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CENTRAL LIMIT THEOREM FOR THE NUMBER OF

CROSSING OF RANDOM PROCESSES

JEAN-MARC AZAÏS

1. Introduction

This course presents the application of the Malevich [15],Cuzick [6] Berman
[4] method for establishing a central limit theorem for non linear functional of
Gaussian processes (see Section 3).These methods have been introduced in the 70’s
for studying zero crossing of stationary processes or the sojourn time of a stochastic
process. We present here mainly its application to the number of roots of random
processes. The basic argument is the approximation of the original process by a m-
dependent process (see Section 3). Section 2 presents a short memento of crossings
of process and the calculation of their moments. Our main tools and results are
presented in Section 3. Section 4 presents generalizations and applications to some
particular processes, in particular random trigonometric polynomials and specular
point in sea-wave modeling.

2. Basic facts on crossings of functions

This section contains preliminary results almost without proofs. They can be
found for example in Azäıs and Wschebor [3].

For simplicity all the functions f(t) considered are real and of class C1. If I is a
real interval we will define:

Nu(f, I) := # {t ∈ I : f(t) = u} .

Nu(f, I), (Nu for short in case of no ambiguity) is the number of crossings of the
level u or the number of roots of the equation f(t) = u in the interval I. In a
similar way, we define the number of up-crossings or down crossings:

Uu(f, I) := # {t ∈ I : f(t) = u, f ′(t) > 0}

Du(f, I) := # {t ∈ I : f(t) = u, f ′(t) < 0} .
Down-crossings will not be considered in the sequel since the results are strictly
equivalent to those for the up-crossings.

We will say that the real-valued function f defined on the interval I = [t1, t2]
satisfies hypothesis H1.u if:

• f is a function of class C1;
• f(t1) 6= u, f(t2) 6= u;
• {t : t ∈ I, f(t) = u, f ′(t) = 0} = ∅.
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Proposition 1 (Kac’s counting formula). If f satisfies H1.u, then

(1) Nu(f, I) = lim
δ→0

1

2δ

∫
I

1I{|f(t)−u|<δ} |f ′(t)| dt.

The Kac counting formula has a weak version that will be useful

Proposition 2 (Banach formula). Assume that f is only absolutely continuous.
Then for any bounded Borel-measurable function g : R→ R, one has:

(2)

∫ +∞

−∞
Nu(f, I) g(u) du =

∫
I

|f ′(t)|g(f(t)) dt.

This formula is a version of the change of variable formula for non one-to-one
functions.

From these formula we deduce by passage to the limit the Rice formula that
gives the factorial moments of the number of (up-) crossings. For simplicity we
limit to the Gaussian case and to the first two moments.

Theorem 3 (Gaussian Rice formula). Let X = {X(t) : t ∈ I} , I a compact interval
of the real line, be a Gaussian process having C1-paths.

• Suppose that for every point t ∈ I the variance of X(t) does not vanish.
Then

(3) E
(
Nu
)

=

∫
I

E
(
|X ′(t)|

∣∣∣X(t) = u
)
pX(t)(u)dt,

and the expression above is finite.
• Suppose that

(4) for every s 6= t ∈ I, the distribution of
(
X(s), X(t)

)
does not degenerate .

Then

(5) E
(
Nu(Nu − 1)

)
=

∫
I2

E
(
|X ′(s)||X ′(t)|

∣∣∣X(s) = X(t) = u
)
pX(s),X(t)(u, u)dt,

and the expression above may be finite or infinite.

Remarks: We have the same kind of formulas for the up-crossings if we replace
|X ′(t)| by the positive part (X ′(t))+.

In case of stationary processes, assuming that the process is centered with vari-
ance 1, (3) takes the simpler form

E
(
Nu
)

= 2E
(
Uu
)

= |I|
√

2λ2√
π
φ(u),

where φ(.) is the standard normal density.
A very important issue is the finiteness of the second (factorial) moment. For

stationary processes a necessary and sufficient condition (in addition to (4)) is given
by the Geman condition: let Γ(.) be the covariance of the process and define the
function θ(.) by means of

Γ(τ) := E
(
X(t)X(t+ τ)

)
= 1− λ2τ

2

2
+ θ(τ).

The Geman condition [5]is

(6)

∫
θ′(τ)

τ2
dτ converges at τ = 0+,

More precisely we have the bound
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Proposition 4. Let X(t) be a stationary Gaussian process with E(X(t)) = 0,
Var(X(t)) = 1. Let Γ(.) be its covariance function, we assume that for every τ > 0,
Γ(τ) 6= ±1 and the Geman condition. Let Uu = Uu([0, T ]), then

E
(
(Uu)(Uu − 1)

)
= 2

∫ T

0

(T − τ)E
(
|X(0)||X ′(τ)|

∣∣∣X(0) = X(τ) = u
)
× pX(0),X(τ)(u, u)dτ

≤ 2

∫ T

0

(T − τ)
θ′(τ)

τ2
dτ.

Remark that because of the Rolle theorem: Nu ≤ 2Uu + 1, thus the proposition
above also gives a bound for the variance of the number of crossings.

3. Central limit theorem for non-linear functionals

Our next main tool will be chaos expansion and Hermite polynomials. These
polynomials are orthogonal polynomials for the Gaussian measure φ(x)dx where φ
is the standard normal density. The nth Hermite polynomial Hn can be defined by
means of the identity:

exp(tx− t2/2) =

∞∑
n=0

Hn(x)
tn

n!
.

We have for example H0(x) = 1, H1(x) = x, H2(x) = x2 − 1.

For F in L2(φ(x) dx), F can be written as

F (x) =

∞∑
n=0

anHn(x),

with

an =
1

n!

∫ ∞
−∞

F (x)Hn(x)φ(x)dx,

and the norm of F in L2(φ(x)dx) satisfies

||F ||22 =

∞∑
n=0

a2nn!.

The Hermite rank of F is defined as the smallest n such that an 6= 0. For our
purpose, we can assume that this rank greater or equal than 1.

A useful standard tool to perform computations with Hermite polynomials and
Gaussian variables is Mehler’s formula which we state with an extension (see León
and Ortega, [13]).

Lemma 5 (Generalized Mehler’s formula). (a) Let (X,Y ) be a centered Gaussian
vector E(X2) = E(Y 2) = 1 and ρ = E(XY ). Then,

E(Hj(X)Hk(Y )) = δj,kρ
j .

(b) Let (X1, X2, X3, X4) be a centered Gaussian vector with variance matrix

Σ =


1 0 ρ13 ρ14
0 1 ρ23 ρ24
ρ13 ρ23 1 0
ρ14 ρ24 0 1





96 JEAN-MARC AZAÏS

Then, if r1 + r2 = r3 + r4,

E
(
Hr1(X1)Hr2(X2)Hr3(X3)Hr4(X4)

)
=

∑
(d1,d2,d3,d4)∈Z

r1!r2!r3!r4!

d1!d2!d3!d4!
ρd113ρ

d2
14ρ

d3
23ρ

d4
24,

where Z is the set of di’s satisfying: di ≥ 0;

(7) d1 + d2 = r1 ; d3 + d4 = r2 ; d1 + d3 = r3 ; d2 + d4 = r4.

If r1 + r2 6= r3 + r4 the expectation is equal to zero.
Notice that the four equations in (7) are not independent, and that the set Z is
finite and contains, in general, more than one 4-tuple.

Wiener chaos. Let L2(Ω,A,P) be the space of square integrable variables gener-
ated by the process X(t), t ∈ R. This Hilbert space is the orthogonal sum of the
Wiener chaos of order p, p = 0, . . . , n, . . . : Hp. Hp is defined as the closed linear
subspace of L2(Ω,A,P) generated by the variables Hp(X(t)), t ∈ R. In particular
the space H1 is simply the Gaussian space associated to X(t). A good reference on
this subject is the Nualart book [16].

3.1. A first central limit theorem. Let X = {X(t) : t ∈ R} be a centered real-
valued stationary Gaussian process. Without loss of generality, we assume that
Var(X(t)) = 1 ∀t ∈ R. We want to consider functionals having the form:

(8) Tt := 1/t

∫ t

0

F (X(s)) ds,

where F is some function in L2(φ(x)dx).
Set µ := E(F (Z)), Z being a standard normal variable. µ is well defined. The

Maruyama Theorem implies that if the spectral measure of the process X(t) has
no atoms, it is ergodic and Tt converges almost surely to µ. Our aim is to compute
the speed of convergence and establish for it a central limit theorem.

For the statement of the next result, which is not hard to prove, we need the
following additional definition.

Definition 6. Let m be some positive real, the Gaussian process {X(t) : t ∈ R} is
called “m-dependent” if Cov(X(s), X(t)) = 0 whenever |t− s| > m.

An example of such a 1-dependent process is the Slepian process which is sta-
tionary with covariance Γ(t) = (1− t)+.

Theorem 7 (Hoeffeding and Robins [7]). With the notations and hypotheses above,
if the process X(t) is m dependent, then

√
t

(
1/t

∫ t

0

F (X(s))− µds
)
→ N(0, σ2) in distribution as t→ +∞,

where

σ2 =
1

m
Var
(∫ m

0

F (X(s))ds
)
.

The proof is easy by the ”shortening method”: we cut [0, T ] into smaller intervals
separated by gaps of size m giving the independence.

Our aim is to extend this result to processes which are not m−dependent. The
proof we present follows Berman [4] with a generalization, due to Kratz and León
[10] , to functions F in (8) having an Hermite rank not necessarily equal to 1.
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For ε > 0, we will approximate the given process X(t) by a new one Xε(t) which
is 1/ε-dependent and estimate the error.

As an additional hypothesis, we will assume that the process X(t) has a spectral
density f(λ). It has the following spectral representation:

(9) X(t) =
√

2

∫ ∞
0

[
cos(tλ)

√
f(λ)dW1(λ) + sin(tλ)

√
f(λ)dW2(λ)

]
,

where W1 and W2 are two independent Wiener processes (Brownian motions).
Indeed, using isometry properties of the stochastic integral, it is easy to see that
the process given by (9) is centered, Gaussian and with the good covariance:

Γ(t) = E(X(s)X(s+ t))

= 2

∫ ∞
0

cos(λs) cos(λ(t+ s))f(λ)dλ+ 2

∫ ∞
0

sin(λs) sin(λ(t+ s))f(λ)dλ

= 2

∫ ∞
0

cos(λt)f(λ)dλ.

Define now the function ψ(.) as the convolution 1I[− 1
2 ,

1
2 ]
∗ 1I[− 1

2 ,
1
2 ]

. This function

is even, non negative, ψ(0) = 1, has support included in [−1, 1] and a non-negative

Fourier transform. Set ψε(.) := 1
εψ(ε.) and let ψ̂ε be its Fourier transform. Define

(10) Xε(t) :=
√

2

∫ ∞
0

[
cos(tλ)

√
f ∗ ψ̂ε(λ)dW1(λ) + sin(tλ)

√
f ∗ ψ̂ε(λ)dW2(λ)

]
,

where the convolution must be understood after prolonging f as an even function
on R. The covariance function Γε of Xε(t) satisfies Γε(t) = Γ(t)ψ(εt). This implies
that the process Xε(t) is 1

ε -dependent. We have the following proposition:

Proposition 8. Let X be a centered stationary Gaussian process with spectral
density f(λ) and covariance function Γ with Γ` ∈ L1(R), ` positive integer. Let
Xε(t) be defined by (10). Then

(11) lim
ε→0

lim
t→∞

E

[
1√
t

∫ t

0

(H`(X(s))−H`(X
ε(s))) ds

]2
= 0.

Theorem 9. Let X be a Gaussian process satisfying the hypotheses of Proposition
8 and F a function in L2(φ(x)dx) with Hermite rank ` ≥ 1. Then, as t→ +∞,

√
tTt =

1√
t

∫ t

0

F (X(s))ds→ N(0, σ2(F )) in distribution

where

σ2(F ) := 2

∞∑
k=`

a2kk!

∫ ∞
0

Γk(s)ds.

Proof:

Define FM :=

M∑
n=`

anHn(x) and TMt :=
1

t

∫ t

0

FM (X(s))ds. Let M = M(δ) > `

such that

2

∞∑
k=M+1

a2k < δ.
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Using Mehler’s formula, we get

t Var(Tt − TMt ) = 2

∞∑
k=M

c2kk!

∫ t

0

(1− s

t
)Γk(s)ds ≤ 2

∞∑
k=M

c2kk!

∫ ∞
0

|Γ|k(s)ds

< δ

∫ ∞
0

|Γ|`(s)ds.

Since δ is arbitrary, we only need to prove the asymptotic normality for TMt . Let
us introduce

TM,ε
t =

1

t

∫ t

0

FM (Xε(s))ds,

where Xε(t) has been defined in (10). By Proposition 8 recalling that for k ≥ l, Γk

is in L1(R) since Γ` is, we obtain:

lim
ε→0

lim
t→∞

t Var(TMt − T
M,ε
t ) = 0.

Now Theorem 7 for m- dependent sequences implies that
√
t TM,ε

t is asymptotically
normal. Notice that

σM,ε := lim
t→∞

tVar(TM,ε
t ) = 2

M∑
k=0

a2kk!

∫ 1
ε

0

Γkε(s)ds

and that σM,ε → σ2(F ) when ε→ 0 and M →∞, giving the result.

3.2. Hermite expansion for crossings of regular processes. Our aim is to ex-
tend the result above to crossings. Let X(t) be a centered stationary Gaussian pro-
cess. With no loss of generality for our purposes, we assume that Γ(0) = −Γ′′(0) = 1
and Γ(t) 6= ±1 for t 6= 0. We also assume Geman’s Condition (6).

Γ(t) = 1− t2/2 + θ(t) with

∫
θ′(t)

t2
dt converges at 0+.

We define the following expansions

(12) x+ =

∞∑
k=0

akHk(x), x− =

∞∑
k=0

bkHk(x), |x| =
∞∑
k=0

ckHk(x).

We have a1 = 1/2, b1 = −1/2, c1 = 0 and using integration by parts for k > 2:

ak =
1

k!

∫ +∞

0

xHk(x)ϕ(x)dx =
1

k!
√

2π
Hk−2(0).

The classical properties of Hermite polynomials easily imply that for positive k:

a2k+1 = b2k+1 = c2k+1 = 0,

a2k = b2k =
(−1)k+1

√
2π2kk!(2k − 1)

,

c2k = 2a2k.

We have the following Hermite expansion for the number of up-crossings:
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Theorem 10. Under the conditions above,

Uu := Uu(X, [0, T ]) =

∞∑
j=0

∞∑
k=0

dj(u)ak

∫ T

0

Hj(X(s))Hk(X ′(s))ds a.s.

where dj(u) = 1
j!φ(u)Hj(u) and ak is defined by (12). We have similar results,

replacing ak by bk or ck, for the number Du([0, T ]) of down-crossings and for the
total number of crossings Nu([0, T ]).

Proof : Let g(.) ∈ L2(φ(x)dx) and define the functional

T+
g (t) =

∫ t

0

g(X(s))X ′+(s)ds.

The convergence of the Hermite expansion implies that a.s.

(13) T+
g (t) =

∞∑
j=0

∞∑
k=0

gj ak

∫ t

0

Hj(X(s))Hk(X ′(s))ds,

where the gj
′s are the coefficients of the Hermite expansion of g. Using that for

each s, X(s) and X ′(s) are independent, we get:

(14) E
[ ∫ t

0

[
g(X(s))(X ′(s))+ −

∑
j,k≥0:k+j≤Q

gjakHj(X(s))Hk(X ′(s))
]
ds
]2

≤ (const)t2
∑

j,k≥0:k+j≥Q

j!g2jk!a2k.

On the other hand, using the Geman condition

ν2(u, T ) := E
(
Uu([0, T ])(Uu([0, T ])− 1)

)
< +∞.

For every T , ν2(u, T ) is a bounded continuous function of u and the same holds
true for E(U2

u). Let us now define

U δu :=
1

2δ

∫ T

0

1I|X(t)−u|≤δX
′+(t)dt.

In our case, hypotheses of Proposition 1 are a.s. satisfied. The result can be easily
extended to up-crossings, showing that

Uδu → Uu a.s. as δ → 0.

By Fatou’s Lemma

E
(
(Uu)2

)
≤ lim inf

δ→0
E
(
(U δu)2

)
.

To obtain an inequality in the opposite sense, we use the Banach formula (Propo-
sition 2). To do that, notice that this formula remains valid if one replaces in the
left-hand side the total number of crossings by the up-crossings and in the right-
hand side |f ′(t)| by f ′+(t). So, on applying it to the random path X(.), we see
that:

Uδu =
1

2δ

∫ u+δ

u−δ
Uxdx.

Using Jensen’s inequality,

lim sup
δ→0

E
(
(Uδu)2

)
≤ lim sup

δ→0

1

2δ

∫ u+δ

u−δ
E
(
(Ux)2

)
dx = E

(
(Uu)2

)
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So, E
(
(U δu)2

)
→ E

(
(Uu)2

)
and since the random variables involved are non-

negative, a standard argument of passage to the limit based upon Fatou’s Lemma
shows that Uδu → Uu in L2.

We now apply (13) to U δu.

(15) U δu =

∞∑
j,k=0

dδj(u)akζjk,

where dδj(u) are the Hermite coefficients of the function x 1
δ 1I‖x−u‖≤δ and

ζjk =

∫ T

0

Hj(X(s))Hk(X ′(s))ds.

Notice that

(16) dδj(u)→ 1

j!
φ(u)Hj(u) = dj(u).

This implies that:

(17) Uu =

∞∑
q=0

∑
j+k=q

dj(u)akζjk.

Theorem 11. Let {X(t) : t ∈ R} be a centered stationary Gaussian process veri-
fying the conditions at the beginning of this subsection. Furthermore, let us assume
that:

(18)

∫ +∞

0

|Γ(t)|dt,
∫ +∞

0

|Γ′(t)|dt,
∫ +∞

0

|Γ′′(t)|dt <∞.

Let {gk}k=0,1,2,... a sequence of coefficients which satisfies
∑+∞

0 g2kk! <∞. Put:

Ft :=
1√
t

∑
k,j≥0

gjak

∫ t

0

Hj(X(s))Hk(X ′(s))ds

where ak has been defined in (12). Then

Ft − E(Ft)→ N(0, σ2) in distribution as t→ +∞
where

0 < σ2 =
∞∑
q=1

σ2(q) <∞,

and

σ2(q) := 2

q∑
k=0

q∑
k′=0

akak′gq−kgq−k′

×
∫ +∞

0

E
[
Hq−k(X(0))Hk(X ′(0))Hq−k′(X(s))Hk′(X

′(s))
]
ds.

The integrand in the right-hand side of this formula can be computed using Lemma
5. Similar results exist, mutatis mutandis, for the sequences {bk} and {ck}.



CLT FOR THE NUMBER OF CROSSING OF RANDOM PROCESSES 101

A consequence is

Corollary 12. If the process X(t) satisfies the conditions of Theorem 11 then, as
T → +∞

1√
T

(
Uu
(
[0, T ]

)
− T e

−u2/2

2π

)
→ N(0, σ2

1) in distribution

1√
T

(
Nu
(
[0, T ]

)
− T e

−u2/2

π

)
→ N(0, σ2

2) in distribution,

where σ2
1 and σ2

2 are finite and positive.

Remark The result of Theorem 11 is in fact true under weaker hypotheses
namely ∫ +∞

0

|Γ(t)|dt <∞ ,

∫ +∞

0

|Γ′′2(t)|dt <∞ ,

see Theorem 1 of Kratz and León [11] or Kratz [9].See also Azäıs and Leon [1] for
another generalization where the integral

∫
R Γ(t)dt is defined only in a generalized

sense. Our stronger hypotheses make it possible to make a shorter proof.
Proof of the theorem:
Since Γ is integrable, the process X admits a spectral density. The hypotheses

and the Riemann-Lebesgue lemma imply that:

Γ(i)(t)→ 0 i = 0, 1, 2 as t→ +∞.

Hence, we can choose T0 so that for t ≥ T0

(19) Γ(t) := sup{|Γ(t)|, |Γ′(t)|, |Γ′′(t)|} ≤ 1/4.

Step 1. In this step we prove that one can choose Q large enough (and that
doesn’t depend on t) so that Ft can be replaced with an arbitrarily small error (in
the L2 sense) by its components in the first Q chaos

FQt :=
1√
t

Q∑
q=0

Gqt with Gqt :=

q∑
k=0

gq−kak

∫ t

0

Hq−k(X(s))Hk(X ′(s))ds.

Let us consider

1

t
E
(
(Gqt )

2
)

= 1/t

q∑
k,k′=0

gq−kakgq−k′ak′

∫ t

0

dt1(20)

·
∫ t

0

E
(
Hq−k(X(t1))Hk(X ′(t1))Hq−k′(X(t2))Hk′(X

′(t2))dt2.

To give an upper-bound for this quantity we split it into two parts.
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The part corresponding to |t1 − t2| ≥ T0 is bounded, using Lemma 5, by

(const)

q∑
k,k′=0

|gq−k||ak||gq−k′ ||ak′ |(21)

×
∫ t

T0

∑
(d1,d2,d3,d4)∈Z

k!(q − k)!k′!(q − k′)!
d1!d2!d3!d4!

|Γ(s)|d1 |Γ′(s)|d2+d3 |Γ′′(s)|d4ds

≤ (const)

q∑
k,k′=0

|gq−k||ak||gq−k′ ||ak′ |

×
∫ t

T0

∑
(d1,d2,d3,d4)∈Z

k!(q − k)!k′!(q − k′)!
d1!d2!d3!d4!

(
1

4
)(q−1)Γ(s)ds,

where Z is as in Lemma 5, setting r1 = q − k, r2 = k, r3 = q − k′, r4 = k′.

Remarking that sup
d

1

d!(k − d)!
≤ 2k

k!
it follows that

k!(q − k)!k′!(q − k′)!
d1!d2!d3!d4!

in (21)

is bounded above by 2q(k′)!(q−k′)! or 2q(k)!(q−k)! depending on the way we group

terms. As a consequence it is also bounded above by 2q
√

(k′)!(q − k′)!(k)!(q − k)!
and the right-hand side of (21) is bounded above by

(22)

(const)

q∑
k,k′=0

|gq−k||ak||gq−k′ ||ak′ |q2−q
√

(k′)!(q − k′)!(k)!(q − k)!

∫ +∞

0

Γ(t)dt

≤ (const)

q∑
k,k′=0

|gq−k||ak||gq−k′ ||ak′ |
√

(k′)!(q − k′)!(k)!(q − k)!

where we have used that the number of terms in Z is bounded by q.
On the other hand, the integration region in (20) corresponding to |t1− t2| ≤ T0

can be covered by at most [t/T0] squares of size 2T0. Using Jensen’s inequality as
we did for the proof of (14) we obtain:

(23) E
((
Gq2T0

)2) ≤ (const)T 2
0

q∑
k=0

(q − k)!k!g2q−ka
2
k.

Finally,

1

t
E
((
Gqt
)2) ≤ (const)

q∑
k=0

(q − k)!k!g2q−ka
2
k,

which is the general term of a convergent series. This proves also that σ2 is finite.
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Step 2. Let us prove that σ2 > 0. It is sufficient to prove that σ2(2) > 0. Recall
that a1 = 0 so that

(24) σ2(2) = a20g
2
2

∫ +∞

0

E
(
H2(X(0))H2(X(s))ds

+ a22g
2
0

∫ +∞

0

E
(
H2(X ′(0))H2(X ′(s))ds

+ 2a0g2a2g0

∫ +∞

0

E
(
H2(X(0))H2(X ′(s))ds.

Using the Mehler formula

σ2(2) = 2a20g
2
2

∫ +∞

0

Γ2(s)ds(25)

+ 2a22g
2
0

∫ +∞

0

(Γ′′(s))2ds+ 4a0g2a2g0

∫ +∞

0

(Γ′(s))2ds

=

∫ +∞

−∞

(
λ4a20g

2
2 + λ22a0g2a2g0 + a20g

2
)
f2(λ)dλ

=

∫ +∞

−∞

(
λ2a2g0 + a0g2

)2
f2(λ)dλ > 0.

Step 3. We define ψ(.) = K
(
1I[1/4,1/4]

)∗4
, where the constant K is chosen such

that ψ(0) = 1. Then we define Xε(t) using (10). The new definition of ψ(.) ensures
now that Xε(t) is differentiable. Define

FQ,εt :=
1√
t

Q∑
q=0

Gq,εt ,

with

Gq,εt =

q∑
k=0

gq−kak

∫ t

0

Hq−k(Xε(s))Hk

(
(Xε)′(s)

)
ds.

In this step, we prove that FQt can be replaced, with an arbitrarily small error if ε

is small enough, by FQ,εt . Since the expression of FQt involves only a finite number
of terms having the form:

K0
q−k,k :=

1√
t

∫ t

0

Hq−k(X(s))Hk

(
X ′(s)

)
ds

if ε is small enough, one can replace with an arbitrarily small error by

Kε
q−k,k :=

1√
t

∫ t

0

Hq−k(Xε(s))Hk

(
(Xε)′(s)

)
ds.
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For that purpose we study

E(K0
q−k,k −Kε

q−k,k)2

= 2

∫ t

0

t− s
t

E
[
Hq−k(X(0))Hk

(
X ′(0)

)
Hq−k(X(s))Hk

(
X ′(s)

)]
+ E

[
Hq−k(Xε(0))Hk

(
(Xε)′(0)

)
Hq−k(Xε(s))Hk

(
(Xε)′(s)

)]
− 2E

[
Hq−k(X(0))Hk

(
X ′(0)

)
Hq−k(Xε(s))Hk

(
(Xε)′(s)

)]
ds.

Consider the computation of terms of the kind

(26)

∫ t

0

t− s
t

E
[
Hq−k(Y1(0))Hk

(
Y ′1(0)

)
Hq−k(Y2(s))Hk

(
Y ′2(s)

)]
ds

where the processes Y1(t) and Y2(t) are chosen among {X(t), Xε(t)}. It suffices
to prove that all these terms have the same limit, as t → +∞ and then ε → 0
whatever the choice is.

Applying Lemma 5, the expectation in(26) is equal to∫ t

0

t− s
t

∑
d1,...,d4∈Z

(q − k)!2k!2

d1!d2!d3!d4!
(ρ(s))d1(ρ′(s))d2(−ρ′(s))d3(−ρ′′(s))d4ds,

where ρ(.) is the covariance function between the processes Y1 and Y2 and Z is
defined as in Lemma 5. Again, since the number of terms in Z is finite, it suffices
to prove that

lim
ε→0

lim
t→∞

∫ t

0

t− s
t

(ρ(s))d1(ρ′(s))d2+d3(ρ′′(s))d4ds,

where (d1, . . . , d4) is chosen in Z, does not depend on the way to choose Y1 and
Y2. ρ is the Fourier transform of (say) g(λ) which is taken among f(λ); f ∗
ψ̂ε(λ) or

√
f(λ)

√
f ∗ ψ̂ε(λ). Define g(λ) = iλg(λ) and g(λ) = −λ2g(λ). Then

(ρ(s))d1(ρ′(s))d2+d3(ρ′′(s))d4 is the Fourier transform of the function

h(λ) = g∗d1(λ) ∗ g∗(d2+d3)(λ) ∗ g∗d4(λ).

The continuity and boundedness of f imply that all the functions above are bounded
and continuous. The Fubini theorem shows that∫ t

0

t− s
t

ρ(s)d1ρ′(s)d2+d3(ρ′′(s))d4ds =

∫ +∞

−∞

1− cosλ

λ2
h(
λ

t
),

As t→ +∞, the right-hand side converges, using dominated convergence, to∫ +∞

−∞

1− cosλ

λ2
h(0)dλ.

The continuity of f now gives the result, as in Proposition 8.

Proof of Corollary 12:
Some attention must be payed to the fact that the coefficients

dj(u) =
1

j!
φ(u)Hj(u)
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do not satisfy
∑∞
j=0 j!d

2
j (u) <∞. They only satisfy the relation

(27) j!d2j (u) is bounded

First, considering the bound given by the right-hand side of (22), we can improve
it by reintroducing the factor q2−q that had been bound by 1. We get that in its
new expression this right-hand side is bounded by

(const)q2−q
q∑

k,k′=0

|dq−k(u)||ak||dq−k′(u′)||ak′ |
√

(k′)!(q − k′)!(k)!(q − k)!

≤ (const)q22−q
q∑

k=0

(
dq−k(u)

)2
a2k(k)!(q − k)!

≤ (const)q22−q
q∑

k=0

a2kk! ≤ (const)q22−q.

Second we have to replace the bound (23). Since the series in (17) is convergent

E
((
Gq2T0

)2)
is the term of a convergent series and this in enough to conclude.

.

4. Applications and extensions

In an unpublished manuscript, Stephane Mourareau has extended the result of
Corollary 12 to the case of moving level uT .

Theorem 13. Let uT be a moving level that tends to infinity with T . Suppose that

• The process X(t) is m-dependent
•

E(Ut)→∞

Then

1√
Tφ(uT )

(
UuT

(T )−
√
λ2
2π
Tφ(uT )

)
⇒ N

(
0,
λ2
2π

)

The variance is now simple and explicit and it corresponds to the Poissonian
limit (the variance is equal to the expectation) known as the Vlokonskii- Rozanov
theorem.

Theorem 14. Assume the conditions of Theorem 11 except (18) which is now
replaced by the very weak Berman’s condition

Γ(τ) log(τ)→ 0 as τ →∞.

Let uT be a movinf level such that E
(
Uut

)
= λ where λ is some constant. Then Uut

converges to a Poisson distribution with parameter λ.

This is a simplified version, the full one establishes a functional convergence of
the point process itself.
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4.1. Random trigonometric polynomials. Let X(t) be the stochastic process
with covariance

Γ(t) =
sin(t)

t

Since the covariance is not summable in the Lebesgue sense, it does not satisfy
strictly the conditions of Corollary 12. But in fact the integral∫

R
Γ(t)dt

can be defined by passage to the limit and it can be checked that the result holds
true.

Let XN (t) the sequences of random trigonometric polynomials given by

XN (t) =
1√
N

N∑
n=1

(an sinnt+ bn cosnt),

where the an, bn’s are independent standard normal.
it is easy to check that for each N , XN (t) is a stationary Gaussian process with

covariance:

(28) ΓXN
(τ) := E[XN (0)XN (τ)] =

1

N

N∑
n=1

cosnτ =
1

N
cos(

(N + 1)τ

2
)
sin(Nτ2 )

sin τ
2

.

We define the process

YN (t) = XN (t/N),

with covariance

ΓYN
(τ) = ΓXN

(τ/N).

The convergence of the Rieman sum to the intergral implies that

ΓYN
(τ)→ Γ(τ) := sin(τ)/τ as N → +∞

And the have the same type of control for the derivatives. The main argument of
Azäıs and León [1] is a construction of the process XN (t) as well as the limit X(t)
in the same probability space to get that the Central limit theorem for the crossings
of X(t) pass to those of XN (t) . It gives a generalization of a paper by Grandville
and Wigman [8]

Theorem 15. With the notation above

(1)
1√
Nπ

(
NYN

[0,Nπ](u)− E(NYN

[0,Nπ](u))
)
⇒ N(0,

1

3
u2φ2(u) +

∞∑
q=2

σ2
q (u)),

(2)
1√

2Nπ

(
NYN

[0,2Nπ](u)− E(NYN

[0,2Nπ](u))
)
⇒ N(0,

2

3
u2φ2(u) +

∞∑
q=2

σ2
q (u)),

where ⇒ is the convergence in distribution as N →∞ and σ2
q (u) is the variance of

the part in the qth chaos.
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4.2. Specular points. A different case of central limit theorem is given by the
number of specular points. These are point of the surface of the sea that appear
in bright on a photo. We use a cylinder model: time is fixed; the variation of the
elevation of the sea W (x) as a function of the space variable x is modeled by a
smooth stationary Gaussian process; as a function of the second space variable y
the elevation of the sea is supposed to be constant.

Suppose that a source of light is located at (0, h1) and that an observer is located
at (0, h2) where h1 and h2 are big with respect to W (x) and x. Only the variable x
has to be taken into account and the following approximation, was introduced long
ago by Longuett-Higgins [14]: the point x is a specular point if

W ′(x) ' kx, with k :=
1

2

( 1

h1
+

1

h2

)
.

This is a non stationary case: there are more specular points underneath the ob-
server. In particular if SP (I) s the number of specular points contained in the
interval I,

(29) E(SP (I)) =

∫
I

G(−k,
√
λ4)

1√
λ2
ϕ(

kx√
λ2

)dx,

where λ2, λ4 are the spectral moments of order 2 and 4 respectively that are assumed
to be finite; G(µ, σ) := E(|Z|), Z with distribution N(µ, σ2).

An easy consequence of that formula is that

E(SP ) := E(SP (R)) =
G(k,

√
λ4)

k
'
√

2λ4
π

1

k
,

as k tends to 0.
As a consequence the number of specular point is almost surely finite and the

Central Limit Theorem may only happen in the case where k → 0,i.e. when the
locations of the observer an the source of light are infinitely far from the surface of
the sea.

The central limit theorem is now established using Lyapounov type conditions
for Lindeberg type Central Limit Theorem for triangular arrays.

Theorem 16. Under some conditions (see Azäıs León and Wschebor [2] for de-
tails), as k → 0,

S −
√

2λ4

π
1
k√

θ/k
⇒ N(0, 1), in distribution,

where θ is some (complicated ) constant.
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[2] J-M. Azäıs, J. León and M. Wschebor. Rice formulae and Gaussian waves Bernoulli Volume

17, Number 1 (2011), 170-193.
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