk is the incidence variety,

P(Dk) = {(p, [ω]) ∈ P2 × PN | p is a dicritical singularity of [ω] with νp(ω) ≥ k}.

�

For 1 ≤ k ≤ d+ 1, denote by

Dk = {[ω] ∈ PN | [ω] has a dicritical singularity of order at least k}.

3.2.3. Proposition. The degree of Dk is the coefficient of the degree two part of

c(Pk−1(ΩP2(d+ 2)))c(Symk+1 ΩP2 ⊗OP2(d+ 2)).

The codimension of Dk is k(k + 2).

Proof. From the above construction we have the maps

P(Dk)

p1

||

q

&&

⊂ P2 × PN

P2 Dk ⊂ PN .
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If q is generically injective the degree of Dk is computed as∫
s2(Dk) ∩ [P2]

(see Lemma (1.6.5, p. 45)). By construction Dk fits into the following exact se-
quence,

0→ Dk →Mk → Symk+1 ΩP2 ⊗OP2(d+ 2)→ 0.

Hence

s(Dk) = s(Mk)c(Symk+1 ΩP2 ⊗OP2(d+ 2)) ,

and from the proof of Proposition 3.1.3 we have s(Mk) = c(Pk−1(ΩP2(d+ 2))).
On the other hand, rk(Dk) = rk(Mk)− (k + 2). Thus

codPNDk = codMk + (k + 2) = k(k + 1)− 2 + (k + 2) = k(k + 2) .

It remains to prove that q is generically injective, but this follows from the generic
injectivity of the projection P(Mk)→Mk. Indeed, let U ⊂Mk denote the open set
where the fiber of P(Mk) → Mk consists of just one reduced point. Now observe
that the examples constructed in Lemma (3.1.4, p. 57) are in U ∩Dk. Hence U ∩Dk
is a non empty open set over which the fibers of q : P(Dk) → Dk consist of one
reduced point. �

We may now compute an explicit formula for the degree of Dk ⊂ PN using
Schubert, [34]. See the script in [16]. We find

3.2.4. Corollary. The degree of Dk is given by

(k + 1)2

[
1

2
(k4 + k2 − 2k + 2)− (k3 + k2 + k − 1)d+

1

2
(k2 + 2k + 2)d2

]
.

�

3.2.5. Remarks. (i) We have by construction the following diagram:

Symk−1 ΩP2⊗
2
∧ ΩP2(d+ 2)

��
Dk //

dk

22

0 ++

Mk
Jk //

Tk

))

Symk ΩP2 ⊗ ΩP2(d+ 2)

Pk

��
Symk+1 ΩP2 ⊗OP2(d+ 2)

By definition of Dk we get a map

dk : Dk → Symk−1 ΩP2⊗
2
∧ ΩP2 ⊗OP2(d+ 2)

given in the fibers by dk(p, ω) = f(x, y)dx ∧ dy where f is a polynomial of degree
k − 1.

(ii) In the case k = 1 we have

ω = λ(ydx− xdy) + h.o.t.
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with λ ∈ C, i.e., a radial singularity (see Definition (2.3.8, p. 53)). Thus Corollary
3.2.4 and Proposition 3.2.3 give formulas for the codimension and degree of the
space of foliations with a radial singularity:{

codPND1 = 3

degD1 = 10d2 − 8d+ 4.

(iii) In the case k = d+ 1 the map

Jd+1 :Md+1 → Symd+1 Ω1
P2 ⊗ ΩP2(d+ 2)

is no longer surjective: its image is Symd ΩP2⊗
2
∧ Ω1

P2⊗OP2(d+2). Indeed, suppose
that ω is a form of degree d+ 1 which has p as singularity of order d+ 1. Then a
local expression of ω is

ωp = ad+1dx+ bd+1dy ,

but this form defines a projective form of degree d+ 1 in P2 if and only if

ad+1x+ bd+1y = 0

i.e., if p is a dicritical singularity. Therefore we can write

ωp = f(x, y)(ydx− xdy)

for some homogeneous polynomial f of degree d, i.e., ωp ∈ Symd Ω1
p⊗

2
∧ Ω1

p. Hence

Td+1 :Md+1

Jd+1 // Symd+1 ΩP2 ⊗ ΩP2(d+ 2)
Pd+1 // Symd+2 ΩP2 ⊗OP2(d+ 2)

is the zero map. This shows that Md+1 = Dd+1, i.e., for a foliation of degree d a
singularity of order d+ 1 is automatically dicritical.

4. Foliations with invariant algebraic subvarieties

Jouanoulou shows in [32] that the set of foliations that do not have any invariant
algebraic curve is dense in the ordinary topology in the variety that parametrizes
foliations of degree d ≥ 2 in P2. In [37] Lins-Neto proves that this set contains
an open and dense subset. Finally, in [9] Coutinho and Pereira show that in a
smooth complex projective variety of dimension grater or equal to two, a generic
foliation of dimension one and sufficiently ample cotangent bundle (in the case of
Pn this means degree big enough) has no invariant algebraic subvarieties of positive
dimension. In fact the result of Jouanoulou (Coutinho and Pereira respectively)
states that the set Uk of dimension one foliations in P2 (Pn respectively) without
algebraic solution of degree k is an open set in the Zariski topology. We then ask
for the complementary of the open set Uk. i.e., we want to study the subset of the
space of foliations of dimension one and degree d ≥ 2 in Pn that has an algebraic
solution of fixed degree and dimension.

To be more precise, we fix some type of positive dimensional subvarieties in
Pn. By this we mean an irreducible family of subvarieties, say hypersurfaces in
Pn of given degree. It turns out that the subset of the space of one dimensional
foliations of sufficiently high fixed degree that do have an invariant subvariety of
a given “type” is irreducible. We would like to determine its codimension and
degree. For this, we try to find an adequate description of these subvarieties in
the spirit of the previous Section, namely, as the birrational image of projective
bundles associated to vector bundles over the variety that parameterizes the desired
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invariant subvarieties, e.g. Grassmannians for linear spaces, “complete conics” for
conics.

Heuristically, requiring a fixed subvariety to be invariant by a foliation amounts
to imposing linear conditions on the coefficients of a vector field defining the folia-
tion. It is reasonable to expect that the number of independent conditions remains
fixed as the subvariety varies in a suitable open subset of its parameter space. This
is clearly the case if the type of subvariety we wish to be invariant consists of a sin-
gle orbit under the group of automorphism of Pn. For instance, imposing a linear
subspace of fixed dimension does produce a nice projective bundle over the cor-
responding Grassmannian. However, already for hypersurfaces of any degree≥ 2,
the number of independent conditions jumps in the presence of singularities of the
variety.

This question, in full generality, seems to be complicated. In this Section we
solve the problem of describing foliations that have invariant subsets of degree 1 in
Pn and of degree 2 in P2.

In the first Subsection we find a parameter space for foliations with linear in-
variant subset of any fixed dimension in Pn.

In Subsection two, we deal with the problem of foliations in P2 with an invariant
conic. With the same techniques it is possible to describe the space of foliations with
invariant quadrics in Pn. We will give the formulas for the degree and codimension
of the space of foliations with invariant conic (respectively, quadric) in P3 in the
last part of this Subsection.

4.1. Foliations with invariant linear subspaces. Fix 1 ≤ r < n. Set for short

(4.1)

{
N := N1,n,d, V := V1,n,d cf. (2.7, 2.4, p. 48)

G := G(r, n), the Grassmannian of r-dimensional subspaces of Pn.

Assume d ≥ 2; for the cases d = 0, 1 see Exercise (13, p. 67). We define

Ŵ := {(W, [X ]) ∈ G× PN | W is invariant byX}.
The goal of this subsection is to prove the following

4.1.1. Proposition. Notation as above, there exists a vector subbundle

E ⊂ G× V
such that

(i) P(E) = Ŵ ⊂ G× PN ;
(ii) if we set W := q(P(E)), where q : P(E) → PN is the projection, then the

codimension of W in PN is

codPNW = (n− r)(
(
r + d

d

)
− (r + 1)) ;

(iii) and the degree of W is given by the top-dimensional Chern class,

degW =

∫
cg(Q⊗ Symd(S∨)) ∩ [G],

where g := dimG.

The image W of Ŵ in PN via projection is the set of dimension one degree d
foliations in Pn that have an invariant r-plane.
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Proof. Consider the tautological sequence over G (A.7, p. 84) and take its dual
sequence

(4.2) 0→ Q∨ → G× S1 → S∨ → 0.

The fiber of Q∨ over W ∈ G is the space of equations that define W . The map
G× S1 � S∨ induces a surjective map

G× Sd � Symd(S∨).

On the fiber over W ∈ G it is the map of restriction of degree d polynomials to W .
On the other hand, from the tautological sequence,

0→ S → G× S∨1 → Q→ 0,

setting Λ = SW , using (2.1), p. 48, we can interpret the surjective map

S∨1 � QW
as the quotient of T Cn+1 by T Λ. Tensoring these two maps we obtain a surjective
map of vector bundles over G, ϕ : Sd⊗S∨1 � Symd(S∨)⊗Q, which in the fiber over
W is given by ϕW (F ⊗X) = F|W ⊗X. It is easy to see that ϕ(Sd−1 ·R) ≡ 0 (the
radial field restricted to Λ is the radial field in Λ). Hence we obtain a surjective
map of vector bundles, ψ : G×V � Symd(S∨)⊗Q. It’s not hard to check that the
following are equivalent:

• ψW (X ) = 0
• X|Λ ∈ TΛ
• Λ is invariant by X
• W = P(Λ) is invariant by X .

Therefore E := Ker(ψ) is a subbundle of V with P(E) = Ŵ. This proves (i). We

also get the rank of E is dimV − (n− r)
(
d+r
d

)
. Assertions (ii) and (iii) will be dealt

with below. �

4.1.2. The degree of W. In order to compute the degree of W it remains to
prove that q is generically injective, and then apply Lemma (1.6.5, p. 45).

4.1.3. Lemma. Notation as in Prop. (4.1.1, p. 63), for d > 1, the projection

q : Ŵ→ PN is generically injective.

Proof. Recall that W = q(Ŵ). It’s sufficient to prove that there exists an open set
U1 ⊂W such that for each point y ∈ U1, q−1(y) consists of just one point. Indeed,

in this case we deduce that dim Ŵ = dimW. Since Ŵ (resp. W) are smooth (resp.
generically smooth) varieties we have that

dq : T Ŵ −→ TW
is generically of maximal rank, i.e., there exists an open set U2 ⊂ W such that
if y ∈ U2, and x ∈ q−1(y), then dxq is surjective, equivalently dxq is injective.
Summarizing we find an open set U := U1∩U2 such that if y ∈ U then q−1(y) = {x},
and x is a reduced point in the fiber. It follows that q is generically injective
cf. (1.6.6, p. 45).

Let’s prove the existence of U1 above. For W ∈ G, set WW ⊂ W the set of
foliations which leave W invariant. For each W ′ 6= W define WWW ′ := WW ∩WW ′

and

W2 := {X ∈W | X ∈WWW ′ for someW 6= W ′}.
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We claim that dimW2 < dimW. Indeed, define

G2 := {(W,W ′) ∈ G×G |W 6= W ′},

Ŵ2 = {(X , (W,W ′)) | X ∈WWW ′ ; (W,W ′) ∈ G2}.
For each 1 ≤ s ≤ min{r, n− r} set

G2s := {(W,W ′) ∈ G×G | cod(W ∩W ′) = n− r + s},

Ŵ2s = {(X , (W,W ′)) | X ∈WWW ′ ; (W,W ′) ∈ G2s}.
Let p : Ŵ2s →W ⊂ PN denote the projection. Then we have, for each s

Ŵ2s

}}

p

!!
G2s W

It is easy to see that dimG2s = r(n− r) + s(r− s) = m+ s(r− s). Furthermore

each Ŵ2s → G2s is a fibration with fiber dimension equal to dimWWW ′ . We claim
that

dimWWW ′ ≤ dimWW − s
(
r + d

d

)
.

In fact, suppose that W = Z(Z0, . . . , Zn−r−1). Then W is invariant by a field of
degree d,

X = F0
∂

∂Z0
+ · · ·+ Fn

∂

∂Zn
if and only if

(4.3) F0, . . . , Fn−r−1 ∈ 〈Z0, . . . , Zn−r−1〉.
Take W ′ such that cod(W ∩ W ′) = n − r + s. Acting with the stabilizer of

W in PGLn+1 we can suppose that W = Z(Zi1 , . . . , Zin−r ), with W ′ ∩ W =
Z(Zi1 , . . . , Zis) where i1, . . . , is 6∈ {0, . . . , n − r − 1}. Now the condition of W ′ to
be invariant by X implies that, for each j = 1, . . . , s we have

Fij ∈ 〈Zi1 , . . . , Zin−r 〉.
These conditions are independent of the others in (4.3). On the other hand it is
easy to count the new conditions imposed by Fij ∈ 〈Zi1 , . . . , Zin−r 〉: this number

is
(
r+d
d

)
. So we have that codWW

WWW ′ ≥ s
(
r+d
d

)
. This proves the claim.

Next, let ε denote the dimension of the generic fiber of q and ε2 the dimension
of the generic fiber of p. It is clear that ε2 ≥ ε. Hence

dimW2s = dim Ŵ2,s − ε2
≤ m+ s(r − s) + dimWW − s

(
r+d
d

)
− ε

= dimW + s(r − s)− s
(
r+d
d

)
.

Therefore, in order to prove that dimW2 < dimW it is enough to prove that

(4.4) s(r − s)− s
(
r + d

d

)
< 0.

As s ≥ 1 we have (r − s) ≤ (r − 1) < (r + 1). On the other hand, we have

(r + d) · · · (r + 2)(r + 1) ≥ (d+ 1) · · · 3 (r + 1)
≥ d! (r + 1) > d! (r − s).
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This proves (4.4). Now, define U1 := W \W2. Clearly U1 is an open dense subset
of W such that if X ∈ U1 then #q−1(X ) = 1. �

We can now complete the proof of (ii) and (iii) of the Prop. (4.1.1, p. 63). By
construction of E (cf. p. 63) we have the following diagram:

P(E)

p1

}}

q

!!

= Ŵ

G W
and we have proved that q is generically injective. Therefore

codPNW = N − dim(P(E)) = N − (g + rk(E)− 1) =

N −
(
g + (N − (n− r)

(
r + d

d

)
)

)
= (n− r)

(
r + d

d

)
− g

where g = dimG = (n− r)(r + 1).
By Lemma (1.6.5, p. 45) the degree of W is equal to∫

sg(E) ∩ [G].

From the exact sequence that defines E ,

0→ E → V → Q⊗ Symd(S∨)→ 0

we get ∫
sg(E) ∩ [G] =

∫
cg(Q⊗ Symd(S∨)) ∩ [G] .

�

4.1.4. Examples Next we give explicitly some codimensions and degrees. We use
a script for Schubert, [34] (see [16]) for the computations.

(P2, r = 1)
codPNW = d− 1

degW =
1

8
d(d+ 1)(d+ 2)(d+ 3)

(P3, r = 1)
codPNW = 2(d− 1)

degW =
1

36
d(d+ 2)(d+ 1)(3d5 + 9d4 + 11d3 + 9d2 − 11d+ 15)

(P3, r = 2)

codPNW =
1

2
(d+ 4)(d− 1)

degW =
1

64
d(d+ 3)(d+ 2)(d+ 1)(d2 + 6d+ 11)(d3 + 6d2 + 11d− 6)

(P4, r = 1)
codPNW = 3(d− 1)

degW = 1
210·32 d(d+ 2)(d+ 1)

[
729d9 + 2187d8 + 3402d7 + 3750d6 − 279d5+

651d4 − 2668d3 + 9732d2 − 8864d+ 6720
]
.
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Exercise 12. In the case of a hyperplane in Pn, rk(Q) = 1,(Q = OP̌n(1)) we have the
following exact sequence:

0→ Sd−1 ⊗Q∨ → Sd → Symd(S∨)→ 0.

Twisting by Q we obtain:

0→ Sd−1 → Sd ⊗Q → Symd(S∨)⊗Q → 0.

Use this to prove that cn(Symd(S∨)⊗Q) = cn(Sd ⊗Q) =
((d+nn )

n

)
.

Exercise 13. In this exercise we review the case of foliations of degree 0.
Prove that a degree 0 foliation given by a field

X = λ0
∂

∂Z0
+ λ1

∂

∂Z1
+ · · ·+ λn

∂

∂Zn

with λi ∈ C, is radial with center p := [λ0 : λ1 : · · · : λn].
It follows that any line trough p is invariant. Therefore in this case the map q is infinity

to one.

In the case of foliations of degree 1 the well known correspondence between the
set of such foliations, and the space of (n+1)×(n+1) matrices of trace zero (see [32,
p. 9]), shows that a generic foliation of degree 1 has

(
n+1
r+1

)
invariant subspaces of

dimension r.
A degree one foliation is given by a field

X = F0
∂

∂Z0
+ F1

∂

∂Z1
+ · · ·+ Fn

∂

∂Zn

where Fi is a homogeneous polynomial of degree 1 for all i = 0, . . . , n.
Let us write Fi =

∑
j aijZj . Then we associate to X the matrix of coefficients

B := ((aij))i,j (this matrix will have trace zero because we are taking X of diver-
gence zero, to ensure uniqueness).

Exercise 14. Prove that the invariant subspaces of dimension r are in correspondence
with the dimension n− r invariant subspaces of the transpose Bt.

Since a generic matrix is diagonalizable, the invariant subspaces of dimension n− r are
generated by n−r eigenvectors. Therefore, a generic matrix has

(
n+1
n−r

)
invariant subspaces.

Obtain this result from the previous analysis, as follows. In this case the map q from
(4.1.3, p. 64) is not generically injective but only finite. It follows from (1.6.5, p. 45), that
the degree of q is cg(Q ⊗ S∨). Now Q ⊗ S∨ = T G, the tangent bundle to the Grass-
mannian, (see [21, B.5.8. p. 435]). Thus cg(T G) can be computed with Bott’s formula
cf. Theorem (A.7.1, p. 87). We just have to find the number of fixed points for a convenient
action of C∗ on G. For a suitable choice of the weights of the action we will find that there
is one fixed point in each of the

(
n+1
n−r

)
canonical open sets of G. Alternatively, we could

argue invoking Plücker embedding.

4.2. Foliations with invariant conic. We set throughout this sectionN = N1,2,d,
V = V1,2,d (cf. (2.7, 2.4, p. 48).)

4.2.1. Foliations in P2 with invariant conic. In this section we find a
compactification Yd ⊂ PN of the space of foliations of degree d ≥ 2 in P2 that have
an invariant smooth conic.

Let Y be a parameter space for the family of smooth conics. As we did in the
previous sections, we want to describe the incidence variety

Ŷ := {(C,X ) | C is invariant byX } ⊂ Y × PN
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as the projective bundle associated to a subbundle E of the trivial bundle Y ×V . If
we obtain such description the image of the projection q2 : P(E)→ PN will be the
parameter space for foliations with an invariant conic. But this construction has
the drawback that the space of smooth conics is not complete, whereas in order to
compute degrees we need vector bundles over complete basis.

Thus we have to compactify the space of smooth conics, for example, allowing sin-
gular conics too. The most natural parameter space for conics is P5 cf. (A.6, p. 86),

so we try and use it. But as we will see, when we go on to examine the fibers of Ŷ
over P5, the singular conics cause problems: the dimensions jump.

What we are going to do to solve this problem is to blowup P5 along an appro-
priate subvariety. We will obtain a variety B, a birrational map π : B → P5 and

a projective bundle P(E) over B such that it coincides with Ŷ over the open set
of smooth conics. Fortunately B is a well known variety, the variety of “complete
conics” [47].

The construction of E will not be explicit, so in order to compute the degree of
Yd we will use Bott’s formula (cf. Appendix (A.7, p. 87)). The point is that we
only have to know the weights appearing in a decomposition of the fibers of E over
fixed points of an adequate action of C∗ on B, and we will be able to describe these
fibers as limits of the fibers over smooth conics.

Finally we present a script for Singular, [27] that implements the calculation
of the degree of Yd.

In Proposition 4.2.13 we find the codimension

codPNYd = 2(d− 1)

and its degree,

degYd =
1

25 5!
(d− 1) d (d+ 1) (d7 + 25d6 + 231d5 + 795d4

+ 1856d3 + 2468d2 + 2256d+ 768).

4.2.2. The invariance condition for one conic. Fix a generic conic C = Z(P )
and let X ∈ V be a field given by

X = F0
∂

∂Z0
+ F1

∂

∂Z1
+ F2

∂

∂Z2
.

Recalling (2.2.5, p. 50), C is invariant by X if and only if there exists a homoge-
neous polynomial G ∈ Sd−1 such that

X (P ) := F0
∂P

∂Z0
+ F1

∂P

∂Z1
+ F2

∂P

∂Z2
= GP.

Exercise 15. Prove that C = Z(P ) is invariant by X if and only if there exists a unique
representative Y ∈ Sd ⊗ S∨1 of X with Y (P ) = 0.

Therefore, for a fixed conic C = Z(P ) we may define the linear map

ϕP : Sd ⊗ S∨1 −→ Sd+1

X 7→ X(P ).

Observe that ϕP (GR) = 2GP for all G ∈ Sd−1. Thus ϕP induces a linear map

ψP : V → Sd+1

P · Sd−1
.

Moreover, X ∈ KerψP if and only if C is invariant by X .
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These two maps maps fit into the following commutative diagram:

KerϕP //

��

KerψP

��
Sd−1R //

'

��

Sd ⊗ S∨1 //

ϕP

��

V

ψP
��

P · Sd−1
// Sd+1

// Sd+1

P ·Sd−1
·

Hence, by the snake lemma we have an isomorphism

KerϕP ' KerψP .

4.2.3. The incidence variety. Now, let C vary in the parameter space of conics,
P5. Consider the map of vector bundles over P5:

(4.5) ϕ : OP5(−1)⊗ Sd ⊗ S∨1 −→ Sd+1

given by ϕ(C, (P,X)) = (C, X(P )). As observed above, ϕ induces a map

ψ : OP5(−1)⊗ V −→ Sd+1

Sd−1 ⊗OP5(−1)
·

Again this map fits into the following commutative diagram:

Kerϕ
' //

��

Kerψ

��
OP5(−1)⊗ Sd−1R //

'
��

OP5(−1)⊗ Sd ⊗ S∨1 //

ϕ

��

OP5(−1)⊗ V

ψ

��
OP5(−1)⊗ Sd−1

// Sd+1
// Sd+1

OP5 (−1)⊗Sd−1
·

Twisting by OP5(1) we obtain:

(4.6) Θ
' //

��

Θ̄

��
Sd−1 ·R //

'

��

Sd ⊗ S∨1 //

��

V

��

Sd−1
// OP5(1)⊗ Sd+1

// OP5 (1)⊗Sd+1

Sd−1

where
Θ := OP5(1)⊗Kerϕ ' Θ̄ := OP5(1)⊗Kerψ.

Restricting over the open subset U ⊂ P5 of smooth conics, we see that

P(Θ̄|U ) ⊂ P5 × PN

is the incidence variety

{(C,X ) | C is invariant byX } ⊂ U × PN .
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But as we will see soon, Θ̄ is not a vector bundle. In fact its fibers have different
dimensions depending on the singularities of the conic.

The isomorphism Θ̄ ' Θ is very usefull, because to describe the jumps in the
dimension of the fibers of Θ will be easier.

4.2.4. Θ is not a vector bundle. Let us see why Imϕ (and consequently Θ) is
not a vector bundle.

Exercise 16. Recall that if

X = F0
∂

∂Z0
+ F1

∂

∂Z1
+ F2

∂

∂Z2
∈ Sd ⊗ S∨1

and C = Z(P ) then

ϕ(C, (P,X)) = X(P ) = F0
∂P

∂Z0
+ F1

∂P

∂Z1
+ F2

∂P

∂Z2
.

Show that X(P ) vanishes at the singularities of C, and the dimension of the fibers of Imϕ
depends on the rank of the conic:

(1) If C is smooth (rk C = 3) then rkϕP = dimSd+1 =
(
d+3

2

)
.

Use that in this case C is projectively equivalent to Z(P ) with

P = Z2
0 + Z2

1 + Z2
2 .

(2) If C is the union of two lines (rk C = 2), then rkϕP = dimSd+1 − 1. In this case
C is projectively equivalent to Z(P ) with P = Z0Z1.

(3) If C is a double line (rk C = 1) then rkϕP = dimSd =
(
d+2

2

)
. Now C is projectively

equivalent to Z(P ) with P = Z2
0 .

4.2.5. The blow-up. Let r =
(
d+2

2

)
denote the minimal rank of ϕ, and denote by

Yr the scheme defined by the Fitting ideal of ϕ, generated by the (r+ 1)× (r+ 1)-
minors of a local representation of ϕ, cf. (4.5).

The analysis of the dimensions of the fibers above shows that Yr coincides with
the Veronese variety V of double lines (cf. Appendix (A.6, p. 86)), at least as sets.
We are going to blowup P5 along V and prove in Lemma 4.2.6 below that this solves
our problem.

Let B denote the blowup of P5 along V, and π : B→ P5 the map of blowup (see
Appendix A.5, p. 84 and A.6).

Consider the pullback by π of the maps ϕ and ψ

ϕB : π∗(OP5(−1)⊗ Sd ⊗ S∨1 ) −→ π∗Sd+1

ψB : π∗(OP5(−1)⊗ V ) −→ π∗(
Sd+1

Sd−1 ⊗OP5(−1)
).

The following lemma describes the effect of the blowup in the minors of ϕB. This
result together with Lemma 4.2.8 will be used to prove that blowing up P5 along
V we obtain a vector bundle.

4.2.6. Lemma. The k × k minors of ϕB are locally principal for all k ≥ 1.

Proof. Let ϕ0 : OP5(−1) ⊗ S∨1 → S1 be the universal symmetric map that gives
the matrix of the conic. We are blowing-up the ideal of 2 × 2-minors of ϕ0, so we
have that the minors of ϕ0B are locally principal, say generated by t. Thus we can
assume that the matrix is locally of the form

A =

(
1 0 0
0 t a4
0 a4 a5

)
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with ideal of 2 × 2-minors 〈t, a4, a5〉. So t divides a4, a5. Performing elementary
operations we can assume that the matrix assumes the form

A =
(

1 0 0
0 t 0
0 0 ts

)
.

Let us analyze the map ϕB at the conic corresponding to A, i.e.,

ϕC : Sd ⊗ S∨1 −→ Sd+1

where C = Z(Z2
0 + tZ2

1 + tsZ2
2 ).

Set νm := dimSm =
(
m+2

2

)
. Choose a basis for Sd ⊗ S∨1 as follows:

take the first νd+1 vectors as

a basis of Sd ⊗
∂

∂Z0
;(νd vectors)

a basis of Symd(Z1, Z2)⊗ ∂

∂Z1
;(d+ 1 vectors)

Zd2
∂

∂Z2
.(1 vector)

Next take

a basis of Z0Sd−1 ⊗
∂

∂Z1
;(νd−1 vectors)

a basis of
Sd

C · Zd2
⊗ ∂

∂Z2
.(νd − 1 vectors)

Now we pick the following basis for Sd+1:

a basis of Z0Sd;(νd vectors)

a basis of Z1 Symd(Z1, Z2);(d+ 1 vectors)

Zd+1
2 .(1 vector)

Then the matrix of ϕC in this basis looks like

Ad =

 2Iνd 0 0 B1 B3

0 2tId+1 0 0 B4

0 0 2ts 0 0

 ,

where the entries of B1 are multiples of t, and the entries of B3, B4 are multiples
of ts. Here Im stands for the identity matrix of size m.

From this we conclude that the ideals Ji of i× i-minors of Ad are: Ji = 〈1〉 for i = 1, . . . , νd
Jνd+j = 〈tj〉 for j = 1, . . . , d+ 1
Jνd+1

= 〈td+2s〉.
In particular these minors are principal as we claimed. �

4.2.7. Construction of E. Next, we are going to construct a vector subbundle
E ⊂ B× V over B which coincides with π∗Θ̄ over the open set of smooth conics.

First we prove a technical lemma.

4.2.8. Lemma. Let R be a local Noetherian domain, and ϕ : Rn → Rm a
homomorphism of free, finitely generated R-modules. Suppose that the ideals 〈k ×
kminors of ϕ〉 are principal for all k. Then M := Imϕ is free.
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Proof. Let

A =

(
a11 ··· a1n
...

. . .
...

am1 ··· amn

)
be the m×n matrix associated to ϕ with respect to some basis. Thus, the columns
of A generateM. By hypothesis for k = 1, the ideal of the entries of A is principal:

〈a11, . . . , aij , . . . , amn〉 = 〈f〉 .

We may assume f 6= 0. Let bij :=
aij
f . We may suppose a11 = f . Let M′ be the

module generated by the columns of

B =

(
1 ··· b1n
...

. . .
...

bm1 ··· bmn

)
.

Equivalently (by elementary operations)M′ is generated by the columns of
(

1 0
0 B′

)
,

where

B′ =

(
b22 ··· b2m
...

. . .
...

bm2 ··· bmn

)
.

Applying induction, we have that ImB′ is free. Thus M′ is free. Since R is a
domain we have M = f · M′ 'M′. Hence M is free. �

4.2.9. Proposition. There exists a vector bundle E over B such that:

(1) E is a subbundle of the trivial bundle π∗V .
(2) E coincides generically with π∗Θ̄ ' π∗Θ (cf. 4.6, p. 69).

Proof. By Lemma 4.2.6 and the above Lemma we deduce thatM := ImϕB is locally
free. Therefore we obtain a factorization of ϕB = ι ◦ ϕ̃,

(4.7) π∗(OP5(−1)⊗ Sd ⊗ S∨1 )
ϕB //

ϕ̃
)) ))

π∗Sd+1OO
ι

M,

where M is a vector bundle.
Observe that π∗(OP5(−1) ⊗ Sd−1) = ϕB(π∗(OP5(−1) ⊗ Sd−1R)) ⊂ M. Therefore

this factorization induces a factorization of ψB = ι ◦ ψ̃,

π∗(OP5(−1)⊗ V )
ψB //

ψ̃
(( ((

π∗(
Sd+1

OP5(−1)⊗ Sd−1
)

OO
ι

M,

where M :=
M

π∗(OP5(−1)⊗ Sd−1)
is a vector bundle. Define

E := π∗OP5(1)⊗Kerψ̃.

It follows that E is a subbundle of B × V that coincides with π∗Θ̄ over π−1(U),
where U ⊂ P5 is the open set of smooth conics. Indeed, over π−1(U) the map
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ι :M→ π∗Sd+1 as in (4.7) is an isomorphism. Therefore

M' π∗( Sd+1

OP5(−1)⊗ Sd−1
)

and Kerψ̃ = KerψB and likewise E ' π∗(OP5(1))⊗KerψB = π∗(Θ̄), all over π−1(U).
�

4.2.10. A parameter space for foliations with invariant conic. Since E ⊂
B× V is locally split, taking the projectivization yields the following diagram:

P(E)

q1

~~

q

""

⊂ B× PN

B PN

Define Yd := q(P(E)) ⊂ PN . We have that Yd is the closure of the variety of
foliations with an invariant smooth conic.

In Lemma 4.2.12 below we prove that q is generically injective. Therefore in
order to compute degYd it is sufficient to calculate s5(E) (see Lemmas 1.6.5 and
1.6.6, p. 45).

4.2.11. The degree of Yd.

4.2.12. Lemma. The projection q : P(E)→ PN is generically injective.

Proof. By Lemma (1.6.6, p. 45) it is sufficient to find, for d ≥ 2, a degree d vector
field X with a single invariant conic C and such that C is a reduced point in the
fiber q−1(X ) (equivalently, such that d(C,X )q is injective).

For d = 2 we claim that

X = (Z2Z0 − Z2
1 )∂Z0 − (Z0Z1 − Z2

2 )∂Z1 + (Z1Z2 − Z2
0 )∂Z2

and C = Z(P ) with P = Z2
0 − Z2

1 + Z2
2 = 0 do the job.

In fact, X (P ) = 0. Now, if C′ is another conic invariant by X , say C′ = Z(Q)
with Q = a0Z

2
0 + a1Z0Z1 + · · · + a5Z

2
2 then there exists H = b0Z0 + b1Z1 + b2Z2

such that X (Q) = HQ. This equality provides a system of linear equations from
which we can eliminate b0, b1, b2 (we use Singular, [27], see [16]) to find that
a0 − a5 = a1 = a2 = a3 + a5 = a4 = 0. Thus Q = P .

To prove that d(C,X )q is injective take for example a tangent vector

(a1Z0Z1 + a2Z0Z2 + a3Z
2
1 + a4Z1Z2 + a5Z

2
2 , v) = (m, v) ∈ T(P,X )P(E).

We have to prove that v = 0 implies ai = 0, ∀ i = 1, . . . , 5. Now

(m, v) ∈ T(P,X )P(E)⇔ (P + εm,X + εv) ∈ P(E)(C[ε]).

This means that modulo ε2 we have

(X + εv)(P + εm) = (P + εm)h

for some h = h1 + εh2, where h1, h2 are polynomials of degree one. Thus,

X (P ) + ε(X (m) + v(P )) = (P + εm)h

but X (P ) = 0 so we have

ε(X (m) + v(P )) = h1P + ε(h1m+ h2P ).
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Therefore h1 = 0 and the condition now reads

X (m) + v(P ) = h2P.

So if v = 0 this implies X (m) = h2P . Performing a simple elimination (e.g., using
Singular, [27], see [16]) of coefficients of h2 we obtain all ai = 0.

For d = 3 take

X = (Z2
2Z0 − Z3

1 )∂Z0 + (Z0Z
2
1 − Z3

2 )∂Z1 + (Z1Z
2
2 − Z2

0Z2)∂Z2

As above we can prove that X has C = Z(Z2
0 + Z2

1 + Z2
1 ) as unique invariant

conic and check that C is a reduced point in q−1(X ) (see [16]).
For d ≥ 4 we will construct, using the example of Jouanolou, a field of degree d

with a unique invariant conic.
Recall Jouanolou proves in [32, p. 157] that the field

Y := Ze2∂Z0 + Ze0∂Z1 + Ze1∂Z2

has no invariant algebraic subset if e ≥ 2 .
Let P be an irreducible polynomial of degree 2. We claim that X := P · Y is a

field of degree d ≥ 4 that has C = Z(P ) as unique invariant conic (in fact C is in
the singular set of X , but this is sufficient for us). Indeed, X (P ) = P · Y(P ). Now
if C′ = Z(Q) is another conic invariant by X we have that Q divides P · Y(Q). If
Q is irreducible, this implies that Q divides Y(Q) i.e., Z(Q) would be invariant by
Y.

If Q = l1l2, then li divides P · Y(li) (see Definition 2.2.5). Hence Z(li) would be
invariant by Y.

To prove that d(P,X )q is injective we argue as in the case d = 2. Let

(m, v) ∈ T(P,X )P(E)⇔ (P + εm,X + εv) ∈ P(E)(C[ε]),

where m is a polynomial of degree two linearly independent of P . Then modulo ε2

we have:
(X + εv)(P + εm) = (P + εm)h

for some h = h1 + εh2, where h1, h2 are polynomials of degree d − 1. Expanding
we obtain

X (P ) + ε(X (m) + v(P )) = (h1 + εh2)(P + εm).

Recalling X (P ) = P · Y(P ), we have

P · Y(P ) + ε(P · Y(m) + v(P )) = h1P + ε(h1m+ h2P ).

Therefore h1 = Y(P ) and the condition reads

P · Y(m) + v(P ) = h2P + Y(P )m.

Thus, if v = 0 we get
PY(m) = h2P + Y(P )m

whence P must divide m (cf. [19]) and this implies m = 0.
�

4.2.13. Proposition. Notation as above, let Yd be the compactification for the
parameter space of 1-dimensional foliations of degree d on P2 with an invariant
smooth conic. Then the degree of Yd is given by

1

25 5!
(d− 1) d (d+ 1) (d7 + 25d6 + 231d5 + 795d4 + 1856d3 + 2468d2 + 2256d+ 768).

and its codimension is equal to 2(d− 1).
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Proof. From Proposition 4.2.9 and definition of Θ we have rk(E) = d(d+ 2). As q
is finite we have dimYd = dimP(E) = 5 + d(d+ 2)− 1. Hence

codYd = N − dimYd = (d+ 1)(d+ 3)− 1− (5 + d(d+ 2)− 1) = 2(d− 1) .

To compute the degree of Yd =
∫
s5(E) ∩ [B] we use Bott’s formula (A.7.1, p. 87):∫

s5(E) ∩ [B] =
∑
p∈BT

sT5 (Ep) ∩ [p]

cT5 (TpB)

where T := C∗ acts on B with isolated fixed points.
The action of T on B will be induced by an action of T on P2. With the notation

of Appendix A.6, write P2 = P(F ), where F = C3 has basis {e0, e1, e2}. We begin
by considering an action of T = C∗ on F :

T × F → F

given by

(4.8) t · ei = twiei

for some wi ∈ Z to be chosen appropriately.
This action induces an action on Sym2 F

∨:

T × Sym2 F
∨ → Sym2 F

∨

given by

t · ZiZj = t−(wi+wj)ZiZj .

In this way we obtain an action of T on P5 = P(Sym2 F
∨). It is easy to see that

if we choose the weights in such a way that {wi + wj , with 0 ≤ i ≤ j ≤ 2} are
pairwise distinct, we obtain precisely the following six isolated fixed points in P5:

[1 : 0 : · · · : 0 : 0], [0 : 1 : · · · : 0 : 0], . . . , [0 : 0 : · · · : 0 : 1].

These correspond to the conics defined by the monomials

Z2
0 , Z0Z1, Z0Z2, Z

2
1 , Z1Z2, Z

2
2 .

In order to induce an action on B consider the map (see Appendix A.6):

ε : P5 = P(Sym2 F
∨) 99K P̌5 = P(Sym2

2
∧ F∨)

given by ε(u) =
2
∧ u.

Recall that B = Graph ε, the closure of the graph of ε, and that π denotes the
map of blowup π : B→ P5.

It is easy to see that ε is T−equivariant. Hence B = Graph ε inherits an action
of T . Moreover, if (A,B) ∈ B is a fixed point then A ∈ P5 is a fixed point, T acts
on π−1(A) and B is a fixed point for this action.

Therefore, in order to obtain the fixed points in B we have to find the fixed
points on the fiber of π over each fixed point in P5.

If A is a fixed point with A 6∈ V i.e., A ∈ {Z0Z1, Z0Z2, Z1Z2}, then π−1(A) has
just one (fixed) point. So take A ∈ V i.e., A ∈ {Z2

0 , Z
2
1 , Z

2
2}. By Appendix A.5 we

have that the exceptional divisor of our blowup is

E = P(N )
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where N := NVP5 stands for the normal bundle of V in P5. Then for A = Z2
0 we

have (see (A.18) of Appendix A.6)

π−1(A) = EA = P(C · Z2∨
0 ⊗ 〈Z2

1 , Z1Z2, Z
2
2 〉C).

By our choice of the weights, there are three fixed points in the fiber of each A ∈ V.
For A = Z2

0 these point are

Z2∨
0 ⊗ Z2

1 , Z
2∨
0 ⊗ Z1Z2, Z

2∨
0 ⊗ Z2

2 .

Summarizing, we have twelve fixed points in B, three of them outside E and nine
in E. These fixed points are of three types:

ZiZj with i 6= j;

(Z2
i , Z

2∨
i ⊗ ZjZk) with j, k 6= i; j 6= k;

(Z2
i , Z

2∨
i ⊗ Z2

j ) with i 6= j.

The next step is to compute the fibers of E (see Proposition 4.2.9) over each
fixed point.

Suppose that B ∈ B is a fixed point. The strategy is to take a curve B(t) ∈ B
such that

lim
t→0

B(t) = B

and such that A(t) := π(B(t)) ∈ P5 is a curve of smooth conics for t 6= 0. There-
fore EB will be obtained as the limit of EB(t) = π∗ΘB(t) = ΘA(t) (notation as in
(4.6), p. 69) :

lim
t→0

ΘA(t) = EB
This enables us to use the well known space of vector fields of degree d that leave

invariant a smooth conic C = Z(G) (see [14]), to wit,

(♠)
{
Fij(

∂G

∂Zi

∂

∂Zj
− ∂G

∂Zj

∂

∂Zi
) | Fij ∈ Sd−1

}
modulo multiples of the radial vector field. We will adopt the following notation:
for each subset J := {v0, . . . , vk} ⊂ {Z0, Z1, Z2} we set

Mm(J) = {vm0 , vm−1
0 v1, . . . , v

m
k },

the canonical monomial basis of Symm(J). We write Mm for Mm({Z0, Z1, Z2}).
Set Xi,j := Zi

∂
∂Zi
−Zj ∂

∂Zj
. Notice this is a vector of weight 0, since t ·Zi = twiZi

whereas t · ∂
∂Zi

= t−wi ∂
∂Zi

.
We now describe suitable 1-parameter families of smooth conics abutting each

type of fixed point.

(1) B1 = Z0Z1. We take A(t) = Z0Z1 + tZ2
2 ∈ P5. Using the characterization (♠)

we see that the space EA(t) of vector fields leaving A(t) invariant is given by{
F10(Z1

∂
∂Z1
− Z0

∂
∂Z0

), F20(Z1
∂
∂Z2
− 2tZ2

∂
∂Z0

), F21(Z0
∂
∂Z2
− 2tZ2

∂
∂Z1

)

| Fij ∈ Sd−1

}
.

Taking limit as t→ 0, we find a basis for EB1 :

{F1X0,1, F2
∂

∂Z2
| F1 ∈Md−1 , F2 ∈Md \ {Zd2}}.

Clearly this basis consists of T -eigenvectors.
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(2) B2 = (Z2
0 , Z

2∨
0 ⊗ Z1Z2). In this case, we take A(t) = Z2

0 + tZ1Z2. With the
same procedure as above, we obtain the following basis (of T -eigenvectors) for EB2 :

{F1Z0
∂

∂Z1
, F2Z0

∂

∂Z2
, F3X1,2 | F1, F2 ∈Md−1 , F3 ∈Md−1({Z1, Z2})}.

(3) B3 = (Z2
0 , Z

2∨
0 ⊗Z2

1 ). In this case a curve of smooth conics that approximates B3

is A(t) = Z2
0 +tZ2

1 +t2Z2
2 . As before, we obtain the following basis of T -eigenvectors

for EB3
:

{F1Z0
∂

∂Z1
, F2

∂

∂Z2
| F1 ∈Md−1 , F2 ∈Md \ {Zd2}}.

This concludes the computation of the fibers of E .
Next we obtain, for each fixed point B, a base consisting of T -eigenvectors of

TBB.
If B 6∈ E then TBB ' Tπ(B)P(Sym2 F

∨). For example, for B1 = Z0Z1 we have

TB1
B ' 〈Z0Z1〉∨ ⊗ 〈Z2

0 , Z0Z2, . . . , Z
2
2 〉.

If B ∈ E, then B = (A, [v]) with A ∈ V and v ∈ NA. Now

TBB = TAV⊕Hom(C · v, NA
C · v

)⊕ C · v,

see (A.15, p. 85).
For B2 = (Z2

0 , Z
2∨
0 ⊗ Z1Z2) we have:

TB2
B = TZ2

0
V⊕ 〈Z2∨

0 ⊗ Z1Z2〉∨ ⊗ 〈Z2∨
0 ⊗ Z2

1 , Z
2∨
0 ⊗ Z2

2 〉 ⊕ 〈Z2∨
0 ⊗ Z1Z2〉

where TZ2
0
V = 〈Z2

0 〉∨ ⊗ 〈Z0Z1, Z0Z2〉.
Similarly, for B3 = (Z2

0 , Z
2∨
0 ⊗ Z2

1 ) we find

TB3
B = TZ2

0
V⊕ 〈Z2∨

0 ⊗ Z2
1 〉∨ ⊗ 〈Z2∨

0 ⊗ Z1Z2, Z
2∨
0 ⊗ Z2

2 〉 ⊕ 〈Z2∨
0 ⊗ Z2

1 〉.
The explicit calculation in Bott’s formula is better left for a script in Singu-

lar, [27] (see [19] or [16]).
Note that the above computations of the fibers are performed for fixed d. In order

to obtain the polynomial formula in Proposition 4.2.13 we have to interpolate the
obtained results. We use Lemma 4.2.14 below which enables us to restrict the
computation just for the first sixteen values of d = 2, . . . , 17 and then interpolate
the answers obtained.

�

4.2.14. Lemma. Notation as above, the sum in the right hand side of Bott’s
formula ∫

s5(E(d)) ∩ [B] =
∑
B∈BT

sT5 (E(d)B) ∩ [B]

cT5 (TBB)
,

is a combination of w′is cf. (4.8) with polynomial coefficients in d of degree ≤ 15.

Proof. For each fixed point B let {ξ1(d), . . . , ξm(d)(d)} denote the set of weights of

E(d)B . Since sT5 (E(d)B) is a polynomial in the T−equivariant Chern classes

{cTk (E(d)B) | k = 1, . . . , 5}
it’s enough to prove that each

cTk (E(d)B) = σk(ξ1(d), . . . , ξm(d)(d))

is a combination of w′is with polynomial coefficients in d of degree ≤ 3k.
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Recalling Newton’s identities

kσk =

k∑
i=1

(−1)i+1σk−ipi

where

pk(ξ1(d), . . . , ξm(d)(d)) :=

m(d)∑
i=1

ξi(d)k

we see that it suffices to prove that pk(ξ1(d), . . . , ξm(d)(d)) is a combination of w′is
with polynomial coefficients in d of degree ≤ k + 2.

On the other hand, a careful analysis of the weights appearing in the basis of
E(d)B at each fixed point shows that these weights can be separated into sets of
the form

{weights of Me(J)} or {weights of Me(J)}+ w

where 
w is a (fixed) combination of w′is;
e = d, d− 1 and
J = 〈Z0, Z1, Z2〉 or
J = 〈Zi, Zj〉, i 6= j .

From this the reader may be convinced that it’s enough to prove the following

Claim: Let m = m(d, n) :=
(
d+n
n

)
and {ξn,1(d), . . . , ξn,m(d)} be the weights

associated to a basis Md({Z0, . . . , Zn}) of Symd(〈Z0, . . . , Zn〉). Then

pnk (d) :=

m∑
i=1

ξn,i(d)k

is a combination of w′is with polynomial coefficients in d of degree ≤ k+n.

To prove the claim we proceed by induction on n ≥ 1 and on k ≥ 0. For n = 1,

Md({Z0, Z1}) = {Zd0 , Zd−1
0 Z1, . . . , Z0Z

d−1
1 , Zd1}

so that m(d, 1) = d+ 1. We have

p1
k(d) =

d+1∑
i=1

ξ1,i(d)k =

d∑
i=0

(iw0 + (d− i)w1)k

=

d∑
i=0

(i(w0 − w1) + dw1)k =

d∑
i=0

k∑
j=1

(
k

j

)
(i(w0 − w1))j(dw1)k−j

=

k∑
j=1

(
k

j

)
(dw1)k−j(w0 − w1)j

d∑
i=0

ij .

The sum
∑d
i=0 i

j is polynomial in d of degree j+1, therefore p1
k(d) is a combination

of w′is with polynomial coefficients in d of degree ≤ k + 1.
For k = 0, we have pn0 (d) = m(d, n), a polynomial in d of degree n.
For the general case, write the basis Md({Z0, . . . , Zn}) in the following form:

Z0Md−1({Z0, . . . , Zn}) ∪ Z1Md−1({Z1, . . . , Zn}) ∪ Z2Md−1({Z2, . . . , Zn})∪

· · · ∪ {Zdn}.
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Then the weights are:

w0 + {ξn,i(d− 1)} ∪ w1 + {ξn−1,i(d− 1)} ∪ w2 + {ξn−2,i(d− 1)} ∪ · · · ∪ {dwn}.

Hence we can write

pnk (d) =

m(d,n)∑
i=1

(ξn,i(d))k =

m(d−1,n)∑
i=1

(w0 + ξn,i(d− 1))k +

m(d−1,n−1)∑
i=1

(w1 + ξn−1,i(d− 1))k +

m(d−1,n−2)∑
i=1

(w2 + ξn−2,i(d− 1))k + · · ·+ (dwn)k

=

k∑
j=0

(
k

j

)
wj0p

n
k−j(d− 1) +

k∑
j=0

(
k

j

)
wj1p

n−1
k−j (d− 1) +

k∑
j=0

(
k

j

)
wj2p

n−2
k−j (d− 1) + · · ·+ (dwn)k.

By induction we conclude that pnk (d) − pnk (d − 1) is a combination of w′is with
polynomial coefficients in d of degree ≤ k + n− 1, and this implies that pnk (d) is a
combination of w′is with polynomial coefficients in d of degree ≤ k + n.

�

4.3. Foliations with invariant quadrics. The varieties of complete quadrics
(cf. [47]) can also be employed to construct a compactification of the space of 1-
dimensional foliations in Pn that leave invariant a smooth quadric of arbitrary
dimension. For example, in the case of conics and quadrics in P3 we obtain the
following.

4.3.1. Theorem. Let Y1,d (resp.Y2,d) denote the closure in PN of the variety of
1-dimensional foliations in P3 that have an invariant smooth conic (resp. quadric
surface). Then we have the formulas for the degrees and codimensions,

(i) degY1,d =
4

8! 32
(d−1) d

(
207d14 +2763d13 +15447d12 +54395d11 +114847d10 +

207891d9 + 256737d8 + 225801d7 + 164937d6 + 182101d5 + 38993d4 + 316221d3 +
248856d2 − 118908d− 332640

)
and its codimension is equal to 4(d− 1);

(ii) degY2,d =
1

9! (3!)9
(d−1) d (d+1)

(
d24+81d23+3151d22+77949d21+1369333d20

+ 18084843d19 + 185031133d18 + 1481854743d17 + 9251138050d16 + 44737976160d15

+ 168507293704d14 + 503603726976d13 + 1212870415960d12 + 2353394912904d11

+ 3628929239056d10 + 4249158105672d9 + 3232639214668d8 + 413912636928d7

− 2874493287072d6 − 3885321416832d5 − 1115680433472d4 + 4477695012864d3

+ 8264265366528d2 + 8139069775872d + 4334215495680
)

and its codimension is
equal to (d− 1)(d+ 5).

Appendix A

A.1. Vector bundles. A basic reference for this subject is [44], Chapter VI. A
vector bundle E of rank e over a variety X is a variety E equipped with a morphism

π : E → X

such that
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(1) There exists an open covering {Ui} of X and isomorphisms

ϕi : π−1(Ui)→ Ui × Ae.

(2) Over Uij := Ui ∩ Uj , the compositions

ϕij := ϕi ◦ ϕ−1
j : Uij × Ae → Uij × Ae

are linear, in the sense that ϕij(x, v) = (x, gij(x)v) with transition functions

gij : Uij → GLe(C).

(3) These transition functions are cocycles: gik = gijgjk, g−1
ij = gji and gii =

1.

Conversely, given cocycles {gij} it is possible to define a rank e vector bundle E
whose transition functions are {gij}. The morphisms ϕi : π−1(Ui) → Ui × Ae are
called local trivializations.

A line bundle is a vector bundle of rank one.

A.1.1. Morphism of vector bundles. A morphism of vector bundles π : E →
X, π′ : E ′ → X is a morphism ψ : E → E ′ such that

(1) π′ ◦ ψ = π and

(2) if ϕi : π−1(Ui)→ Ui ×Ae and ϕ′i : π′−1(Ui)→ Ui ×Ae′ are local trivializa-
tions of E , E ′, then ψi := ψ|π−1(Ui) fits into the commutative diagram

π−1(Ui)
ψi //

ϕi

��

π′−1(Ui)

ϕ′i
��

Ui × Ae
ψ′i

// Ui × Ae′

where ψ′i(x, v) = (x, γi(x)v) with γi : Ui → Hom(Ae,Ae′) a morphism from
Ui to the space of linear maps. Chosing basis, we may think of γi as a local
matrix representation for ψ.

Since over Uij the diagram below commutes,

π−1(Uij)
ψj //

ϕj

��
ϕi

  

π′−1(Uij)

ϕ′j
��

ϕ′i

��

Uij × Ae
ψ′j

//

ϕij

��

Uij × Ae′

ϕ′ij
��

Uij × Ae
ψ′i

// Uij × Ae′

we have

g′ij(x)γj(x) = γi(x)gij(x) .

A.1.2. Sections of a vector bundle. A section of E is a morphism s : X → E
such that π ◦ s = idX .
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A section s is determined by a collection of functions si : Ui → Ae such that

si = gijsj

in Uij . We have ϕi(s(x)) = (x, si(x)) for x ∈ Ui.
A section of E determines a morphism of vector bundles that we also denote by

s,
s : OX → E .

If s is a section of E as above, the zero scheme of s, denoted Z(s), is defined in each
open set Ui by the ideal 〈si1, . . . , sie〉, where si = (si1, . . . , sie) with sij ∈ OX(Ui).

In fact Z(s) is the scheme defined by the ideal sheaf image of the map s∨ : E∨ →
OX dual of s.

A.1.3. Pull-back of vector bundles. Suppose that π : E → X is a vector
bundle, and let f : Y → X a morphism. We define a vector bundle over Y , denoted
f∗E as follows.

Take the open covering {Vi} of Y , where Vi := f−1(Ui), and glue the patches
{Vi × Ae} along Vij := Vi ∩ Vj using the cocycles hij := gij ◦ f , (i.e., by the
isomorphism (y, v) → (y, gij(f(y))v)). The variety obtained in this way has a
natural projection to Y , ρ(y, v) = y, and ρ−1(y) = π−1(f(y)), i.e., in the fibers we
have (f∗E)y = Ef(y).

A.1.4. Jet bundles.
We recall the notion of jet bundles associated to a vector bundle. A basic refer-

ence is [28, 16.7] and [42]. Here we state without proofs the results that we need
in the text.

Let E be a vector bundle over a smooth projective variety X. For n ≥ 0 the
n-jet bundle associated to E , denoted Pn(E), is a vector bundle over X whose fiber
over x ∈ X is given by

Pn(E)x = (OX/mn+1
x )⊗ Ex

where mx is the maximal ideal of the point x.
For each n ≥ 0 there exist exact sequences:

(A.1) 0→ Symn+1 ΩX ⊗ E → Pn+1(E)→ Pn(E)→ 0.

As an example let’s analyse the case n = 0. We have

(A.2) 0→ ΩX ⊗ E → P1(E)→ E → 0.

Consider the evaluation map

ev : X ×H0(X, E)→ E
given by ev(x, s) = (x, s(x)).

The map ev lifts to a map

ev1 : X ×H0(X, E)→ P1(E).

Suppose that we are in a neighborhood of 0 ∈ X and that x = (x1, . . . , xm) are
local coordinates of X.

On the fiber of 0 we have ev1(0, s) = (0, s(0)+J0s ·x), where J0s is the Jacobian
of s at 0. If s(0) = 0 then

ev1(s) = J0s · x ∈ ΩX,0 ⊗ E0 ' m/m2 ⊗ E0
i.e., we retrieve the differential of the section.
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In general ev lifts to a map evn : X ×H0(X, E)→ Pn(E) given by

evn(x, s) = (x, sn(x))

where sn(x) is the Taylor expansion of s truncated in order n+ 1.
We have a commutative diagram

(A.3) X ×H0(X, E)
evn // Pn(E)

����
Pn−1(E) .
''

evn−1

A.2. Cartier Divisors. General references for this subject are [43] Chapter III
and [44] Chapter VI.

A.2.1. Definition. Let X be a scheme. A Cartier divisor D on X is given by
an affine open cover {Ui} of X together with a choice of an invertible element fi
in the total ring of fractions R(Ui) of the coordinate ring OX(Ui) such that fifj

−1

is invertible in OX(Uij), with Uij = Ui ∩ Uj , ∀i, j. Each fi is said to be a local
equation of D in Ui.

The data ({Ui}, fi) and ({Vα}, gα) determine the same Cartier divisor if there
exists a refinement {Wλ} of {Ui ∩ Vα} such that

(A.4) (fi |Wλ
)(gα |Wλ

)−1 is invertible in OX(Wλ)

for all i = i(λ), α = α(λ),Wλ ⊆ Ui ∩ Vα.
For each Cartier divisor on a scheme X, we are given a collection of local equa-

tions fx ∈ R(OX,x), ∀x ∈ X with the following property. For each x ∈ X, there

exists an affine neighborhood Ux together with some f̃ ∈ R(Ux) such that fy is

the image of f̃ in R(Uy) for all y ∈ Ux. Two such collections {fx}, {gx} define the
same Cartier divisor if and only if for all x we have that fxgx

−1 lies in O?X,x, the
subgroup of invertible elements. Put in other words, a Cartier divisor is an element
of H0(X,R?/O?).

A Cartier divisor is said to be effective if it admits a representation by local
equations ({Ui}, fi) such that fi is a regular function, i.e., fi lies in OX(Ui) for all
i. This is the same as a closed subscheme locally defined by a nonzero divisor.

A Cartier divisor D = ({Ui}, fi) is said to be principal if fi = fj in Uij , ∀i, j.
In other words, the given local equations are compatible along the intersection,
thereby yielding a global section f of the subsheaf R?X of invertible elements of the
sheaf of total ring of fractions, so that we may also write D = ({X}, f), a single
equation.

A.2.2. Example. Let X = Pn and let F (Z0, . . . , Zn) be a nonzero homogeneous
polynomial of degree m. Let Ui be the standard affine open subset complementary
of the hyperplane Zi = 0. The coordinate ring of Ui is the polynomial ring in the
indeterminates Z0/Zi, . . . , Zn/Zi. Put

fi = Z−mi F = F (Z0/Zi, . . . , Zn/Zi) ∈ OX(Ui).

Then (Ui, fi), i = 0, . . . , n is an effective Cartier divisor. It is equal to the hyper-
surface defined by F .
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A.2.3. Definition. Let D = ({Ui}, fi) be a Cartier divisor on X. The cycle
associated to D is

[D] =
∑

ordV (D) · V,
where the sum is taken over the subvarieties of codimension one and the coefficient
is defined by

(A.5) ordV (D) = ordVi(fi)

with Vi = Ui ∩ V 6= ∅.

A.2.4. Definition. Let D = ({Ui}, fi) be a Cartier divisor on X. We write
OX(D) for the line bundle associated to D, defined by the transition functions
fij = fifj

−1 on Uij (cf.[43], p.270).

Explicitly, OX(D) is the scheme over X obtained by glueing. One takes the
disjoint union ∐

Ui × A1

and identify pairs
(x, v) ∈ Ui × A1, (y, w) ∈ Uj × A1

if and only if
x = y ∈ Uij and v = fij(x)w.

In other words, we glue the open affine subsets Ui×A1, Uj×A1 identifying the open
subsets Uij ×A1 ⊆ Ui ×A1, Uij ×A1 ⊆ Uj ×A1 via the isomorphism A[T ] ' A[T ]
defined by T 7→ fij · T , where A denotes the coordinate ring of Uij .

A.2.5. Proposition. Let L → X be a line bundle over a variety. Then there
exists a Cartier divisor D on X such that OX(D) is isomorphic to L.

Proof. Let {Ui} be an affine open cover of X and let fij ∈ OX(Uij)
? be transition

functions for L. Since X is a variety, each coordinate ring OX(Uij) is a domain,
contained in the function field R(X) = R(U) for any open subset U 6= ∅. Fix an
index i0, and write it 0 for short. Set fi = fi0. It is clear that ({Ui}, fi) defines
a Cartier divisor D. Furthermore, the associated line bundle OX(D) is given by
the transition functions fifj

−1 = fi0fj0
−1 = fij , whence OX(D) is isomorphic to

L. �

A.2.6. Remark. The result above does not hold for arbitrary schemes, cf.
Hartshorne, [30].

A.3. Projective bundles. Associated to a vector bundle E we have a projective
bundle P(E). It is obtained by replacing the vector space fibers of E , all isomorphic
to Ae, by the projective space P(Ae) ' Pe−1. See [44, Chapter VI p.73] and [21,
Appendix B.5].

Explicitly, given a vector bundle defined by transition functions {gij}, we glue
the patches {Ui × Pe−1} along Uij × Pe−1 using the linear isomorphisms gij ’s. We
glue Ui × Pe−1 with Uj × Pe−1 with the isomorphism (x, [v]) 7→ (x, [gijv]), for
x ∈ Uij .

We have a projection

p : P(E)→ X such that p(ϕ−1
i (x, [v])) = x.

This map is proper.
Consider p∗E , it is a vector bundle over P(E), whose fiber over (x, [v]) is Ex.
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In analogy with the tautological line bundle of Pn, there exist a tautological
vector subbundle OE(−1) of p∗E , whose fiber over (x, [v]) ∈ P(E) is Cv. We have

OE(−1) −→ p∗E

which is nonzero on every fiber. The above correspond to a section

OP(E) −→ p∗E ⊗ OE(1).

The cokernel is the relative tangent bundle of P(E) over X:

(A.6) 0→ OP(E) −→ p∗E ⊗ OE(1) −→ TP(E)/X → 0.

A.4. Grassmannians. For the definition and first properties of Grassmannians
consult ([29] Lecture 6) or [43] and [44]). Let G = G(k, n) denote the variety
parametrizing projective k-planes of Pn (equivalently G parametrizes vector (k+1)-
planes of Cn+1.) We have

dimG(k, n) = (k + 1)(n− k) .

There exists a tautological exact sequence of fiber bundles over G,

(A.7) 0→ S → G× Cn+1 → Q→ 0

where S is of rank k + 1 and Q is of rank n − k. Explicitly, if W ∈ G is the
projectivization of a k+ 1-plane Λ ⊂ Cn+1,i.e., W = P(Λ), then the fiber of S over
W is SW = Λ (respectively, the fiber of Q is Cn+1/Λ).

If we dualize the sequence (A.7), we obtain

(A.8) 0→ Q∨ → G× Čn+1 → S∨ → 0.

The fiber of Q∨ over W is the subspace of Čn+1 generated by the equations defining
W .

In the case k = 0, we have G(0, n) = Pn, and the tautological bundle is S =
OPn(−1).

The projective bundle P(S) is the universal k-plane:

P(S) = {(W,p) ∈ G× Pn | p ∈W}.

We have projection maps

(A.9) P(S)
p1

}}

p2

""

⊂ G× Pn

G Pn

Observe that p∗2OPn(−1) = OP(S)(−1).

A.5. Blowup. In this section we present without proofs some basic facts about
the blowup of a scheme along a subscheme. A reference for this subject is [21,
Appendix B.6] or [43, Chapter II].

Let X be a closed subscheme of a scheme Y , defined by an ideal sheaf J . Then

the blowup of Y along X, denoted Ỹ is defined by

Ỹ := Proj
(⊕
n≥0

J n
)
.
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Denote by π : Ỹ → Y the projection and set E := π−1(X). Then E is a Cartier

divisor, called the exceptional divisor. Moreover, π restricted to Ỹ \ E is an
isomorphism onto Y \X.

Suppose that the embedding of X in Y is regular of codimension d. Then we
have

E = P(N )

with projection η : E → X, where N = NXY , stands for the normal bundle.
Moreover,

(A.10) NE Ỹ = OỸ (E)|E = ON (−1).

Next we want to compute the fiber of T Ỹ over a point y ∈ E. We have the
following exact sequence

0→ T E → T Ỹ|E → NE Ỹ → 0.

Therefore

(A.11) TyỸ = TyE ⊕ON (−1)y

though not canonically. However, if y ∈ Y happens to be a fixed point of some
C∗−action on Y that leaves X invariant, the above decomposition is unique as
C∗−modules.

If y = (x, [v]), with x ∈ X and v ∈ Nx, then

(A.12) ON (−1)y = C · v.

In order to compute TyE, we observe that

(A.13) TyE = TxX ⊕ T[v]P(Nx).

But T[v]P(Nx) is the fiber over y of the relative tangent bundle of P(N ) over X,
which is defined by the following (Euler) exact sequence (see [21, B.5.8.]):

0→ OP(N ) → η∗N ⊗OP(N )(1)→ TP(N )/X → 0.

Moreover, from this we deduce that TP(N )/X = Hom(OP(N )(−1),Q) where Q is the
universal quotient bundle of P(N ). Thus

(A.14) T[v]P(Nx) = Hom(C · v, Nx
C · v

).

Putting together (A.11), (A.12), (A.13) and (A.14) we obtain

(A.15) TyỸ = TxX ⊕Hom(C · v, Nx
C · v

)⊕ C · v.

As a final remark observe that since π is an isomorphism from Ỹ \E onto Y \X
we have, for a point y ∈ Ỹ \ E,

TyỸ = Tπ(y)Y.



86 VIVIANA FERRER

A.6. Complete conics. In this subsection we review some results about conics
and the space of complete conics. References for this topic are [29], [47].

Let F denote the vector space C3, P2 = P(F ). A conic is given by a nonzero
symmetric map u : F → F∨ modulo non-zero multiples, i.e., an element of
P(Sym2(F∨)) = P5.

The rank of a conic is by definition the rank of the map u. It defines two
distinguished subvarieties in P(Sym2(F∨)). The first one is the locus of double
lines, corresponding to the maps with rku = 1. We denote it by V. The locus of
singular conics (the maps with rku ≤ 2) is denoted by V2. We have that V2 is the
(cubic) hypersurface defined by det(u) = 0 and V is the Veronese surface, given by
the image of

ν2 : P(F∨)→ P(Sym2 F
∨)

where ν2([a0 : a1 : a2]) = [a2
0 : 2a0a1 : · · · : a2

2] i.e., ν2 sends a line L := a0Z0 +
a1Z1 + a2Z2 to L2 := a2

0Z
2
0 + 2a0a1Z0Z1 + · · ·+ a2

2Z
2
2 .

Next we compute the tangent and normal spaces of the Veronese variety in
P5. Suppose that the double line we are considering is Z2

0 . Then a vector v =
(a1, a2, . . . , a5) is in TZ2

0
V if and only if

Z2
0 + ε(a1Z0Z1 + a2Z0Z2 + · · ·+ a5Z

2
2 ) ∈ V(C[ε])

i.e., if the matrix representing this conic has all 2×2–minors equal to zero over the
ring C[ε], ε2 = 0. This matrix reduces (after some elementary operations) to(

1 0 0
0 εa3 εa4
0 εa4 εa5

)
.

So it is clear that all 2×2 minors of A vanish if and only if a3 = a4 = a5 = 0. It
follows that

TZ2
0
V = C · Z2∨

0 ⊗ 〈Z0Z1, Z0Z2〉C ⊂ TZ2
0
P5 = (OP5(1)⊗Q)Z2

0
.(A.16)

and

(OP5(1)⊗Q)Z2
0

= C · Z2∨
0 ⊗ 〈Z0Z1, Z0Z2, Z

2
1 , Z1Z2, Z

2
2 〉C.(A.17)

Consequently the normal to V in P5 is:

NZ2
0

= C · Z2∨
0 ⊗ 〈Z2

1 , Z1Z2, Z
2
2 〉C.(A.18)

In fact, in [47, Proposition 4.4.] is proved that if we consider the Grassmannian of
lines in P2 with tautological sequence:

S2 → G× F → Q2

where S2 has rank 2, then

NVP5 = (OP5(1)⊗ Sym2(S∨2 ))|V.

This may clarify the description (A.18).
The Gauss map associates to each point on a conic C its tangent line. If a conic

C is smooth, this map is an isomorphism and the dual C∗ is again a smooth conic
in P̌2, also referred to as the envelope of tangent lines to C. It is the restriction to
the conic of the map P(F ) → P(F∨) induced by the linear map u. But there is
no well defined tangent line at a singular point of the conic. In order to produce
a well defined envelope for every conic, H. Schubert ([45]) introduced the variety
of “complete conics”. This variety is a compactification of the variety of smooth
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conics, different from P5. Let us explain how this compactification is obtained.
Consider the rational map

ε : P5 = P(Sym2 F
∨) 99K P̌5 = P(Sym2

2
∧ F∨)

given by ε(u) =
2
∧ u. This map restricted to the open set of smooth conics is a

bijection that sends a conic to its dual conic.
The variety of complete conics is the blowup B of P5 along V. In [47, p. 210] it

is proved that B is embedded in P5 × P̌5 as B = Graph ε, closure of the graph of ε.

A.7. Bott’s Formula. In this section we explain Bott’s equivariant formula. A
reference for this subject in the general case is [40] and the bibliography therein.

Let X be a smooth complete variety of dimension n, and let T = C∗ act on X
with isolated fixed points. Write XT for the set of fixed points.

Let E be a T -equivariant vector bundle over X of rank r.
If p(c1, . . . , cr) is a weighted homogeneous polynomial of total degree n with

rational coefficients, where deg ci = i, then

p(c1(E), . . . , cr(E)) ∩ [X]

is a zero cycle in X. Bott’s formula expresses the degree of this zero cycle in terms
of data given by the induced action of T on the fibers of E and of the tangent bundle
T X over the fixed points of the action. Below is an outline for its usage.

Let p ∈ XT be a fixed point. The torus T acts on the fiber Ep and (as T
is semisimple) we have a complete decomposition of Ep into T -eigenspaces, with
certain weights ξi ∈ Z:

Ep = ⊕ri=1Eξip
with

Eξip = {v ∈ Ep | t · v = tξiv, t ∈ T} .

Set

cTi (Ep) := σi(ξ1, . . . , ξr) ,

where σi denotes the i-th elementary symmetric polynomial:

σ1 =
∑

ξj , σ2 =
∑
i<j

ξiξj , . . . , σr = ξ1 · · · ξr .

Set pT (Ep) = p(cT1 (Ep), . . . , cTr (Ep)). Here the magic comes:

A.7.1. Theorem. (Bott’s formula)∫
p(c1(E), . . . , cr(E)) ∩ [X] =

∑
p∈XT

pT (Ep)
cTn (TpX)

.

�
It is a nice fact that the integer appearing in the left hand side is obtained as a

sum of rational numbers!
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