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HYPERBOLICITY FOR CONSERVATIVE TWIST MAPS

OF THE 2-DIMENSIONAL ANNULUS

MARIE-CLAUDE ARNAUD

Abstract. These are notes for a minicourse given at Regional Norte UdelaR

in Salto, Uruguay for the conference CIMPA Research School Hamiltonian and
Lagrangian Dynamics. We will present Birkhoff and Aubry-Mather theory for

the conservative twist maps of the 2-dimensional annulus and focus on what

happens close to the Aubry-Mather sets: definition of the Green bundles, link
between hyperbolicity and shape of the Aubry-Mather sets, behaviour close to

the boundaries of the instability zones. We will also give some open questions.

This course is the second part of a minicourse that was begun by R. Potrie.
Some topics of the part of R. Potrie will be useful for this part.

Many thanks to E. Maderna and L. Rifford for the invitation to give the
mini-course and to R. Potrie for accepting to share the course with me.
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1. Introduction to conservative twist maps

Notations 1.1. • T = R/Z is the circle; A = T × R is the annulus and
(θ, r) ∈ A refers to a point of A;
• A is endowed with its symplectic form ω = dr ∧ dθ = dλ where λ = rdθ is

the Liouville 1-form;
• p : R2 → A is the universal covering;
• π : A → T is the first projection: π(θ, r) = θ and π : R2 → R is its lift,

which is also a projection: π(θ, r) = θ;
• for every point x = (θ, r), the vertical line at x is V(x) = {θ} × R ⊂ R2 or
V(x) = {θ} × R ⊂ A;
• the vertical subspace is the tangent subspace to the vertical line: V (x) =
TxV(x);
• all the measures we will deal with are assumed to be Borel probabilities.

The support of µ is denoted by suppµ.

If x ∈ M is an elliptic periodic point of a Hamiltonian flow that is defined on
a 4-dimensional symplectic manifold M , using symplectic polar coordinates in an
annular Poincaré section contained in the energy level of x, we obtain in general a
first return map T : A → A that is defined on some bounded sub-annulus A of A
by T (θ, r) = (θ + α + βr, r) + o(r) with β 6= 0. This is locally a conservative twist
map.

Definition 1.2. A positive (resp. negative) twist map is a C1-diffeomorphism
f : A→ A such that

(1) f is isotopic to the identity map IdA (i.e. f preserve the orientation and
the two boundaries of the annulus);

(2) f satisfies the twist condition i.e. there exists ε > 0 such that for any x ∈ A,
we have: 1

ε > D(π ◦ f)(x)(0, 1) > ε (resp. − 1
ε < D(π ◦ f)(x)(0, 1) < −ε).

In the first case the twist is positive, in the second case it is negative.
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Images of vertical lines :

The twist map is conservative (or exact symplectic) is f∗λ− λ is an exact
1-form.

Remarks 1.3. (1) Saying that the diffeomorphism f is isotopic to identity
means that:
• f preserves the orientation;
• f fixes the two ends T× {−∞} and T× {+∞} of the annulus.

(2) The reader can ask why we don’t just ask that f preserves the area form
(symplectic form) ω, i.e. 0 = f∗ω − ω = d(f∗λ − λ). We ask not only
that f∗λ − λ is closed, we ask that it is exact. Indeed, we want to avoid
symplectic twist maps as (θ, r) 7→ (θ + r, r + 1): all the orbits come from
T×{−∞} and go to T×{+∞} and there is no non-empty compact invariant
set for such a map. We will see in section 3 that this never happens for
exact symplectic twist maps;

(3) Note that f is a positive conservative twist map if and only if f−1 is a
negative conservative twist map. Hence from now we will assume that all
the considered conservative twist maps are positive.

Exercise 1.4. Let f : A→ A be a conservative twist map. Using Stokes formula,
prove that if γ : T→ A is a C1-embedding, then the (algebraic) area of the domain
that is between γ and f(γ) is zero.

Example 1.5. Consider the map we introduced by using polar coordinates for a
first return map T (θ, r) = (θ + α + βr, r) and assume that β > 0 (or replace T by

T−1). Then D(π ◦ T )

(
0
1

)
= β > 0 hence T is a (positive) twist map. Moreover,

T ∗(rdθ)− rdθ = βrdr = d
(
β
2 r

2
)

hence T is a conservative twist map.
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Note that the dynamics is very simple: the annulus is foliated by invariant circles
T× {r} and the restriction of T to every such circle is a rotation.

Example 1.6. The standard family depends on a parameter λ ∈ R. It is defined
by

fλ(θ, r) = (θ + r + λ sin 2πθ, r + λ sin 2πθ).

Note that for λ = 0, the map is just the map T = f0 of Example 1.5. When λ
increases from 0 to +∞, we observe fewer and fewer invariant graphs.

J. Mather and S. Aubry even proved that for 2πλ > 4/3, fλ has no continuous
invariant graph.

Exercise 1.7. (1) Check that the functions fλ are all conservative twist maps.
Assume that the graph of a continuous map ψ : T → R is invariant by a
map fλ.

(2) Prove that gλ(θ) = θ+λ sin(2πθ)+ψ(θ) is an orientation preserving home-
omorphism of T.
Hint: note that π ◦ fλ(θ, ψ(θ)) = gλ(θ).

(3) Prove that g−1
λ (θ) = θ − ψ(θ).

Hint: prove that f−1(θ, r) = (θ − r, r − λ sin 2π(θ − r)).
(4) Check that gλ(θ) + g−1

λ (θ) = 2θ + λ sin 2πθ. Deduce that for λ > 1
π , fλ has

no continuous invariant graph.

We can characterize the conservative twist maps by their generating functions.

Proposition 1.8. Let F : R2 → R2 be a C1 map. Then F is a lift of a conservative
twist map f : A→ A if and only if there exists a C2 function such that
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• ∀θ,Θ ∈ R, S(θ + 1,Θ + 1) = S(θ,Θ);
• there exists ε > 0 so that for all θ,Θ ∈ R, we have

ε < − ∂2S

∂θ∂Θ
(θ,Θ) <

1

ε
;

• F (θ, r) = (Θ, R)⇐⇒ R = ∂S
∂Θ (θ,Θ) and r = −∂S∂θ (θ,Θ).

In this case, we say that S is a generating function for F (or f). The proof of
Proposition 1.8 is given in subsection 5.1.

Exercise 1.9. Check that a generating function of the standard map fλ is

Sλ(θ,Θ) =
1

2
(Θ− θ)2 − λ

2π
cos 2πθ .

Remark 1.10. Generating functions are very useful to construct new examples or
perturbations of known examples of conservative twist maps. Indeed, we only need
a function to define a 2-dimensional conservative twist map.
Using generating functions, we can for example prove that for every k ∈ [1,∞],
there is a dense Gδ subset G of the set of Ck conservative twist maps such that at
every periodic point x of f ∈ G with period n, Dfn(x) has two distinct eigenvalues
(and then these eigenvalues are different from ±1). A similar dense Gδ subset G
exists such that the intersections of the stable and unstable submanifolds of every
pair of periodic hyperbolic points transversely intersect (when they intersect).

2. The invariant curves

2.1. Invariant continuous graphs and first Birkhoff theorem. In the ’20s,
G. D. Birkhoff proved (see [11]) that the invariant continuous graphs by a twist
map are locally uniformly Lipschitz.

Theorem 1. (G. D. Birkhoff) Let f : A → A be a conservative twist map and
x ∈ A. Then there exists a C1-neighborhood U of f , a neighborhood U of x in A
and a constant C > 0 such that if the graph of a continuous map ψ : T→ R meets
U and is invariant by a g ∈ U , then ψ is C-Lipschitz.

Theorem 1 is a consequence of a result that concerns all the Aubry-Mather sets
and that we will prove later: Proposition 3.24.

Corollary 2.1. Let f : A → A be a conservative twist map and let K ⊂ A be a
compact subset of A. Then there exists a C1-neighborhood U of f and a constant
C > 0 such that if the graph of a continuous map ψ : T → R meets K and is
invariant by a g ∈ U , then ψ is C-Lipschitz.

Exercise 2.2. Prove Corollary 2.1.

From Theorem 1 and Ascoli theorem, we deduce

Corollary 2.3. Let f be a conservative twist map of A. The the union I(f) of all
its invariant continuous graphs is a closed invariant subset of f .

Exercise 2.4. Prove Corollary 2.3.

Remarks 2.5. (1) The set I(f) can be empty: this is the case for the standard
map fλ with λ > 2

3π .
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(2) Using the connecting lemma that was proved by S. Hayashi in 2006 (see
[17]) and more specifically some related results that are contained in [7],
Marie Girard proved (in her non-published PhD thesis) that there is dense
Gδ subset G of the set of C1 conservative twist maps such that every f ∈ G
has no continuous invariant graph.

(3) Don’t deduce that having an invariant graph rarely happens for the conser-
vative twist maps: it depends on their regularity (C1, C3, . . . , C∞). Indeed,
the famous theorems K.A.M. (for Kolmogorov-Arnol’d-Moser, see [8], [22],
[28]) tell us that if a C∞ conservative twist map f has a C∞ invariant graph
C such that the restriction f|C is C∞ conjugated to a Diophantine rotation
θ 7→ θ + α (i.e. α is Diophantine: there exist γ, δ > 0 so that for every
p ∈ Z and q ∈ N∗, we have |α − p

q | ≥
γ

q1+δ
), there exists a neighborhood

U of f in C∞-topology such that every g ∈ U has a C∞ invariant graph Γ
such that g|Γ is C∞-conjugated to f|C .

As the completely integrable standard map f0 has a lot of such invariant
graphs, we deduce that for λ small enough, fλ has many C∞ invariant
graphs.

Remark 2.6. We will see that even when a conservative twist map has no con-
tinuous invariant graph, it has a lot of compact invariant subsets: periodic orbits,
and even invariant Cantor sets (these are the Aubry-Mather sets, see section 3).

2.2. Circle homeomorphisms and dynamics on I(f). Now let us explain how
is the dynamics restricted to I(f).
The dynamics restricted to every invariant graph is Lipschitz conjugated (via π)
to an orientation preserving bi-Lipschitz homeomorphism of T. The classification
of the orientation preserving homeomorphisms of the circle is due to H. Poincaré
and given in [21] (see [18] for more results). Let us recall quickly the main results.
We assume that h : T → T is an orientation preserving homeomorphism and that
H1, H2 : R→ R are some lifts of h (then H2 −H1 = k is an integer). Then

• the sequence
(
Hni −Id

n

)
n∈N

uniformly converge to a real number ρ(Hi) that

is called the rotation number of Hi; note that ρ(H2)−ρ(H1) = k; then the
class of ρ(Hi) modulo Z defines a unique number ρ(h) ∈ T and is called the
rotation number of h;
• ρ(Hi) = m

n ∈ Q (with m and n relatively prime) if and only if there exists
a point t ∈ R so that Hn

i (t) = t + m; in this case a point t of T is either
periodic for h or such that there exist two periodic points t−, t+ with period
n for h such that

lim
`→+∞

d(h−`t, h−`t−) = lim
`→+∞

d(h`t, h`t+) = 0.

In this last case, t is negatively heteroclinic to t− and positively heteroclinic
to t+.
• when ρ(h) /∈ Q/Z, h has no periodic points and either the dynamics is mini-

mal and C0-conjugated to the rotation t 7→ t+ρ(h) or the non wandering set
of h is a Cantor subset (i.e. non-empty compact totally disconnected with
no isolated point) Ω, h|Ω is minimal and all the orbits in T\Ω are wander-

ing and homoclinic to Ω (this means that lim
`→±∞

d(h`t,Ω) = 0). Moreover,

f has a unique invariant measure, and its support is Ω.
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Moreover, if q ∈ Z∗, p ∈ Z are such that ρ(Hi) <
p
q (resp. ρ(Hi) >

p
q ), then we

have Hq
i (t)− t− p < 0 (resp. Hq

i (t)− t− p > 0). We deduce that

∀k ∈ Z, |Hk
i (t)− t− kρ(Hi)| ≤ 1.

Definition 2.7. When an invariant graph has an irrational (resp. rational)
rotation number, we will say that the graph is irrational (resp. rational).
When the rotation number is irrational and the dynamics is not minimal, we have
a Denjoy counter-example.

2.3. Lyapunov exponents of the invariant curves.

Definition 2.8. Let C ⊂ A be a set that is invariant by a map f : A → A. Then
its stable and unstable sets are defined by

W s(C, f) = {x ∈ A; lim
k→+∞

d(fkx, C) = 0}

and

Wu(C, f) = {x ∈ A; lim
k→+∞

d(f−kx, C) = 0}.

One of these two sets is trivial if it is equal to C.

Example 2.9. We consider the Hamiltonian flow of the pendulum. In other words,
we define H : A → R by H(θ, r) = 1

2r
2 + cos 2πθ and its Hamiltonian flow (ϕt) is

determined by the Hamilton equations: θ̇ = ∂H
∂r = r and ṙ = −∂H∂θ = 2π sin 2πθ.

For t > 0 small enough, the time t map f = ϕt is a conservative twist map, and as
H is constant along the orbits we can find a lot of invariant curves.

Note on this picture that there exists two Lipschitz but non C1 invariant graphs,
that are the separatrices of the hyperbolic fixed point.
Such a separatrix carries only one invariant ergodic measure, the Dirac mass at the
hyperbolic fixed point, and then the Lyapunov exponents of this measure are non
zero, and there are non-trivial stable and unstable sets for this separatrix (that is
the union of the two separatrices).

Hence this is an example of a rational invariant graph that carries an hyperbolic
invariant measure. What happens in the irrational case? It is not hard to prove that
if the graph of a C1-map is invariant by a conservative twist map and irrational, then
the unique ergodic measure supported in the curve has zero Lyapunov exponents.
When the invariant curve is just assumed to be Lipschitz, this is less easy to prove
but also true as we will see in Theorem 2.

Remark 2.10. There exist examples of C2 conservative twist maps that have an
irrational invariant Lipschitz graph that is not C1. Such an example is built in [2].
We don’t know if such an example exists when the twist map in C∞ or when the
dynamics restricted to the graph is not Denjoy (i.e. has a dense orbit).
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Question 2.11. Does there exist a C∞ conservative twist map that has an invari-
ant continuous graph on which the dynamics is Denjoy?

Question 2.12. Does there exist a C∞ conservative twist map that has an invari-
ant irrational continuous graph that is not C1?

Question 2.13. If a conservative twist map has an invariant irrational continuous
graph on which the restricted dynamics has a dense orbit, is the invariant curve
necessarily C1?

Remarks 2.14. (1) From Theorem 2 and Theorem 9 that we will prove later,
it is not hard to deduce that if a conservative twist map has an invariant
irrational graph γ that carries the invariant probability measure µ, then γ
is C1-regular µ-almost everywhere (see Definition 4.16).

(2) In fact, I proved in [1] that any graph that is invariant by a conservative
twist map is C1 above a Gδ subset of T that has full Lebesgue measure.

With P. Berger, we proved the following result (see [6]).

Theorem 2. (M.-C. Arnaud & P. Berger) Let γ be an irrational invariant
graph by a C1+α conservative twist map. Then the Lyapunov exponents of the
unique invariant probability with support in γ are zero. Hence

∀ε > 0,∀x ∈W s(γ, f)\γ, lim
n→+∞

enεd(fnx, γ) = +∞.

The convergence to an irrational invariant curve is slower than exponential. We
will explain in subsection 2.4 that a lot of conservative twist maps have an irrational
invariant curve with a non trivial stable set.

Proof We begin by proving the first part of the theorem.
Assume that γ is an invariant continuous graph by a C1+α conservative twist map

f and that some ergodic invariant probability µ with support in γ is hyperbolic,
i.e. has two Lyapunov exponents such that λ1 < 0 < λ2. As f is symplectic, then
λ2 = −λ1 = λ.

We use Pesin theory and Lyapunov charts (rectangles R(fkx)) along a generic
orbit (fkx) for µ: in such a chart, the dynamics is almost linear and hyperbolic

x

R(x)

fx

R(fx)

f

f(R(x))

We will prove that µ-almost x is periodic. The curve γ is endowed with some
orientation. Note that f|γ is orientation preserving.

We decompose the boundary ∂R of the domain of a chart R into ∂sR = {−ρ, ρ}×
[−ρ, ρ] and ∂uR = [−ρ, ρ]× {−ρ, ρ}
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Wss(x)

Wu(x)

x

Ɣ

∂Rs

∂Ru

∂Ru

∂Rs

Let γx be the connected components of γ ∩ R(x) that contains x and let ηx be
the set of the points of γx that are after x (for the orientation of γx).

We will prove that µ-almost x is periodic and ηx ⊂W s(x) or ηx ⊂Wu(x).

Lemma 2.15. We have either for µ almost every x, ηx(1) ∈ ∂Rs(x) or for µ
almost every x, ηx(1) /∈ ∂Rs(x).

x

η
x

∂Rs(x)

∂Ru(x)

∂Ru(x)

∂Rs(x) fx

∂Rs(fx)∂Ru(fx)

∂Rs(fx) η
fxf

Proof If ηx(1) ∈ ∂Rs(x), then for all n ≥ 1, we have ηfnx(1) ∈ ∂Rs(fnx). Then
the map I defined by I(x) = 1 if ηx(1) ∈ ∂Rs(x) and I(x) = 0 if not is non-
decreasing along the orbits and then constant almost everywhere.

We have indeed
∫

(I ◦ f − I)dµ = 0 and I ◦ f ≥ I. Hence I ◦ f = I µ- a.e. and
then as µ is ergodic I is constant µ-almost everywhere.

Assume for example that we have almost everywhere ηx(1) ∈ ∂sR(x). Hence we
have ηfx ⊂ f(ηx).

The local unstable manifold at x is the graph of a continuous function gux .
If ηx = (η1

x, η
2
x) we introduce the notation:

δ(x) = max
t∈[0,1]

|η2
x(t)− gux(η1

x(t))|.

Wss(x)

Wu(x)
x

Ɣ

∂Rs

∂Ru

∂Ru

∂Rs
δ(x)

Using hyperbolicity, we obtain δ(fx) ≤ e−
λ
2 δ(x), and then

∫
δdµ ≤ e−

λ
2

∫
δdµ

and then δ = 0 µ almost everywhere.
We deduce that the corresponding branch of Wu(x) is contained in γ for µ-almost

every x.
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Assume that γ is irrational. Then f|γ has to be Denjoy (because for some points

we have lim
n→+∞

d(f−nx, f−ny) = 0).

In this case, the only points x ∈ suppµ such that Wu(x) 6= {x} are the endpoints
of the wandering intervals and there are only countably many such points: their
set has µ-measure 0.

Finally, γ cannot be irrational.
The second part of Theorem 2 is a consequence of the following theorem that we

will prove.

Theorem 3. Let f : M → M be a C1-diffeomorphism of a manifold M . Let
K ⊂ M be a compact set that is invariant by f . We assume that f|K is uniquely
ergodic and we denote the unique Borel invariant probability with support in K by µ.
We assume that all the Lyapunov exponents of µ are zero. Let x0 ∈ W s(K, f)\K.
Then we have:

∀ε > 0, lim
n→+∞

eεnd(fn(x0),K) = +∞.

Let us now prove this theorem.

Proof. By hypothesis, we have for µ-almost every point :

lim
n→±∞

1

n
log ‖Dfn(x)‖ = 0.

We can use a refinement Kingman’s subadditive ergodic theorem that is due to
A. Furman (see Theorem 12 of subsection 5.5) that implies that we have

lim sup
n→±∞

max
x∈K

1

n
log ‖Dfn(x)‖ ≤ 0.

In particular, for any ε > 0, there exists N ≥ 1 such that:

(1) ∀x ∈ K,∀n ≥ N, 1

n
log ‖Df−n(x)‖ ≤ ε

8
.

Observe that the following norm with k ≥ N large:

‖u‖′x =

k∑
n=0

e−nε/4‖Df−n(x)u‖x,

satisfies uniformly on x for u 6= 0:

‖Df−1(x)u‖′f−1(x)

‖u‖′x
= eε/4 +

e−kε/4‖Df−k−1(x)u‖x − eε/4‖u‖
‖u‖′x

≤ eε/4 +
e−kε/4‖Df−k−1(x)u‖x

‖u‖′x
≤ eε/4 + e−kε/8

Hence by changing the Riemannian metric by the latter one, we can assume that
the norm of Dxf

−1 is smaller than eε/3 for every x ∈ K.
Consequently, on a η-neighborhood Nη of K, it holds for every x ∈ Nη that:

‖Dxf
−1‖′ ≤ eε/2

Let x0 ∈M be such that xn := fn(x0)→ K, we want to show that

lim inf
1

n
log d(xn,K) ≥ −ε.
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We suppose that lim inf 1
n log d(xn,K) < −ε for the sake of a contradiction. Hence

there exists n arbitrarily large so that xn belongs to the e−nεη-neighborhood of
K. Let γ be a C1-curve connecting xn to K and of length at most e−nεη. By
induction on k ≤ n, we notice that f−k(γ) is a curve that connects xn−k to K, and
has length at most e−nε+kε/2η, and so is included in Nη. Thus the point x0 is at

most e−nε/2η-distant from K. Taking n large, we obtain that x0 belongs to K. A
contradiction.

2.4. Instability zones and the second Birkhoff theorem. As now we know
how the dynamics restricted to I(f) is, we will look to the complement U(f) of
I(f).

Definition 2.16. An essential curve is a C0-embedded circle in A that is not
homotopic to a point, i.e. a loop that winds around the annulus.
An essential subannulus of A is a subset of A that is homeomorphic to A and that
contains an essential curve of A.

Proposition 2.17. Let f be a conservative twist map. Every connected components
of U(f) is either a bounded disc or an essential sub-annulus of A.

• When such a component is a disc D , then this disc is periodic i.e. there
exists N ≥ 1 such that fN (D) = D. Moreover, the boundary of D is
the union of parts of two invariant continuous graphs that have the same
rational rotation number.

• When such a component is an essential sub-annulus, then it is invariant by
f , and each of the two components of its boundary is either T× {±∞} or
an invariant continuous graph.

Proof Let U be a connected component of U(f). Then there is a partition of the
set of the invariant continuous graphs in two parts: the set S+ of such curves that
are above U and the set S− of those that are under U . Let us differentiate which
cases can occur

(1) if S− = S+ = ∅, then U = A is an essential annulus;
(2) if S− = ∅ and S+ 6= ∅ (resp. S+ = ∅ and S− 6= ∅ ), let us denote by γ+

(resp. γ−) the smallest element in S+ (resp. the largest element in S−).
Then U is the component under γ+ (resp. above γ−), that is an essential
sub-anulus, and its boundary is γ+ (resp. γ−);

(3) if S− 6= ∅ and S+ 6= ∅, let us denote by γ+ (resp. γ−) the smallest element
in S+ (resp. the largest element in S−). Then U is a connected component
of the points that are between γ− and γ+. If γ− ∩ γ+ 6= ∅, it is a disc D
such that ∂D ⊂ γ− ∪ γ+; moreover, as γ− meets γ+, this two curve have
the same rotation number and γ− ∩ γ+ contains exactly two points of ∂D
and they are periodic: the rotation number is rational . If γ− ∩ γ+ = ∅,
then U is an essential sub annulus with boundary γ− ∪ γ+.

From the fact that the invariant curves are invariant, we deduce that the the annular
components of U(f) are invariant. The components U that are homeomorphic to a
disc are between two invariant curves, hence contained in an invariant domain with
finite Lebesgue measure. This implies that for some N ≥ 1, we have fN (U)∩U 6= ∅
and then fN (U) = U .
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Definition 2.18. If f is a conservative twist map, an annular component of U(f)
is called an instability zone.

The following result, which was proved independently by J. Mather (see [27]
where the author uses variational methods) and P. Le Calvez (see [23] where the
author uses topological methods), explains why these regions are called instability
zones.

Theorem 4. (P. Le Calvez; J. N. Mather) Let A be an instability zone of a
conservative twist map f of the annulus. We choose boundaries C−, C+ of A. Then
there exists x ∈ A so that lim

k→±∞
d(fkx, C±) = 0.

Remarks 2.19. (1) Note that we can choose C− = C+.
(2) Theorem 4 tells us that Wu(C−) ∩W s(C+) ∩ A 6= ∅

f

ff
f

Ideas of proof Let us explain in a few words what are the ideas to prove a
weaker but related result due to Birkhoff: assume C− 6= C+, fix a neighborhood U−
of C− and U+ of C+ in Ā, then there exists x ∈ U− and N ≥ 0 so that fNx ∈ U+.

The main argument is a theorem due to Birkhoff.

Theorem 5. (G. D. Birkhoff) Let A ⊂ A be an essential sub-annulus that is
invariant by a conservative twist map of the annulus and that is equal to the interior
of its closure. Then every bounded connected component of ∂A is the graph of a
Lipschitz map.

A complete proof of Theorem 5 can be found in the appendix of the first chapter
of [18] (in French).
Then assume that U− is annular and that the result we want to prove is false.
For every n ∈ N, let V be the connected component of the complement in Ā of⋃
n∈N

fn(U−) that contains C+. One can check that the interior of V̄ satisfies the

hypothesis of Theorem 5, hence we find an invariant continuous graph that is in
A (the boundary of V ), that is incompatible with the definition of an instability
zone.

Note an important corollary of theorem 5.

Corollary 2.20. Let γ be an essential curve that is invariant by a conservative
twist map. Then γ is the graph of a Lipschitz map.

Example 2.21. This example was introduced by Birkhoff in [12]. We consider the
Hamiltonian flow f of the pendulum for a small enough time. Using a perturbation
of the generating function of f , we can create a transverse intersection between the
lower stable branch and the lower unstable branch of the hyperbolic fixed point:
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Then the remaining separatrix is the upper boundary of an instability zone.

Exercise 2.22. Prove the last assertion in Example 2.21.

Michel Herman proved in [19] that for a general conservative twist map, there is
no essential invariant curve that contains a periodic point. More precisely:
Let k ∈ [1,+∞] be a positive integer or ∞. There exists a dense Gδ-subset G of the
set of the Ck PSTM such that every f ∈ G has no invariant essential curve that
contains a periodic point.
The proof of this result is proposed in Exercice 4.10.

Question 2.23. For which parameters λ does the standard map fλ satisfy this
property?

Question 2.24. How is a “general” boundary of an instability zone? Is it the
boundary of one or two intability zone(s)? Is it smooth? How is its rotation
number: Diophantine, Liouville?

Remark 2.25. This result of Michel Herman joined to the fact that there exist
open sets of C∞ conservative twist maps that have a lot of (Diophantine) invariant
graphs, allows us to state :

Proposition 2.26. There exists a dense Gδ-subset G (for the C∞-topology) in a
non-empty open set of conservative C∞ twist map such that every f ∈ G has a
bounded instability zone with irrational boundaries.

Then the stable set of such an irrational boundary is not empty (because of
Theorem 4) but the convergence to such a boundary is slower than exponential
(because of Theorem 2).

Exercise 2.27. Prove Proposition 2.26.

Question 2.28. For which parameters λ has the standard map fλ an irrational
boundary of instability zone?

3. Aubry-Mather theory

3.1. Action functional and minimizing orbits. In this section, we assume that
S : R2 → R is a generating function of a lift F : R2 → R2 of a conservative twist
map f : A→ A.

Definition 3.1. If k ≥ 1, one defines the action functional Fk+1 : Rk+1 → R by

F(θ0, . . . , θk) =

k∑
j=1

S(θj−1, θj).
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For every k ≥ 2 and every θb, θe ∈ Rn, the function Fk+1 (or F) restricted to
the set E(k + 1, θb, θe) of (k + 1)-uples (θ0, . . . , θk) beginning at θb and ending at
θe, i.e. such that θ0 = θe and θk = θe, has a minimimum and at every critical point
for Fk+1|E(k+1,θb,θe), the following sequence is a piece of orbit for F :

(θ0,−
∂S

∂θ
(θ0, θ1)), (θ1,

∂S

∂Θ
(θ0, θ1)), (θ2,

∂S

∂Θ
(θ1, θ2)), . . . , (θk,

∂S

∂Θ
(θk−1, θk)).

Observe that for such a critical point, we have ∂S
∂Θ (θi−1, θi) + ∂S

∂θ (θi, θi+1) = 0 for
every 0 < i < k.

Example 3.2. To illustrate the notion of generating function, let us introduce
a very classical example of twist map that is due to G.D. Birkhoff: the so-called
Birkhoff billiard. Play billiard on a planar billiard table with a C2 and convex
boundary with non-vanishing curvature. Then we can choose symplectic coordi-
nates (angular coordinate for the point of bounce and radial coordinate that is the
sinus of the angle of reflection) in such a way that the dynamical system becomes
a conservative twist map (see [29] for details).

In these coordinates, if θ0, . . . , θn ∈ Rn+1, then F(θ0, . . . , θn) is just the length
of the polygonal line that joins the successive points with angular coordinates
θ0, . . . , θn.

Definition 3.3. A finite or infinite sequence of real numbers (θn)n∈J is a minimizer
if for every segment [`, k] ⊂ J , (θn)`≤n≤k is a global minimizer of

Fk−`+1|E(k−`+1,θ`,θk) .

When J = Z, we say that (θn) is a minimizing sequence; we denote the set of
minimizing sequences by M⊂ RZ.

An orbit (θn, rn) of F (and by extension its projection on A) is minimizing if its
projection (θn) is a minimizing sequence.

Remark 3.4. Observe that a minimizer is always the projection of a piece of orbit.
From Lemma 3.15, we can deduce

• in every E = E(k + 1, θb, θe), there exists a minimizer of F|E ; such a min-
imizer is a segment of the projection of an (non necessarily minimizing)
orbit;
• if (q, p) ∈ Z∗ × Z, the restriction of Fq+1 to the set {(θk); θk+q = θk + p}

has a global minimizer. Any such minimizer is the projection of an orbit
and we will even see in Proposition 3.10 that it is a minimizing sequence.

The following theorem is due to J. Mather and proved in subsection 5.2.

Theorem 6. (J. N. Mather) Assume that the graph of a continuous map ψ :
T→ R is invariant by a conservative twist map f . Then for any generating function
associated to f , all the orbits contained in the graph of ψ are minimizing.

Now we will give some properties of the minimizers and prove the existence of
some periodic minimizers.
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Proposition 3.5. (Aubry & Le Daeron non-crossing lemma) Assume

(b− a)(B −A) ≤ 0.

Then
S(a,A) + S(b, B)− S(a,B)− S(b, A) ≥ 0

and equality occurs if and only if (b− a)(B −A) = 0.

a

b

B

A

Proof Let us use the notation At = A+ t(B−A) and at = a+ t(b−a). We have:

S(a,A) + S(b, B)− S(a,B)− S(b, A) = (S(b, B)− S(b, A))− (S(a,B)− S(a,A))

= (B −A)

∫ 1

0

(
∂S

∂Θ
(b, At)−

∂S

∂Θ
(a,At)

)
dt

= (b− a)(B −A)

∫ 1

0

∫ 1

0

∂2S

∂θ∂Θ
(as, At)ds dt.

From ∂2S
∂θ∂Θ < 0, we deduce the wanted result.

Definition 3.6. If (θk) is a finite or infinite sequence of real numbers, its Aubry dia-
gram is the graph of the function obtained when interpolating linearly the sequence
(k, θk).

Two sequences (ak)k∈I and (bk)k∈I cross if for some k, j: (ak− bk)(aj − bj) < 0.

Remark 3.7. They are two types of crossing: at an integer or at a non-integer:

ak=bk

ak-1

bk-1 ak+1

bk+1
bj

aj

aj+1

bj+1

Note that if two distinct minimizers are such that for a k we have ak = bk, then we
have ak−1 6= bk−1 and ak+1 6= bk+1; indeed, if two successive terms coincide, then
they correspond to a same orbit and then to the same minimizer.

Proposition 3.8. (Aubry fundamental lemma) Two distinct minimizers cross
at most once.
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Proof Assume that the minimizers (ak) and (bk) cross at two different times t1
and t2. Let us introduce the notation ki = [ti]. We consider the the following finite
segments:

• A = (ak)k1≤k≤k2+1;
• B = (bk)k1≤k≤k2+1;
• α = (ak1 , bk1+1, . . . , bk2 , ak2+1);
• β = (bk1 , ak1+1, . . . , ak2 , bk2+1).

If t1 or t2 is not an integer, we deduce from Proposition 3.5 that

F(A) + F(B)−F(α)−F(β) =
2∑
i=1

(S(aki , aki+1) + S(bki , bki+1)− S(aki , bki+1)− S(bki , aki+1)) > 0.

As A and α (resp. B and β) have same endpoints, we deduce that A or B is not
minimizing, and this is a contradicton.

If ti = ki are both integers, then we obtain F(A) + F(B) − F(α) − F(β) = 0.
As F(A) ≤ F(α) and F(B) ≤ F(β), we deduce that α and β are also minimizers.
But α and A coincides for integers k2 and k2 + 1, hence α = A and then A = B.

Definition 3.9. If (q, p) ∈ N∗ × Z, a sequence (θn)n∈Z is a (q, p)-minimizer if

(1) ∀n, θn+q = θn + p;

(2) (θn)0≤n≤q−1 is a minimizer of the function (αn)0≤n≤q−1 7→
q∑

n=0

S(αn, αn+1)

(with the convention αq = α0 + p).

Observe that a (q, p)-minimizer is the projection of an orbit (θn, rn) for F such
that (θn+q, rn+q) = (θn, rn) + (p, 0). Hence it corresponds to a q-periodic orbit for
f .

Proposition 3.10. Any (q, p)-minimizer is a minimizing sequence.

Exercise 3.11. The goal of the exercise is to prove Proposition 3.10.
(a) Using Proposition 3.8, prove that for every (q, p) ∈ N∗ × Z and k ≥ 1, two
distinct (q, p)-minimizers cannot cross.
Hint: prove that if they cross, they cross two times within a period.
(b) Deduce that for every (q, p) ∈ N∗ × Z and k ≥ 1, every (kq, kp)-minimizer is in
fact a (q, p)-minimizer.
(c) Deduce that being a (q, p)-minimizer is equivalent to be a (kq, kp)-minimizer.
(d) Deduce Proposition 3.10.

Notation 3.12. If (q, p) ∈ Z2, we denote by Tq,p : RZ → RZ the map defined by
Tq,p((xk)k∈Z) = (xk−q + p)k∈Z.

Note that if (θk)k∈Z is a (q, p) minimizer, then Tq,p ((θk)k∈Z) = (θk)k∈Z.

Corollary 3.13. If (θk)k∈Z and (αk)k∈Z are two (q, p)-minimizers, then they don’t
cross. In particular, (θk)k∈Z and Ta,b ((θk)k∈Z) do not cross.

Proposition 3.14. For every q ∈ N∗, p ∈ Z, there exists at least one (q, p)-
minimizer.
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Proof We assume that S is a generating function of a lift F of the conservative
twist map f .

Lemma 3.15. We have lim
|Θ−θ|→+∞

S(θ,Θ)

|Θ− θ|
= +∞.

Proof Using the notation θt = θ + t(Θ− θ), we have

S(θ,Θ) = S(θ, θ) +
∫ 1

0
∂S
∂Θ (θ, θt)(Θ− θ)dt

= S(θ, θ) +
∫ 1

0
∂S
∂Θ (θt, θt)(Θ− θ)dt−

∫ 1

0

∫ t
0

∂2S
∂θ∂Θ (θs, θt)(Θ− θ)2dsdt

≥ m−M |Θ− θ|+ ε
2 (Θ− θ)2

where m = min
θ∈[0,1]

S(θ, θ) and M = max
θ∈[0,1]

∣∣∣∣ ∂S∂Θ
(θ, θ)

∣∣∣∣.
We know consider the set

E(q, p) = {(θk)k∈Z;∀k ∈ Z, θk+q = θk + p}

and define W : E(q, p)→ R by

W((θk)k∈Z) =

q−1∑
k=0

S(xk, xk+1).

Note that if ` ∈ Z, then W((θk)k∈Z) =W((θk + `)k∈Z). Hence we can define W on
the quotient of E(q, p) by the diagonal action of Z. On this space, W is coercive
and has then a global minimimum. Then this global minimum is attained at a
(q, p)-minimizer.

Exercise 3.16. Write the details in the proof of Proposition 3.14.

3.2. F -ordered sets.

Definition 3.17. We say that a subset E ⊂ R2 is F -ordered if it is invariant by F
and every integer translations (θ, r) 7→ (θ + k, r) with k ∈ Z and if

∀x, x′ ∈ E, π(x) < π(x′)⇒ π ◦ F (x) < π ◦ F (x′).

Remark 3.18. We deduce from Corollary 3.13 that if q ∈ Z∗ and p ∈ Z, the union
of the (q, p)-minimizing orbits is an F -ordered set.

Exercise 3.19. Let ψ : T → R be a continuous map such that the graph of ψ is
invariant by a conservative twist map f . Prove for any lift F of f , the graph of ψ
is F -ordered.

The following proposition explains how we can construct other F -ordered sets.

Proposition 3.20. Let F be a lift of a conservative twist map.

(1) The closure of every F -ordered set is F -ordered;
(2) Let (En)n∈N be a sequence of F -ordered sets. Let E ∈ R2 be the set of points

x ∈ R2 so that there exist (xn) ∈ R2 satisfying xn ∈ En and lim
n→∞

xn = x.

Then E is F -ordered.
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Remark 3.21. The main remark that is useful to prove Proposition 3.20 is the
following one.
Assume that E ⊂ R2 is invariant by F and all maps (θ, r) 7→ (θ+ k, r) with k ∈ Z.
Then E is F -ordered if and only if

∀x, x′ ∈ E, π(x) < π(x′)⇒ π ◦ F (x) ≤ π ◦ F (x′) and π ◦ F 2(x) ≤ π ◦ F 2(x′).

To prove that, observe that if π ◦ F (x) = π ◦ F (x′) for some x 6= x′ in R2, then
(π ◦ F−1(x), π ◦ F−1(x′)) and (π ◦ F (x), π ◦ F (x′)) are not in the same order.

Proposition 3.22. Let F be a lift of a conservative twist map and let E ⊂ R2 be
a non-empty and closed F -ordered set. Then π maps E homeomorphically onto a
closed subset of R that is invariant by the map t ∈ R 7→ t+ 1.

Proof The map π is continuous and open. Assume that there exist two points
x 6= y of E such that π(x) = π(y). Because of the twist condition, we have
x− = π ◦ F−1(x) 6= π ◦ F−1(y) = y− and this contradicts the fact that E is
F -ordered.

We just have to prove that π(E) is closed. Assume that (xn) is a sequence of
points of E such that (π(xn)) converges to some θ ∈ R. Then there exists a, b ∈ Z
so that ∀n ∈ N, π(x0) + a < π(xn) < π(x0) + b. Because E is F -ordered, we have
then ∀n ∈ N, π ◦ F (x0) + a < π ◦ F (xn) < π ◦ F (x0) + b. Hence

xn ∈ π−1([π(x0) + a, π(x0) + b]) ∩ F−1(π−1([π ◦ F (x0) + a, π ◦ F (x0) + b])) = K.

K

Because of the twist condition, K is compact. Hence we can extract a convergent
subsequence from (xn). Because E is closed, x = limxn ∈ E and then θ = π(x) ∈
π(E).

We deduce the following statement.

Proposition 3.23. Let F be the lift of a conservative twist map and let E ⊂ R2

be a non-empty and closed F -ordered set. Then there exists an increasing homeo-
mophism H : R→ R such that

• ∀t ∈ R, H(t+ 1) = H(t) + 1;
• ∀x ∈ E,H ◦ π(x) = π ◦ F (x).

Hence the dynamics F restricted to E is conjugated (via π) to the one of a
lift of a circle homeomorphism. We even deduce from Proposition 3.24 that H is
bi-Lipschitz. We can then associate to every F -ordered set a rotation number.

Proposition 3.24. Let f : A → A be a conservative twist map and x ∈ A. Then
there exists a C1-neighborhood U of f , a neighborhood U of x in A and a constant
C > 0 such that
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if E ⊂ R2 is a G-ordered set for a lift G of some g ∈ U that meets U + Z× {0},
then E is the graph of some C-Lipschitz map ψ : π(E)→ R.

Note that this proposition is similar to Theorem 1 (in fact, we can deduce The-
orem 1 from Proposition 3.24).

Proof Let F be a lift of the conservative twist map f = (f1, f2), let ε > 0 be

so that ∂f1
∂r ∈ (ε, 1

ε ) and let x = (θ, r) be a point of R2. Let us choose a compact
neighbourhood B of x.
Then for every y = (α, ρ) ∈ B, if we use the notation y− = F−1(y) = (α−, ρ−) and
y+ = F (y) = (α+, ρ+), the curves F−1({α+} × [r+ − 1

ε , r+ + 1
ε ]) and F ({α−} ×

[r−− 1
ε , r−+ 1

ε ]) are graphs of some C1 functions vy,−, vy,+ whose domains contain
[α− 1, α+ 1].

y- y+
y

E

vy,- vy,+

Because F (F−1(B)+{0}× [− 1
ε ,

1
ε ]) and F−1(F (B)+{0}× [− 1

ε ,
1
ε ]) are compact,

there exists K > 0 such that R× [−K,K] contains these two sets.
We define now U as being the set of conservative twist maps g = (g1, g2) with a

lift G such that

• ∀x ∈
(
G−1(B) + {0} × [− 1

ε ,
1
ε ]
)
∪G−1

(
G(B) + {0} × [− 1

ε ,
1
ε ]
)

∂g1

∂r
(x) ∈ (ε,

1

ε
)

• G(G−1(B) + {0} × [− 1
ε ,

1
ε ]) ∪G−1(G(B) + {0} × [− 1

ε ,
1
ε ]) ⊂ R× [−K,K].

Assume that G is such a lift of g ∈ U . Let E be a G-ordered set that meets
B at some y. We deduce from Proposition 3.22 that E is the graph of a map
ψ : π(E) → R and then y = (α,ψ(α)) for some α ∈ π(E) ⊂ R. Because g ∈ U ,
we know that G(G−1(y) + {0} × [− 1

ε ,
1
ε ]) and G−1(G(y) + {0} × [− 1

ε ,
1
ε ]) are some

subsets of R × [−K,K] and are graphs of some C1 maps v−, v+ whose domains
contain [α− 1, α+ 1]. We can even extend these functions to R by asking that v−
(resp. v+) is the graph of G−1(V(G(y))) (resp. G(V(G−1(y)))).
Because E is G-ordered, we have

G−1({z ∈ E, π(z) ≤ π ◦G(y)}) = {z ∈ E;π(z) ≤ α} .

Hence {z ∈ E;π(z) < α} is in the connected component of R2\G−1(V(G(y))) that
is under v−. Using some similar arguments, we finally obtain

∀t ∈ (−∞, α) ∩ π(E), v+(t) < ψ(t) < v−(t)
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and
∀t ∈ (α,+∞) ∩ π(E), v−(t) < ψ(t) < v+(t).

Using the invariance by integer translation of E (i.e. E + (1, 0) = E) and the fact
that the graphs of v− and v+ restricted to [α−1, α+1] are contained in R×[−K,K],
we deduce that E ⊂ R× [−K,K].

We will now add a condition to define U . Let L > 1
ε be a real number such that

∀x ∈ F−1(R× [−K − 1

ε
,K +

1

ε
]) ∪ (R× [−K − 1

ε
,K +

1

ε
])

we have,

max{
∣∣∣∣∂f2

∂r
(x)

∣∣∣∣ , ∣∣∣∣∂f1

∂θ
(x)

∣∣∣∣} < L.

Then we ask that every lift G of an element g = (g1, g2) of U (in addition to the
other conditions we gave before that) satisfies

• ∀x ∈ G−1(R× [−K − 1
ε ,K + 1

ε ]) ∪ (R× [−K − 1
ε ,K + 1

ε ])

max

{∣∣∣∣∂g2

∂r
(x)

∣∣∣∣ , ∣∣∣∣∂g1

∂θ
(x)

∣∣∣∣} < L;

• and

∀x ∈ G−1(R× [−K − 1

ε
,K +

1

ε
]) ∪ (R× [−K − 1

ε
,K +

1

ε
]),
∂g1

∂r
(x) > ε.

Let us now consider y = (α,ψ(α)) ∈ E. Repeating the same argument than
before, we know that

∀t ∈ π(E),min{v−(t), v+(t)} ≤ ψ(t) ≤ max{v−(t), v+(t)}.

Note that v′−(t) = −∂g1∂θ (t, v−(t))
(
∂g1
∂r (t, v−(t))

)−1

and then for every t ∈ [α −
1, α+ 1], |v′−(t)| < L

ε .

Moreover, we have v′+(t) = ∂g2
∂r (G−1(t, v+(t)))

(
∂g1
∂r (G−1(t, v+(t)))

)−1

and then for

every t ∈ [α− 1, α+ 1], |v′+(t)| < L
ε .

We introduce the notation C = L
ε . We have then: ∀t ∈ [α−1, α+1], |ψ(t)−ψ(α)| ≤

max{|v−(t)− ψ(α)|, |v+(t)− ψ(α)|} ≤ C|t− α|.
This implies that ψ is C-Lipschitz.

3.3. Aubry-Mather sets.

Definition 3.25. Let F be a lift of a conservative twist map f . An Aubry Mather
set for F is a closed F -ordered set.
The Aubry-Mather set is minimizing if every orbit contained in it is minimizing.

We noticed that any F -ordered set has a rotation number.

Notation 3.26. If E is an Aubry-Mather set, we denote by ρ(E) its rotation
number. The Aubry-Mather set E is said to be rational (resp. irrational) if ρ(E)
is rational (resp. irrational).

Proposition 3.27. Let E be an Aubry-Mather set. For every ε > 0, there exists a
neighborhood U of E that is invariant by the integer translations (θ, r) 7→ (θ+ k, r)
for k ∈ Z and such that every Aubry-Mather set E that meets U satisfies: |ρ(E)−
ρ(E)| < ε.
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Proof We deduce from Proposition 3.24 that E is contained in some strip K =
R× [−K,K]. On such a strip, every DF k is uniformly bounded.

Let E be an Aubry-Mather set that meets the same strip K. Let (θk, rk) be an
orbit in E and (αk, βk) be an orbit in E . We deduce from proposition 3.23 that for
every k ∈ Z, we have:

|θk − θ0 + kρ(E)| ≤ 1 and |αk − α0 − kρ(E)| ≤ 1.

We deduce

|ρ(E)− ρ(E)| ≤ 2

k
+
|θk − αk|

k
+
|θ0 − α0|

k
.

Fixing k > 4
ε large enough, we choose a neighborhood U of E that is invariant by the

integer translations (θ, r) 7→ (θ+k, r) for k ∈ Z and such that for every y = (α, β) ∈
U , there exists x = (θ, r) ∈ E that satisfies |θ − α| < ε

4 and ‖F k(x)− F k(y)‖ < ε
4 .

Then for every Aubry-Mather set E that meets U , we have |ρ(E)− ρ(E)| < ε.

Proposition 3.28. Let F be a lift of a conservative twist map f . Then for every
α ∈ R, there exists at least one minimizing Aubry-Mather set with rotation number
α.

Proof If α = p
q ∈ Q is rational, we have proved in Proposition 3.14 the existence

of a (q, p)-minimizer (θk). Then the corresponding F -orbit (θk, rk) is minimizing
and we deduce from Corollary 3.13 that E = {(θk, rk)} + Z × {0} is a minimizing
Aubry-Mather set with rotation number p

q .

If α ∈ R\Q is irrational, we consider a sequence (pnqn ) of rational numbers that

converge to α and for every n a (qn, pn)-minimizing orbit (θnk , r
n
k )k∈Z. As θnqn =

θn0 + pn, there exists kn ∈ [0, pn − 1] such that θnkn+1 − θnkn ∈ [0, pnqn ]. Replacing

(θnk , r
n
k )k∈Z by (αnk , β

n
k ) = (θnk+kn

− [θnkn ], rnk )k∈Z that is also a (qn, pn)-minimizer,
we obtain a sequence of minimizers so that:

• αn0 ∈ [0, 1];
• (αn1 − αn0 )n∈N is bounded and then (αn0 , β

n
0 )n∈N is also bounded;

• the rotation number of the (qn, pn)-minimizer (αnk , β
n
k )k∈Z is pn

qn
.

We then extract a subsequence so that (αn0 , β
n
0 )n∈N converges to some (θ, r). Then

the orbit of (θ, r) is also minimizing. If E = Closure
(
{F k(θ, r) + (j, 0); k, j ∈ Z}

)
,

then we deduce from Proposition 3.20 that E is F ordered and then E is a mini-
mizing Aubry-Mather set. We deduce from Proposition 3.27 that ρ(E) = α.

3.4. Further results on Aubry-Mather sets. In [15], it is proved that the
closure of the union of the Z × {0}-translated sets of every minimizing orbit is an
Aubry-Mather set (hence every minimizing orbit has a rotation number).

In [10], more precise results concerning the minimizing Aubry-Mather sets are
proved. Let us explain them.

We denote the set of points (θ, r) ∈ R2 having a minimizing orbit byM(F ). Then
it is closed and p(M(F )) ⊂ A is closed too. The rotation number ρ : M(F ) → R
is continuous and for every α ∈ R, the set

Mα(F ) = {x ∈M(F ), ρ(x) = α}

is non-empty.
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If α is irrational, then Kα = p(Mα(F )) ⊂ A is the graph of a Lipschitz map
above a compact subset of T. Moreover, there exists a bi-Lipschitz orientation
preserving homeomorphims h : T→ T such that

∀x ∈ Kα, h(π(x)) = π(f(x)).

Hence Kα is:

- either not contained in an invariant loop and then is the union of a Cantor
set Cα on which the dynamics is minimal and some homoclinic orbits to
Cα;

- or is an invariant loop. In this case the dynamics restricted to Kα can be
minimal or Denjoy.

If α = p
q is rational, then Mα(F ) is the disjoint union of 3 invariant sets:

• Mper
α (F ) = {x ∈Mα(F ), π ◦ F q(x) = π(x) + p};

• M+
α (F ) = {x ∈Mα(F ), π ◦ F q(x) > π(x) + p};

• M−α (F ) = {x ∈Mα(F ), π ◦ F q(x) < π(x) + p}.
The two sets K+

α = p(Mper
α (F )∪M+

α (F )) and K−α = p(Mper
α (F )∪M−α (F )) are then

invariant Lipschitz graphs above a compact part of T. The points of p(M+
α (F ) ∪

M−α (F )) are heteroclinic orbits to some periodic points contained in p(Mper
α (F )).

4. Ergodic theory for minimizing measures

4.1. Green bundles. We fix a lift F of a conservative twist map. As beforeM(F )
is the set of points whose orbit is minimizing. We use some new notations.

Notations 4.1. • V (x) = TxV(x) = {0} × R ⊂ TxR2, and for k 6= 0, we
have

Gk(x) = Dfk(f−kx)V (f−kx) ;

• the slope of Gk (when defined) is denoted by sk:

Gk(x) = {(δθ, sk(x)δθ); δθ ∈ R} ;

• if γ is a real Lipschitz function defined on T or R, then

γ′+(x) = lim sup
y,z→x,y 6=z

γ(y)− γ(z)

y − z
and γ′−(t) = lim inf

y,z→x,y 6=z

γ(y)− γ(z)

y − z
.

We introduce now a set, called Green(f). We will see very soon that we can define
two natural invariant sub bundles in tangent lines at every point of Green(f), that
will be very useful in our further study. An important result (see Corollary 4.7) is
that all the minimizing Aubry-Mather sets are contained in Green(f).

Notation 4.2. We denote by Green(f) the set of the points of A such that along
the whole orbit of these points, we have

∀n ≥ 1, s−n(x) < s−n−1(x) < sn+1(x) < sn(x).

Definition 4.3. If x ∈ Green(f), the two Green bundles at x are G+(x), G−(x) ⊂
Tx(R2) with slopes s−, s+ where s+(x) = lim

n→+∞
sn(x) and s−(x) = lim

n→+∞
s−n(x).

The two Green bundles satisfy the following properties

Proposition 4.4. Let f be a conservative twist map.

• Then the two Green bundles defined on Green(f) are invariant under Df :
Df(G±) = G± ◦ f ;
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• we have s+ ≥ s−;
• the map s− : Green(f)→ R is lower semi-continuous and the map
s+ : Green(f)→ R is upper semi-continuous;
• hence {G− = G+} is a Gδ subset of Green(f) and s− = s+ is continuous

at every point of this set.

Exercise 4.5. Prove Proposition 4.4.

Theorem 7. Let f : A → A be a conservative twist map and let (xn)n∈Z be the
orbit of a point x = x0. The following assertions are equivalent:

(0) x ∈ Green(f);
(1) the projection of every finite segment of the orbit of x is locally minimiz-

ing among the segments of points (of R) that have same length and same
endpoints;

(2) along the orbit of x, we have for every k ≥ 1, sk > s−1;
(3) along the orbit of x, we have for every k ≥ 1, s−k < s1;
(4) there exists a field of half-lines δ+ ⊂ TA along the orbit of x such that:

• δ+ is invariant by Df : Df(δ+) = δ+ ◦ f ;
• Dπ ◦ δ+ = R+ (δ+ is oriented to the right).

Remarks 4.6. (1) Observe that in the point (4), you cannot replace ‘field of
half-lines’ by ‘field of lines’. Indeed, along the orbit of every point that is
not periodic you can find an invariant field of lines that is transverse to the
vertical.

(2) in fact, in the proof, we will see that if we denote by d+ the slope of δ+, we
necessarily have s− ≤ d+ ≤ s+.

We postpone the proof of Theorem 7 to subsection 5.3.

Corollary 4.7. Let f be a conservative twist map. Then

• every accumulation point of an Aubry-Mather set is in Green(f);
• every minimizing orbit is in Green(f).

Proof • Assume that x is an accumulation point of an invariant Aubry-Mather
set E. We look at the action of DF on the half-lines R+v that are in the tangent
space to R2 along the orbit of x. As E is the graph of a Lipschitz map γ : F → R
and x is an accumulation point of E, we have for every k ∈ Z:

γ′+(π(F kx)) = lim sup
y,z→π(Fkx),y,z∈E,y 6=z

γ(y)− γ(z)

y − z
.

This bundle Γ+ = R+(1, γ′+) in half-lines is transverse to the vertical bundle and
invariant by DF . We use the characterization (4) of Theorem 7 to conclude.
• The second point of the corollary is a direct consequence of the characterization
(1) of Green(f).

An interesting consequence of the characterization (1) of Green(f) is

Corollary 4.8. The set Green(f) is closed.

When x is a generic point in the support of some hyperbolic measure, G− is the
stable bundle and G+ is the unstable one:



24 M.-C. ARNAUD

Proposition 4.9. (Dynamical criterion) Assume that x ∈ Green(F ) has its
orbit contained in some strip R× [−K,K] (for example x ∈M(F ) or x is in some
Aubry-Mather set) and that v ∈ TxA. Then

• if lim inf
n→+∞

|D(π ◦ Fn)(x)v| < +∞, then v ∈ G−(x);

• if lim inf
n→+∞

|D(π ◦ F−n)(x)v| < +∞, then v ∈ G+(x).

Proof We use a symplectic change of linear coordinates along the orbit of x in
such a way that the horizontal subspace is now G− and the vertical subspace doesn’t
change.

As the orbit of x is contained in some strip R× [−K,K], the slopes s−1 and s1

of G−1 = DF−1(V ◦ F ) and G1 = DF (V ◦ F−1) are uniformly bounded along the
orbit of x. Hence s− ∈ [s−1, s1] is also uniformly bounded and so the changes of

basis P =

(
1 0
s− 1

)
as P−1 =

(
1 0
−s− 1

)
are also uniformly bounded. Then the

matrix of DFn(x) in this new basis is(
bn(x)(s−(x)− s−n(x)) bn(x)

0 (sn(Fnx)− s−(Fnx))bn(x)

)
We know that the determinant is 1 = (bn(x))2(s−(x)−s−n(x))(sn(Fnx)−s−(Fnx)),
that |sn(Fnx)− s−(Fnx)| ≤ (s1(Fnx)− s−1(Fnx)) is uniformly bounded and that

lim
n→+∞

(s−(x)− s−n(x)) = 0; hence lim
n→+∞

|bn(x)| = +∞.

Let now v be a vector in TxA. We denote by (v1, v2) its coordinates in the new
base we defined just before. Then we have: |D(π ◦ Fn)(x)v| = |bn(x)|.|(s−(x) −
s−n(x))v1 + v2|. As lim

n→+∞
(s−(x)− s−n(x)) = 0 and lim

n→+∞
|bn(x)| = +∞, we de-

duce that if v2 6= 0 (i.e. if v /∈ G−(x)), then lim
n→+∞

|D(π ◦ Fn)(x)v| = +∞.

Exercise 4.10. Let k ∈ [1,∞]. Let us admit that there exists a dense Gδ subset
G of the set of the Ck conservative twist maps such that for every f ∈ G, for every
periodic point x for f , if we denote by N the period of x, then we have:

• the eigenvalues of DfN (x) are distinct;
• every heteroclinic intersection of two hyperbolic periodic orbits is trans-

verse.

Prove that every f ∈ G has no rational invariant graph.
Hint: using the invariance of the Green bundle G−, prove that every periodic point
contained in such a rational invariant graph has to be hyperbolic.

4.2. Lyapunov exponents and Green bundles. We have noticed that if a mea-
sure µ with support contained in Green(f) ∩ (R× [−K,K]) is hyperbolic, then we
have µ-almost everywhere: Es = G− and Eu = G+. In this case, we have G− 6= G+

µ-almost everywhere.
We will prove the reverse implication.

Theorem 8. (M.-C. Arnaud) Let f be a conservative twist map and let µ be
a measure that is ergodic for f , with compact support and such that suppµ ⊂
Green(f). Then d = dim(G− ∩G+) is constant µ-almost everywhere and

• if d = 0, the measure µ is hyperbolic with Lyapunov exponents −λ(µ) <

λ(µ) given by: λ(µ) = 1
2

∫
log
(
s+−s−1

s−−s−1

)
dµ = 1

2

∫
log
(

1 + s+−s−
s−−s−1

)
dµ;
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• if d = 1, the Lyapunov exponents of µ are zero.

Remark 4.11. Observe that the first part of Theorem 8 says to us that the more
distant the Green bundles are, the greater the positive Lyapunov exponent is.
A general result for hyperbolic measures of smooth dynamics is that when the stable
and unstable bundles are close together, the Lyapunov exponents are close to zero
(see for example [5]).
The reverse result is not true in general and what we prove is then specific to the
case of the twist maps. Consider for example the Dirac measure at (0, 0) that is

invariant by the linear map of R2 with matrix

(
eε 0
0 e−ε

)
. Then the unstable and

stable bundles are R × {0} and {0} × R that are far from each other. But the
Lyapunov exponents ε, −ε, can be very close to 0.

Proof As the dynamics is symplectic, the sum of the Lyapunov exponents is∫
log(det(Df))dµ = 0, hence there are two Lyapunov exponents −λ(µ) ≤ λ(µ).

Either these two Lyapunov exponents are zero or the measure is hyperbolic.
We have noticed that when µ is hyperbolic, then G− = Es 6= G+ = Eu µ-almost
everywhere. Hence when d = 1, the Lyapunov exponents are zero. Assume now
that d = 0. Using a bounded change of basis along a generic point for µ as in
the proof of the dynamical criterion, we obtain that Df(x)|G−(x) is represented by
b1(x)(s−(x)−s−1(x)) and that Df(x)|G+(x) is represented by b1(x)(s+(x)−s−1(x)).
Hence if v± is a base of G±, we have:

λ(v±) = lim
n→+∞

1

n
log (‖Dfn(x)v±‖)

= lim
n→+∞

1

n

n−1∑
j=0

log
(
b1(f jx)(s±(f jx)− s−1(f jx))

)
and then by Birkhoff ergodic theorem

λ(v+)−λ(v−) = lim
n→+∞

1

n

n−1∑
j=0

log

(
s+(f jx)− s−1(f jx)

s−(f jx)− s−1(f jx)

)
=

∫
log

(
s+ − s−1

s− − s−1

)
dµ.

As s+ > s− µ-almost everywhere, we have then λ(v+) > λ(v−). Hence we are in the
case of an hyperbolic measure. Then G+ = Eu and G− = Es and λ(v+) = λ(µ),

λ(v−) = −λ(µ) and thus 2λ(µ) =
∫

log
(
s+−s−1

s−−s−1

)
dµ.

We have seen in subsection 2.3 that the Lyapunov exponents of the measures
that are on the irrational invariant curves are zero. But Patrice Le Calvez proved
that for general conservative twist maps, many Aubry-Mather sets are (uniformly)
hyperbolic, and then are not curves.

Proposition 4.12. (P. Le Calvez, [24]) Let k ∈ [1,∞]. There exists a dense Gδ
subset Gk of the set of the Ck conservative twist maps such that for any f ∈ Gk, there
exists an open and dense subset U(f) ⊂ R such that the minimizing Aubry-Mather
sets having their rotation number in U(f) are uniformly hyperbolic.

It may even happen that all the minimizing Aubry-Mather sets are hyperbolic
(see [16]).
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Proposition 4.13. (D. L. Goroff) For |λ| >
√

1+π2

π , the union of the minimizing
Aubry-Mather sets for the standard map fλ is uniformly hyperbolic.

Proof We assume that |λ| >
√

1+π2

π .
The standard map with parameter λ is defined by fλ(θ, r) = (θ+ r+ λ sin 2πθ, r+
λ sin 2πθ) and has the generating function Sλ(θ,Θ) = 1

2 (Θ− θ)2 − λ
2π cos 2πθ.

Let E be a minimizing Aubry-Mather set for fλ. Observe that Fλ(θ, r + 1) =
Fλ(θ, r)+(1, 1). Hence we can assume that the rotation number of E is in (−1,+1).
Then by the inequalities that we recalled in subsection 2.2 for circle homeomor-
phisms, we have for every orbit (θn, rn) in E: θn − θn+1 ∈ (−1, 1) and θn − θn−1 ∈
(−1, 1) have opposite signs.

As 0 = ∂Sλ
∂θ (θn, θn+1) + ∂Sλ

∂Θ (θn−1, θn) = θn − θn−1 + λ sin 2πθn + θn − θn−1,

we deduce that λ sin 2πθn ∈ (−1, 1) i.e. | sin 2πθn| < 1
|λ| . This implies that

| cos 2πθn| >
√

1− 1
λ2 .

Moreover, as the orbit is minimizing, we have

0 ≤ ∂2Sλ
∂θ2

(θn, θn+1) +
∂2Sλ
∂Θ2

(θn−1, θn) = 2 + 2πλ cos 2πθn

and then 2 ≥ −2πλ cos 2πθn. As 2π|λ|| cos 2πθn| ≥ 2π|λ|
√

1− 1
λ2 = 2π

√
λ2 − 1 >

2π
π = 2, we have 2πλ cos 2πθn > 0 and then 2πλ cos 2πθn > 2.

We can now compute Df(θ, r) =

(
1 + 2πλ cos 2πθ 1

2πλ cos 2πθ 1

)
. Observe that 1 +

2πλ cos 2πθn > 3 and 2πλ cos 2πθn > 2. Hence if C = {(v1, v2) ∈ R2; v1.v2 ≥ 0},
we have Df(C) ⊂ C and ∀v ∈ C, ‖Df(v)‖ ≥

√
2‖v‖ along the orbit (θn, rn).

We have too (Df(θ, r))−1 =

(
1 −2πλ cos 2πθ
−1 1 + 2πλ cos 2πθ

)
. Hence if C ′ = {(v1, v2) ∈

R2; v1.v2 ≤ 0}, we have along the orbit (θn, rn): Df−1(C ′) ⊂ C ′ and ∀v ∈
C ′, ‖Df−1(v)‖ ≥

√
2‖v‖.

This implies the wanted result.

A. Katok proved that the union of the hyperbolic Aubry-Mather sets has zero
Lebesgue measure (see [20]). This can be compared to K.A.M. theory that gives in
general a union of invariant circles with positive Lebesgue measure.

Theorem 8 can be more precise in the case of uniform hyperbolicity.

Proposition 4.14. (M.-C. Arnaud) Let M be a compact invariant set by a con-
servative twist map that is contained in Green(f). Then E is uniformly hyperbolic if
and only if at every point of M , the two Green bundles G− and G+ are transverse.

We postpone the proof of Proposition 4.14 to subsection 5.4. We don’t know if
there exist examples of Aubry-Mather sets that are non-uniformly hyperbolic.

Question 4.15. Does there exist a conservative twist map that has a non-uniformly
hyperbolic Aubry-Mather set?

4.3. Lyapunov exponents and shape of the Aubry-Mather sets. In the pre-
vious subsection, we compared the size of the Lyapunov exponents for the ergodic
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measures with support in Green(f) with the distance between the two Green bun-
dles. We ask now if we can see a link between the shape of the support of such a
measure and the Lyapunov exponents.

Definition 4.16. Let M ⊂ A be a subset of A and x ∈ M a point of M . The
paratangent cone to M at x is the cone of TxA denoted by PM (x) whose elements
are the limits

v = lim
n→∞

xn − yn
τn

where (xn) and (yn) are sequences of elements of M converging to x, (τn) is a
sequence of elements of R∗+ converging to 0, and xn− yn ∈ R2, refers to the unique

lift of this element of A that belongs to [− 1
2 ,

1
2 [2.

Here we draw the paratangent cone to a curve at a corner:

We will say that M is C1-regular at x if there exists a line D of TxA such that
PM (x) ⊂ D.
If M is not C1-regular at x, we say that M is C1-irregular at x.

Remark 4.17. Observe that the graph of a Lipschitz map γ is C1-regular if and
only if γ is C1.

Notation 4.18. We denote the set of the slopes of the elements of PM (x) by
pM (x).

Theorem 9. (M.-C. Arnaud) Let µ be an ergodic measure for a conservative
twist map with support in some irrational Aubry-Mather set. Then

• either the Lyapunov exponents of µ are zero and suppµ is C1-regular µ-
almost everywhere;
• or µ is hyperbolic and suppµ is C1-irregular µ-almost everywhere.

Corollary 4.19. If the support of an ergodic measure has an irrational rotation
number and is contained in some (non necessarily invariant) C1 curve, then its
Lyapunov exponents are zero.

Proof Let M be an irrational Aubry-Mather set and let µ be the unique ergodic
measure with support in M . Looking at the proof of Corollary 4.7 (see also Remark
4.6), we deduce easily that for µ-almost every point x ∈ suppµ, we have

s−(x) ≤ pM (x) ≤ s+(x).
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Assume that the Lyapunov exponents of µ are zero. Then, by theorem 8, we have
µ-almost everywhere G− = G+ i.e. s− = s+ and then PM (x) is contained in a line.
This exactly means that supp(µ) is C1-regular µ-almost everywhere.

Now we assume that the Lyapunov exponents of µ are non zero: −λ(µ) < λ(µ).
The set where supp(µ) is C1-regular is measurable and invariant by f . Hence either
µ is C1-regular µ-almost everywhere or µ is C1-irregular µ-almost everywhere.
Assume that µ is C1-regular µ-almost everywhere.

We will prove the following result (we use for h′± the notations 4.1) in subsection
5.5.

Proposition 4.20. (M.-C. Arnaud) Let h : T→ T be a bi-Lipschitz orientation
preserving homeomorphism with irrational rotation number. We denote by µ its
unique invariant measure and assume that h is C1-regular µ-almost everywhere.
Then uniformly in θ ∈ T, we have

lim
n→+∞

1

n
log (hn)

′
+ = lim

n→+∞

1

n
log (hn)

′
− = 0.

Let us explain how we deduce the wanted result. As M is an Aubry-Mather set, it
is the graph of a Lipschitz map γ : π(M)→ R. We consider the projected-restricted
dynamics to M , which is h : π(M)→ π(M) that is defined by h(θ) = π ◦f(θ, γ(θ)).
We denote again by µ the projected measure π∗µ of µ, that is the unique invariant
measure by h. We extend h linearly in its gaps in such a way we obtain a bi-
Lipschitz homeomorphism h of T. Because µ is C1-regular µ-almost everywhere, h
is also C1-regular µ-almost everywhere and we deduce from Proposition 4.20 that
uniformly in θ ∈ T, we have

lim
n→+∞

1

n
log (hn)

′
+ = lim

n→+∞

1

n
log (hn)

′
− = 0.

Observe that Dfn(θ, γ(θ)).(1, γ′+(θ)) = log
(
(hn)′+(θ)

)
(1, γ′+(hnθ)). We deduce

that the Lyapunov exponent associated to the vector (1, γ′+(θ)) is zero, which is
impossible if the measure is hyperbolic.

Theorem 10. Let M be an irrational Aubry-Mather set of a conservative twist
map f of A. Then M is uniformly hyperbolic if and only if at every x ∈ M , M is
C1-irregular.

Proof As s− ≤ pM ≤ s+, if M is C1-irregular everywhere, then G− 6= G+ at
every point of M and by Proposition 4.14, M is uniformly hyperbolic.

Assume now that M is uniformly hyperbolic. At first, let us notice that such a
M cannot be a curve because of Theorem 2.

Hence M is a Cantor and the dynamics on M is Lipschitz conjugate to the one
of a Denjoy counter-example on its minimal invariant set. Then we consider two
points x 6= y of M such that there exists an open interval I ⊂ T whose ends are
π(x) and π(y) and which doesn’t meet π(M): I ∩ π(M) = ∅. We deduce from the
dynamics of the Denjoy counter-examples (see [18]) that:

• the positive and negative orbits of x and y under f are dense in M ;
• lim
n→+∞

d(fnx, fny) = lim
n→+∞

d(f−nx, f−ny) = 0.

As M is uniformly hyperbolic, we can define a local stable and unstable laminations
containing M , W s

loc and Wu
loc. Then for large enough n, fnx and fny belong to the
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same local stable leaf, and f−nx and f−ny belong to the same local unstable leaf.
Hence, because

lim
n→+∞

d(fnx, fny) = lim
n→+∞

d(f−nx, f−ny) = 0,

for large enough n, the vector joining fnx to fny (resp. f−nx to f−ny) is close the
stable bundle Es (resp. the unstable bundle Eu).

Let now z ∈ M be any point. Then there exist two sequences (in) and (jn) of
integers which tends to +∞ and are such that:

lim
n→+∞

f inx = lim
n→+∞

f iny = lim
n→+∞

f−jnx = lim
n→+∞

f−jny = z.

The direction of the “vector” joining f inx to f iny tends to Es(z) and the direction
of the vector joining f−jnx to f−jny tends to Eu(z). Hence: Eu(z)∪Es(z) ⊂ PM (z)
and M is C1-irregular at z.

When drawing irrational Aubry-Mather sets that are Cantor sets with the help
of a computer, we never observe some angles on these sets. That is why we raise
the question:

Question 4.21. Is it possible to draw (with a computer) some irrational Aubry-
Mather sets that have some “corners”?

Remark 4.22. There is a difficulty in ‘seing’ these corners. On the K.A.M. in-
variant graphs, the two Green bundles coincide. As s+ − s− is non-negative and
upper-semicontinuous, we deduce that close to the KAM curves, the paratangent
cones are very thin, and thus very hard to detect.

5. Complements

5.1. Proof of the equivalent definition of a conservative twist map. We
recall the statement.

Proposition. Let F : R2 → R2 be a C1 map. Then F is a lift of a conservative
twist map f : A→ A if and only if there exists a C2 function such that

• ∀θ,Θ ∈ R, S(θ + 1,Θ + 1) = S(θ,Θ);
• there exists ε > 0 so that for all θ,Θ ∈ R, we have

ε < − ∂2S

∂θ∂Θ
(θ,Θ) <

1

ε
;

• F (θ, r) = (Θ, R)⇐⇒ R = ∂S
∂Θ (θ,Θ) and r = −∂S∂θ (θ,Θ).

Proof (⇒) Assume that F : R2 → R2 is the lift of a conservative twist map f
such that ∀x ∈ A, 1

ε > D(π ◦ f)(x)(0, 1) > ε. Then for every θ ∈ R, the map

Fθ : R → R defined by Fθ(r) = π ◦ F (θ, r) satisfies 1
ε > F ′θ > ε. Hence every map

Fθ is a C1-diffeomorphism of R and G : R2 → R2 defined by G(θ,Θ) = (θ, F−1
θ (Θ))

is a C1 diffeomorphism.
We introduce the notation F (θ, r) = (Θ(θ, r), R(θ, r)). Note that G(θ,Θ(θ, r)) =

(θ, r) i.e. Fθ(r) = Θ(θ, r). As f is an exact symplectic twist map, we have: G∗(f∗λ−
λ) is exact.
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Hence there exists a function S : R2 → R such that DS(θ,Θ) = R ◦ G(θ,Θ)dΘ −
F−1
θ (Θ)dθ. This means exactly that

∂S

∂Θ
(θ,Θ) = R ◦G(θ,Θ) and − ∂S

∂θ
= F−1

θ (Θ);

and implies that S is C2. Thus we have proved the third point of Proposition 1.8.
Let us fix (θ, r) ∈ A. We denote by γ the loop of A defined by γ(t) = (θ + t, r)

and by Γ its lift Γ(t) = (θ + t, r). As f is exact symplectic, we have
∫
γ
f∗λ =

∫
γ
λ.

Let us use the notation F ◦ Γ(t) = (Θt, Rt). As f is isotopic to identity, we have
Θ1 = Θ0 + 1. Moreover:

0 =

∫
γ

(f∗λ− λ) =

∫
G◦γ

G∗(f∗λ− λ) =

∫
G◦γ

dS =

=

∫
(θ+t,Θt)

dS = S(θ + 1,Θ0 + 1)− S(θ,Θ0) ;

this gives the first point of Proposition 1.8.

From ∂S
∂θ (θ,Θ(θ, r)) = −r we deduce that ∂2S

∂Θ∂θ (θ,Θ(θ, r)).∂Θ
∂r (θ, r) = −1. As

1
ε >

∂Θ
∂r (θ, r) = D(π ◦ f)(x)(0, 1) > ε, we deduce the second point of Proposition

1.8.
(⇐) Assume that S satisfies the conclusions of Proposition 1.8. Because of the

second point, the maps ∂S
∂θ (θ, .) and ∂S

∂Θ (.,Θ) are C1-diffeomorphisms of R. Hence

the third point allows us to define a diffeomorphism F : R2 → R2.
From the first point we deduce that F (θ+ 1, r) = F (θ, r) + (1, 0) hence F is the lift
of a C1-diffeomorphism f : A→ A.

Let us prove that f is a conservative twist map. We use as before the notation
F (θ, r) = (Θ(θ, r), R(θ, r)).

From ∂S
∂θ (θ,Θ(θ, r)) = −r we deduce that ∂2S

∂Θ∂θ (θ,Θ(θ, r)).∂Θ
∂r (θ, r) = −1 and

then we have the twist condition ε < ∂Θ
∂r (θ, r) < 1

ε .

Because S(θ + 1,Θ + 1) = S(θ,Θ), we can define a C2-function s : A→ R such

that for any lift θ̃ ∈ R of θ, we have: s(θ, r) = S(θ̃,Θ(θ̃, r)). Then f∗λ − λ = ds
is exact. In particular, f preserves the orientation. As moreover F (θ + 1, r) =
F (θ, r) + (1, 0), we deduce that f is isotopic to identity. Finally, f is conservative.

5.2. Proof that every invariant continuous graph is minimizing. Let us
recall the result due to J. Mather.

Theorem. Assume that the graph of a continuous map ψ : T→ R is invariant by
a conservative twist map f . Then for any generating function associated to f , all
the orbits contained in the graph of ψ are minimizing.

Proof Let us introduce the constant c =
∫ 1

0
ψ(t)dt and let us define the Z-periodic

C1-function η by η(θ) =
∫ θ

0
ψ(t)dt− cθ. If S is a generating function of the lift F of

f such that ∂2S
∂θ∂Θ < −ε, then we define W (θ,Θ) = S(θ,Θ)+ c(θ−Θ)+η(θ)−η(Θ).

Observe that W (θ + 1,Θ + 1) = W (θ,Θ). Moreover, we have proved in Lemma
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3.15 that:

lim
|Θ−θ|→+∞

S(θ,Θ)

|Θ− θ|
= +∞.

Hence lim
|Θ−θ|→+∞

W (θ,Θ)

|Θ− θ|
= +∞ and hence W has a global minimimum µ. The

minimizers of W being critical points, let us look after the critical points of W . We
have

∂W

∂θ
(θ,Θ) =

∂S

∂θ
(θ,Θ) + c+ η′(θ) =

∂S

∂θ
(θ,Θ) + ψ(θ);

∂W

∂Θ
(θ,Θ) =

∂S

∂Θ
(θ,Θ)− c− η′(Θ) =

∂S

∂θ
(θ,Θ)− ψ(Θ).

Hence (θ,Θ) is a critical point if and only Θ = π◦F (θ, ψ(θ)). The set of the critical
points of W is then a 1-dimensional connected submanifold of R2 that corresponds
to the graph of ψ. We deduce that the minimum µ of W is attained exactly on this
set.

Let now (θk, rk)k∈Z be the orbit of a point (θ, ψ(θ)) that is on the invariant graph
of ψ. Assume that (αn)`≤n≤k is a sequence of real numbers so that α` = θ` and
αk = θk. Then

(k − `+ 1)µ =

k∑
n=`+1

W (θn−1, θn)

=

k∑
n=`+1

(S(θn−1, θn) + c(θn − θn−1) + η(θn−1)− η(θn))

is less or equal than

k∑
n=`+1

W (αn−1, αn) =

k∑
n=`+1

(S(αn−1, αn) + c(αn − αn−1) + η(αn−1)− η(αn));

i.e. (
k∑

n=`+1

S(θn−1, θn)

)
+ c(θk − θ`) + η(θ`)− η(θk) ≤

≤

(
k∑

n=`+1

S(αn−1, αn)

)
+ c(αk − α`) + η(α`)− η(αk).

As α` = θ` and θk = αk, we obtain

k∑
n=`+1

S(θn−1, θn) ≤
k∑

n=`+1

S(αn−1, αn) i.e. the

orbit of (θ, ψ(θ)) is minimizing.

5.3. Proof of the equivalence of different definitions of Green(f). The result
that we will prove is

Theorem. Let f : A→ A be a conservative twist map and let (xn)n∈Z be the orbit
of a point x = x0. The following assertions are equivalent:

(0) x ∈ Green(f);
(1) the projection of every finite segment of the orbit of x is locally minimiz-

ing among the segments of points (of R) that have same length and same
endpoints;
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(2) along the orbit of x, we have for every k ≥ 1, sk > s−1;
(3) along the orbit of x, we have for every k ≥ 1, s−k < s1;
(4) there exists a field of half-lines δ+ ⊂ TA along the orbit of x such that:

• δ+ is invariant by Df : Df(δ+) = δ+ ◦ f ;
• Dπ ◦ δ+ = R+ (δ+ is oriented to the right).

We will use the following notations.

Notations 5.1. • F being a lift of f , we note:

DF k(y) =

(
ak(y) bk(y)
ck(y) dk(y)

)
;

• an infinitesimal orbit along (xn) is

(δθn, δrn) = (Dfn(x)(δθ, δr))n∈Z;

• a Jacobi field is then the projection (δθn)n∈N of an infinitesimal orbit;
• if xk = (θk, rk), we use the notation

βk =
∂2S

∂θ∂Θ
(θk, θk+1), αk =

∂2S

∂θ2
(θk, θk+1) +

∂2S

∂Θ2
(θk−1, θk).

Remark 5.2. A Jacobi field with two successive zeroes is the zero field.

Let us begin the proof of the theorem.

(1)=⇒(2) We deduce from the definition of the generating functions that

Df(xk) =

(
− 1
βk

∂2S
∂θ2 (θk, θk+1) − 1

βk

βk − 1
βk

∂2S
∂θ2 (θk, θk+1) ∂

2S
∂Θ2 (θk, θk+1) − 1

βk
∂2S
∂Θ2 (θk, θk+1)

)
.

Observe too that (δθk) is a Jacobi field if and only if for every k, we have

(∗)βk−1δθk−1 + αkδθk + βkδθk+1 = 0.

As we assume that the orbit is locally minimizing, every matrix Hn,m is positive
semi-definite if:

Hn,m =


αn+1 βn+1 0 . . . 0
βn+1 αn+2 βn+2 . . . 0

0 βn+2 αn+3 . . . 0
. . . . . . 0
0 . . . 0 αm−2 βm−2

0 . . . 0 βm−2 αm−1


Lemma 5.3. Every matrix Hn,m is positive defnite.

Proof Let us assume that (δθk)k∈[n+1,m−1] is in the kernel of Hn,m. Using (∗)
and the fact that βk 6= 0 (that is the twist condition), we extend (δθk) in a Jacobi
field such that δθn = δθm = 0.
Then, δQ = (0, 0, δθn+1, δθn+2, . . . , δθm−2, δθm−1, 0, 0) is in the isotropic cone of
Hn−2,m+2, and then in its kernel because the matrix is positive semi-definite. Hence
we have a Jacobi field with two successive zeroes, it is the zero field.

Lemma 5.4. If k ≥ 1, we have along the orbit of x: sk > s−1.
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Proof Let (∆j)j∈[n−k+1,n] be the image by the matrix Hn−k,n+1 of the Jacobi
field (δθj)j∈[n−k+1,n] that corresponds to an infinitesimal orbit (δxj)j∈[n−k+1,n] of
a vector δxn−k ∈ V (xn−k). Then we have

• ∆n−k+1 = 0 because δθn−k = 0;
• for every j ∈ [n− k + 2, n− 2], we have ∆j = 0 because we have a Jacobi

field;

• as δxn =

(
δθn

sk(xn)δθn

)
, we have

∆n = βn−1δθn−1 + αnδθn = −βnδθn+1 = −βnD(π ◦ F )

(
δθn

sk(xn)δθn

)
and then

∆n = −βn(β−1
n (

∂2S

∂θ2
(θnθn+1) + sk(xn)))δθn = (sk(xn)− s−1(xn))δθn.

Finally, we obtain Hn−k,n+1((δθj), (δθj)) = (sk(xn)− s−1(xn))δθ2
n > 0.

(2)=⇒(3)

Lemma 5.5. Assume that we have along the orbit of x and for all k ≥ 1: sk > s−1.
Then we have too along the orbit of x: sk > sk+1 > s−1.

Proof We have

Df(xn)

(
1

sk(xn)

)
=

(
−β−1

n (sk(xn)− s−1(xn))
βn − β−1

n s1(xn+1)(sk(xn)− s−1(xn))

)
hence sk+1(xn+1) = −β2

n(sk(xn)− s−1(xn))−1 + s1(xn+1)
i.e. (sk+1 − s−1)(xn+1) = (s1 − s−1)(xn+1)− β2

n(sk(xn)− s−1(xn))−1

and in particular
(s2 − s−1)(xn+1) = (s1 − s−1)(xn+1)− β2

n(s1(xn)− s−1(xn))−1

where −β2
n(s1(xn)− s−1(xn))−1 < 0. Hence s2 < s1.

Substracting what happens for sk from what happens for sk+1 we obtain:

(sk+1 − sk)(xn+1) = β2
n

(
(sk−1(xn)− s−1(xn))−1 − (sk(xn)− s−1(xn))−1

)
and by recurrence the fact that (sk) is strictly decreasing.

Lemma 5.6. If along the orbit of x we have sk > sk+1 > s−1 for every k, then we
have too for every k: s1 > s−k.

Proof We assume that k ≥ 2. We work on the projective space of R2 that is
nothing else than a circle. On this circle, the lines G−1, Gk+1, Gk, Gk−1 are
ordered in the direct sense. As Df1−k is symplectic, its projective action preserves
the orientation on the circle and then G−k, G2, G1 and V are oriented in the direct
sense. This means that s−k < s2 < s1.

(3)=⇒(0) Applying results that are analogous to Lemmata 5.5 and 5.6, we
deduce that if (3) is satisfied, then we have along the orbit of x for every k ≥ 1:
s−1 < sk+1 < sk and s−k < s−(k+1) < s1.

Lemma 5.7. Assume that we have s1 > s−k for every k along the orbit of x. Then
for every n, k ≥ 1, we have: s−k < sn.
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Proof We assume that k, n ≥ 2. As in the proof of Lemma 5.6, we work in the
projective space. We know that G−1, Gn+k, Gn+k−1 and Gk−1 are in the direct
sense. Hence their image by Df1−k that are G−k, Gn+1, Gn and V are in the direct
sense too, and then s−k < sn.

(0)=⇒(1) We fix a point along the orbit of x (that is denoted by x too) and
we go along its orbit until it becomes non strictly minimizing. The matrix H0,n is
then positive definite but the matrix H0,n+1 is not positive definite:

H0,n+1 =


α1 β1 0 . . . . 0
β1 α2 . . . . . 0
. . . . . . . . . 0
. . . . . . . . . βn−1

0 . . . . . . 0 βn−1 αn

 .

A vector (η1, . . . , ηn) is in the orthogonal subspace to Rn−1×{0} for H0,n+1 if and
only if we have α1η1 + β1η2 = 0 and for every j ∈ [2, n − 1]: βj−1ηj−1 + αjηj +
βjηj+1 = 0, i.e. if (ηj) is the projection of an orbit of V (x).

Hence if H0,n+1 is not positive definite, there exists η0, . . . , ηn that is the pro-
jection of the orbit of a point of V (x)\{0} such that:

0 ≥ ηn(βn−1ηn−1 + αnηn) = −βnηnηn+1.

Note that Df(xn) =

(
−bns−1 bn
∗ ∗

)
hence ηn+1 = D(π ◦ f)(xn)

(
ηn

sn(xn)ηn

)
=

bn(sn(xn)− s−1(xn))ηn = −β−1
n (sn(xn)− s−1(x− n))ηn. We obtain finally (sn −

s−1)(xn)η2
n ≤ 0. As x ∈ Green(f), we know that ηn 6= 0. We deduce that sn ≤ s−1,

a contradiction with the fact that x ∈ Green(f).
We deduce that all the matrices Hn,m are positive definite and then (1).

(4)=⇒(0) Now we work on the set of half-lines. We denote by V+ = R+ × {0}
the upper vertical and V− = −V+, δ− = −δ+. This set is a circle and V−, δ+, V+

and δ− are in the direct sense.
Because Df preserves the orientation, their images are in the direct sense too, i.e.
δ+, R+(1, s1), δ− and R+(−1,−s1) are in the direct sense too. This implies that δ+,
R+(1, s1), V+, δ−, R+(−1,−s1) and V− are in the direct sense. Taking the images
by Df , we find that δ+, R+(1, s2), R+(1, s1), δ−, R+(−1,−s1) and R+(−1,−s2)
are in the direct sense and so δ+ < s2 < s1. Iterating the method, we obtain:
δ+ < sn+1 < sn. Replacing f by f−1 we obtain too s−n < s−n−1 < δ+.

(0)=⇒(4) The idea is to use δ+ = R+(1, s+).

5.4. Proof of a criterion for uniform hyperbolicity. We want to prove Propo-
sition 4.14:

Proposition. (M.-C. Arnaud) Let M be a compact invariant set by a conser-
vative twist map that is contained in Green(f). Then M is uniformly hyperbolic if
and only if at every point of M , the two Green bundles G− and G+ are transverse.

We have noticed that when M is uniformly hyperbolic, we have G− = Es and
G+ = Eu on M . Hence G− and G+ are transverse at every point of M .

Now we assume that G− and G+ are transverse at every point of M .
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Definition 5.8. Let (Fk)k∈Z be a continuous cocycle on a linear normed bundle
P : E → K above a compact metric space K. We say that the cocycle is quasi-
hyperbolic if

∀v ∈ E, v 6= 0⇒ sup
k∈Z
‖Fkv‖ = +∞.

A consequence of the dynamical criterion (Proposition 4.9) is that if K ⊂
Green(f) is a compact invariant subset of Green(f) such that for every x ∈ K,
G+(x) and G−(x) are transverse, then (Dfk|K)k∈Z is a quasi-hyperbolic cocycle.

Hence, we only have to prove the following statement to deduce Proposition 4.14.

Theorem 11. Let (Fk) be a continuous, symplectic and quasi-hyperbolic cocycle
on a linear and symplectic (finite dimensional) bundle P : E → K above a compact
metric space K. Then (Fk)k∈Z is hyperbolic.

We will deduce Theorem 11 from two lemmata that we will now state and prove.
The ideas of the two lemmata and their proofs are similar to the ideas contained
in [25] in the setting of the so-called “quasi-Anosov diffeomorphisms”.

Lemma 5.9. Let (Fk)k∈Z be a continuous and quasi-hyperbolic cocycle on a linear
normed bundle P : E → K above a compact metric space K. Let us define

• Es = {v ∈ E; sup
k≥0
‖Fkv‖ <∞};

• Eu = {v ∈ E; sup
k≤0
‖Fkv‖ <∞}.

Then (Fn|Es)n≥0 and (F−n|Eu)n≥0 are uniformly contracting.

Lemma 5.10. Let (Fk)k∈Z be a continuous and quasi-hyperbolic cocycle on a linear
normed bundle P : E → K above a compact metric space K. We denote by fk :
K → K the underlying dynamics such that fk ◦ P = P ◦ Fk. If (xn) is a sequence
of points of K tending to x and (kn) a sequence of integers tending to +∞ such
that lim

n→∞
fkn(xn) = y ∈ K, then dimEu(y) ≥ codimEs(x).

Let us explain how to deduce Theorem 11 from these lemmata:

Proof of theorem 11: If the dimension of E is 2d, we only have to prove that:
∀x ∈ K, dimEu(x) = dimEs(x) = d. Let us prove for example that dimEu(x) = d.
By lemma 5.9, (Fn|Es)n≥0 and (F−n|Eu)n≥0 are uniformly contracting. As the
cocycle is symplectic, we deduce that every Es(x) and Eu(x) is isotropic for the
symplectic form and then dimEs(x) ≤ d and dimEu(x) ≤ d.
Let us now consider x ∈ K. As K is compact, we can find a sequence (kn)n∈N of
integers tending to +∞ such that the sequence (fkn(x))n∈N converges to a point
y ∈ K. Then, by Lemma 5.10, we have: dimEu(y) ≥ codimEs(x). But we know
that dimEu(y) ≤ d, hence 2d− dimEs(x) ≤ dimEu(y) ≤ d and dimEs(x) = d.

Let us now prove the two lemmata.
Proof of lemma 5.9: We will only prove the result for Es.

Let us assume that we know that:

(∗) ∀C > 1,∃NC ≥ 1,∀v ∈ Es,∀n ≥ NC , ‖Fnv‖ ≤
sup{‖Fkv‖; k ≥ 0}

C
.

We choose C > 1. Then sup{‖Fkv‖; k ≥ 0} = sup{‖Fkv‖; k ∈ |[0, NC ]|}. We define:
M = sup{‖Fk(x)‖;x ∈ K, k ∈ |[0, NC ]|}. Then, if j ∈ |[0, NC − 1]| and n ∈ N:

‖FnNc+jv‖ ≤
1

C
sup{‖F(n−1)NC+j+kv‖; k ≥ 0} ≤ 1

C2
sup{‖F(n−2)NC+j+kv‖; k ≥ 0}
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· · · ≤ 1

Cn
sup{‖Fj+kv‖; k ≥ 0} ≤ 1

Cn
sup{‖Fkv‖; k ≥ 0} ≤ M

Cn
‖v‖.

This proves exponential contraction.

Let us now prove (∗). If (∗) is not true, there exists C > 1, a sequence (kn) in
N tending to +∞ and vn ∈ Es with ‖vn‖ = 1 such that:

∀n ∈ N, ‖Fknvn‖ ≥
sup{‖Fkvn‖; k ≥ 0}

C
.

We define: wn =
Fkn (vn)
‖Fkn (vn)‖ . Taking a subsequence, we can assume that the sequence

(wn) converges to a limit w ∈ E. Then we have:

∀n ∈ N,∀k ∈ [−kn,+∞[, ‖Fkwn‖ =
‖Fk+kn(vn)‖
‖Fknvn‖

≤ sup{‖Fjvn‖; j ≥ 0}
‖Fknvn‖

≤ C.

Hence, ∀k ∈ Z, ‖Fkw‖ ≤ C. This is impossible because ‖w‖ = 1 and the cocycle is
quasi-hyperbolic.

Proof of lemma 5.10: With the notation of this lemma, we choose a linear
subspace V ⊂ Ex such that V is transverse to Es(x). We want to prove that
dimEu(y) ≥ dimV .
We choose Vn ⊂ Exn such that lim

n→∞
Vn = V . Extracting a subsequence, we have:

lim
n→∞

Fkn(Vn) = V ′ ⊂ Ey. Then we will prove that V ′ ⊂ Eu(y).

Let us assume that we have proved that there exists C > 0 such that

(∗) ∀n,∀0 ≤ k ≤ kn, ‖F−k|Fkn (Vn)‖ ≤ C.

Then, ∀w ∈ V ′,∀k ∈ Z−, ‖Fkw‖ ≤ C‖w‖ and w ∈ Eu(y).
Let us now assume that (∗) is not true. Replacing (kn) by a subsequence, we

find for all n ∈ N an integer in between 0 and kn such that ‖F−in|Fkn (Vn)‖ ≥ n.
We choose wn ∈ Fkn(Vn) such that ‖wn‖ = 1 and ‖F−in(wn)‖ = ‖F−in|Fkn (Vn)‖.
We may even assume that: ‖F−in(wn)‖ = sup{‖Fk(wn)‖;−kn ≤ k ≤ 0} ≥ n.

Then lim
n→+∞

in = +∞. If vn =
F−in (wn)
‖F−in (wn)‖ , we may extract a subsequence and

assume that: lim
n→∞

vn = v, with ‖v‖ = 1.

Then we have ∀k ∈ |[0, in]|, ‖Fkvn‖ ≤ ‖vn‖ for all k = 0, . . . , in, and therefore
‖Fkv‖ ≤ ‖v‖ for all k ∈ N and v ∈ Es.
Now, we have two cases:

• either (kn − in) doesn’t tend to +∞; we may extract a subsequence and
assume that lim

n→+∞
(kn − in) = N ≥ 0; then:

F−Nv = lim
n→∞

Fin−kn(vn) = lim
n→∞

F−kn(wn)

‖F−in(wn)‖
We have:

F−kn(wn)

‖F−in(wn)‖
∈ Vn

and then F−Nv ∈ V . Moreover, F−Nv ∈ F−NEs = Es. As ‖v‖ = 1 and V
is transverse to Esx, we obtain a contradiction.
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• or lim
n→∞

(kn − in) = +∞. In this case, for every k = −kn + in, . . . , in, we

have −kn ≤ k − in ≤ 0 and therefore ‖Fkvn‖ =
‖Fk−inwn‖
‖F−inwn‖

≤ 1 = ‖vn‖.
Hence, since vn → v, in → +∞, and −kn + in → −∞, when n→ +∞, we
obtain ‖Fkv‖ ≤ ‖v‖ = 1, for all k ∈ Z. This implies v ∈ Es ∩ Eu. This
contradicts ‖v‖ = 1 and the fact that the cocycle is quasi-hyperbolic.

5.5. Proof of Proposition 4.20. We will prove

Proposition. (M.-C. Arnaud) Let h : T → T be a bi-Lipschitz orientation
preserving homeomorphism with irrational rotation number. We denote by µ its
unique invariant measure and assume that h is C1-regular µ-almost everywhere.
Then uniformly in θ ∈ T, we have

lim
n→+∞

1

n
log (hn)

′
+ = lim

n→+∞

1

n
log (hn)

′
− = 0.

Proof A fundamental argument of the proof is a result proved by A. Furman in
[14] that is an improvement of Kingman subadditive theorem in the case of a unique
ergodic measure.

Theorem 12. (A. Furman) Let (X,µ) be a Borel probability space, T be a contin-
uous measure preserving transformation of (X,µ) such that µ is uniquely ergodic for
T and let (fn) ∈ L1(X,µ) be a T -sub-additive sequence of upper semi-continuous

functions. Let Λ((fk)) = lim
n→∞

1

n

∫
fndµ be the constant associated to f via the

sub-additive ergodic theorem. Then:

∀ε > 0,∃N ≥ 0,∀n ≥ N, ∀x ∈ X, 1

n
fn(x) ≤ Λ((fk)) + ε.

We apply Theorem 12 for (X,µ) = (T, µ), T = h (resp. T = h−1) and fn =
− log

(
(hn)′−

)
(resp. fn = − log

(
(h−n)′−

)
). Fixing ε > 0, we find N ≥ 0 such that

for every n ≥ N and every θ ∈ T, we have

− 1

n
log
(
(hn)′−(θ)

)
≤ Λ((fk)) + ε.

We denote by dθ the Lebesgue measure on T. Because of Jensen inequality for the
convex function − log, we have

− log

(∫ (
(hn)′−

)
dθ

)
≤ −

∫
log
(
(hn)′−

)
dθ.

Moreover, if H is a lift of h,∫ (
(hn)′−

)
dθ ≤

∫
(hn)

′
dθ = [Hn]

1
0 = 1.

We deduce

Λ((fk)) + ε ≥ − 1

n

∫
log (hn)

′
− dθ ≥ − log 1 = 0

and then Λ((fk)) ≥ 0.
Finally, we obtain in particular:

Λ
(
− log((hn)′−)

)
≥ 0
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and

Λ
(
− log((h−n)′−)

)
≥ 0 .

Observe that (h−n)
′
− (θ) = 1

(hn)′+(h−nθ)
hence∫

log
(
h−n

)′
− dµ = −

∫
log (hn)

′
+ dµ.

Because h is C1-regular µ-almost everywhere we have µ-almost everywhere

n−1∏
j=0

h′+(hjθ) =
n−1∏
j=0

h′−(hjθ) .

Because (hn)′− and (hn)′+ are between these two numbers, we deduce that we have
µ-almost everywhere (hn)′−(θ) = (hn)′+(θ) and then

1

n

∫
log
(
h−n

)′
− dµ = − 1

n

∫
log (hn)

′
− dµ

and

Λ
(
− log((hn)′−)

)
= −Λ

(
− log((h−n)′−)

)
= 0.

We deduce then from Theorem 12 that for every ε > 0, there exists N ≥ 0 such
that for every n ≥ N and every θ ∈ T, we have

− 1

n
log
(
(hn)′−(θ)

)
≤ ε and

1

n
log
(
(hn)′+θ)

)
= − 1

n
log
(
(hn)′−(hnθ)

)
≤ ε

then

−ε ≤ 1

n
log
(
(hn)′−(θ)

)
≤ 1

n
log
(
(hn)′+θ)

)
≤ ε.
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