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INTRODUCTION TO NON-UNIFORM AND PARTIAL
HYPERBOLICITY

RAFAEL POTRIE

ABSTRACT. These are notes for a minicourse given at Regional Norte UdelaR
in Salto, Uruguay for the conference “CIMPA Research School - Hamiltonian
and Langrangian Dynamics”. The purpose of the notes is to present the theory

of non-uniformly hyperbolic diffeomorphisms trying to concentrate in some
simplified contexts and explain some of the main techniques in the field. Some
of the topics include: Lyapunov exponents, Invariant manifolds (Pesin theory
and persistence properties) and dynamical consequences. The topics will help
introduce some concepts for the second part of the minicourse given by M.C.
Arnaud but will also cover some topics of independent interest.

1. INTRODUCTION

The dynamics of uniformly hyperbolic systems is by now quite well understood
in many aspects; for example: the spectral decomposition theorem allows one to
decompose the dynamics in basic pieces which admit a quite precise coding (via
Markov partitions) and the thermodynamical formalism provides information on
the ergodic properties of invariant measures which have relevant dynamical or geo-
metric meaning (see [Sh, KH], for example).

Of course, the understanding of uniformly hyperbolic systems is not complete,
but there are many reasons for considering weaker forms of hyperbolicity. An
important reason is that conservative dynamics are rarely uniformly hyperbolic'.

There are essentially two ways to weaken uniform hyperbolicity: one consists on
weakening the uniformity, by allowing to see hyperbolicity in almost every orbit
but so that to see the hyperbolicity one has to “wait” a different amount of time
depending on the point (this is called non-uniform hyperbolicity); the other consists
in retaining the uniformity, but weakening the hyperbolicity by allowing certain
bundles to be neutral yet “dominated” by the uniformly hyperbolic ones (this is
called partial hyperbolicity).

In this notes, we pretend to give a unified view of this two generalizations by
trying to study the dynamics from a local point of view, building charts around
each point and considering the dynamics of sequences of diffeomorphisms of an
Euclidean space. The main results we present have to do with the construction of
invariant manifolds and the point of view is to try first to explain the (easier) case of
periodic points and then try to convince the reader that the arguments go through

n the conservative setting, being uniformly hyperbolic is the same as being Anosov, and it is
well know that this imposes several strong restrictions on the topology of the manifold and isotopy
class of the diffeomorphism (see [KH]). Moreover, there are also some local obstructions (such as
possessing totally elliptic periodic points).
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in these more general settings albeit some heavier notation and some adjustments
on the statements.

This text has a strong subjective selection of topics and it is by no means a
survey of the subject. It is intended as a first introduction to these topics which
should be then complemented and deepened by the use of the standard references
such as [KH, Sh, HPS] or others. Even if the text lacks a complete presentation
of results, we have tried to provide at least a glimpse on further developments
and ramifications of the subject. This choice has been even more subjective and
depends heavily on the taste of the author.

1.1. Organization of the notes. In section 2 we give some preliminaries on er-
godic theory which are relevant to what follows; in particular we provide a sketch
of the proof of Oseledet’s theorem in dimension 2. In this section we start to show
the analogies between periodic orbits and ergodic measures.

In section 3 we show how one can pass the information on the tangent dynamics
back to the manifold. This is probably the most important section of the notes
and where the proof of the stable manifold theorem for periodic points is done in
quite some detail and then the study of Pesin’s charts and manifolds is explained.
In section 4 we give a glimpse on the classical theory of non-uniform hyperbolicity
and in section 5 we do the same with partial hyperbolicity and dominated splittings.

Finally, we end in section 6 presenting some applications of the previous result
and explaining a recent result joint with Sylvain Crovisier and Martin Sambarino
dealing with the geometry of partially hyperbolic attractors.

1.2. Acknowledgments. Thanks to E. Maderna and L. Rifford for the invitation
to give the mini-course and to M.C. Arnaud for accepting to share the course with
me. Discussions with S. Crovisier were important in the preparation of this notes
(as well as in learning the material) and I thank him also for sharing with me
some preliminary notes ([Crz]) he wrote about similar subjects. Thanks also to
A. Passeggi for discussions and comments on the writting and G. Contreras for
interesting input on the contributions of R. Mané. Finally, I wish to dedicate this
text to Ricardo Mané, I did not know him personally, but his work has been a true
inspiration for the whole mathematical community in Uruguay. The author was
partially supported by Grupo CSIC 618.

2. BASICS IN DIFFERENTIABLE ERGODIC THEORY

This section is devoted to present some basic results of ergodic theory which will
be needed in the rest of the text. We shall restrict to the specific context we are
interested in: M will denote a closed manifold and f : M — M a diffeomorphism
of M. We refer the reader to [My] or [KH, Chapters 4 and 5] for a more complete
account.

2.1. Invariant and ergodic measures. A probability measure pu in M will be
said to be f-invariant if for every measurable set A C M one has u(f~1(A)) = p(A).

We denote as M(f) the set of f-invariant probability measures. It is a standard
fact that it is a compact convex subset of the space of measures with the weak-x
topology.
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Exercise. Show that M(f) is non empty. (Hint: Consider the empirical mea-
SUTES [ln g = %Z?;Ol di(z) which are not invariant but as n grows, the defect of
invariance decreases to 0).

There is a special important class of invariant measures which are called ergodic.
A measure p is called ergodic if every f-invariant set A verifies that either u(A) =0
or u(A°) = 0. We denote by M.,4(f) the subset of M(f) consisting of ergodic

measures.

Exercise. Show that a f-invariant probability measure p is ergodic if and only if
for every f-invariant function ¢ one has that ¢ is constant p-a.e.

One has that M.,4(f) is precisely the set of extremal points of M(f) (see [My]).

2.2. Ergodic theorems. We say that a sequence ¢, : M — R is subaditive with
respect to f : M — M if ppim(x) < @n(f™(x)) + @m(x). The following result is
by now classical:

Theorem 2.1 (Kingman). Let f: M — M preserving a measure p and @, : M —
M a subaditive sequence of functions such that oy € L'(u). Then, the sequence
%gon(x) converges p-a.e. and in L*(p) to a f-invariant function p : M — R in

LY (1) such that:
~ o1
/sodp&:mf*/wndu
n n

A particularly concise proof of the pointwise convergence can be found in [AvBs]
(a proof which is in turn based on a proof of T. Kamae of Birkhoff’s ergodic theorem
which we partially reproduce below).

Given a function ¢ : M — R we denote its n-th Birkhoff sum as:

Supl@) = 3 o(f(2)
1=0

It follows directly that the sequence S,y is subaditive (in fact, additive) so the
following is a direct consequence of Kingman’s Theorem.

Theorem 2.2 (Birkhoff). Let f: M — M preserving a measure p and @ € L' ().
Then, the sequence LS, converges p-ae and in L'(u) to a f-invariant function

@ € LY (i) and it follows that:
/ odp = / pdp
In particular, if p is ergodic then @(z) = [ @du for p-ae x.
We give below a proof of the theorem for the particular (and important) case

where ¢ is the characteristic function of a measurable subset A C M.

PROOF OF THEOREM 2.2 FOR CHARACTERISTIC FUNCTIONS. (This should be
skipped in a first reading.) Let A C M be a measurable set and denote as ¢, (z) =
Spxa(x). Consider the following functions:

1 1
Tu(x) = limninf Egon(a:) ; Ta(z) =limsup Egon(x)
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Notice that one has that

| |
Ta(2) = liminf ~pn(2) = liminf —(xa(2) + on-1(f(2))) = 24(f(2))
and therefore 7, is f-invariant. A symmetric argument shows that 74 is also
f-invariant.

We want to show that for y-almost every x € M, one has that 7,4 (x) =Ta(z) =
w(A). Since one has obviously that 7 4 (z) < 74 () for every x, it is enough to show

that:
/zAzMA)z/ A
M M

The proofs are symmetric, so we shall only show that [,, 7,4 > u(A).
Exercise. Use Fatou’s lemma to show that [, 7, < u(A).

To show the inequality, fix € > 0 and consider the sets
1
Ey={xe M : 31 <j<ksuchthat —p;(z) < 1,(z) +¢}
J

One has that M = J,, B} modulo a set of pi-measure zero.

We consider the functions 1y : M — [0, 1] defined as follows: if xz € Ej then
Y(z) = 74(x) + € and if « ¢ Ef then ¢y(x) = 1+ e. One has that the sequence
), decreases to 7 4(x) + € as k — oo (note that 7 4(z) < 1 for every z € M).

By how we have defined 1y, whenever n > k and = € Ej, there is j > 0 such
that ¢, (r) = pn—;(f7(x)) +¢;j(x) and such that ¢; < j(r4(x)+¢). Since 7 4(x) is
invariant, one can write this as @;(z) < 3770 ¥r(fi(x)). If & ¢ By, it follows that
oa(2) = on1(F(2)) + 91 () and 1 () < Pr(z) since o1(z) <1 < 1+¢ = gy (e).
Using this fact inductively, we know that for every z and n > k:

n—1 n—k—1
pn(@) =D xalf'(@) <k+ D (@),
i=0 i=0
integrating in all M and using f-invariance of p, one obtains:

Again by invariance of i, one has that [, ¢, (x) = nu(A), one deduces that:

nu(A) sm(nfk)/ka

dividing by n and letting n — co one deduces:

H(A) < /M e

By monotone convergence one deduces that u(A) < [,,74 +¢e. Since £ was
arbitrary, we deduce that u(A) > [ u Ta- Using a symmetric argument one obtains
the other inequality and this concludes the proof of pointwise convergence of %(pn.
Since the functions are bounded by an integrable function, dominated convergence
implies the L'-convergence.

O
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Exercise. Show that if a function ¢ : M — R verifies that ¢ o f — ¢ is integrable,
then lim,, 2¢(f"(x)) = 0 for p-almost every z € M.

2.3. Periodic orbits and their splittings. Let p be a fixed point of a C'-
diffeomorphism f : M — M, that is, such that f(p) = p. It follows that Df, :
TpM — T,M induces a linear transformation of T, M which is a finite dimen-
sional linear space. As a consequence of the Jordan decomposition well known
in linear algebra, one deduces that there exists a D f,-invariant decomposition
T,M = E1 & ... ® L}, associated to the? eigenvalues i, ..., \; of the linear trans-
formation D f,. One has that if a vector v € E; \ {0} then the following is verified:

. 1 o
Jim -~ log|Dfy'vl| = log|Ail

Exercise. Let A be a matrix such that all eigenvalues have the same modulus equal
to A. Show that for every non-zero vector one has that lim,— 1 %log |A™v]|| =
log | Al.

Once we have chosen to split the space in the eigenspaces corresponding to the
eigenvalues of the same modulus, it is clear that the decomposition is unique.

A similar situation occurs when one has a periodic point p for f,i.e. f™(p) =p
for some m > 1. Then, one obtains that p is a fixed point of f™ and therefore
the splitting T,M = Ei(p) © ... ® Eg(p) is Df;"-invariant and verifies that if
v e Bi(p)\ {0}:

1 1
lim —log || Df)v]| = — log |\l
n m

n—+o0o
If one considers f7(p) for some j, it is also a fixed point for f™ and therefore
one can define a D f™-invariant splitting Ty, M = E1(f7(p)) ® ... ® Ex(f7 (p)).
Notice that k is independent of the iterate f7(p) since the linear transformations
Dfy" and Df}'}(p) are conjugate:

m o —J m i iy—1 m j
D" = Df ;i) DIfi Py = (D) Dffiy DSy
It follows from uniqueness that the relation: Df}j (p)Eg(fj (p)) = Eo(fi*7(p)) for
every 4,j and £ is verified.

Notice that eigenvalues can be defined regardless of the choice of a norm in 7, M
since this is a well defined notion for vector spaces.

2.4. Lyapunov exponents. Invariant ergodic measures can be thought of as a
generalization of periodic orbits.

Theorem 2.3 (Oseledets). Let f : M — M be a C'-diffeomorphism and ju an
ergodic measure. Then, there exists k € ZT, real numbers x1 < X2 < ... < X% and
for x in a f-invariant full measure set R*(f) a splitting T, M = E1(z)®...® Ey(z)
with the following properties:

e (Measurability ) The functions x — E;(x) are measurable.

e (Invariance) Df,E;(x) = E;(f(x)) for every x € R*(f).

2In the case where there are complex eigenvalues, we consider them in pairs A\, X\ and the
subspace corresponds to the real part of the sum of the spaces when considered as a complex
linear transformation.



132 R. POTRIE
¢ (Lyapunov exponents) For every x € R*(f) and v € E;(x)\ {0} one has

o1 n
Jim —log | Dol = xi

e (Subexponential angles) For every x € RM(f) and vectors v; € E;(x)
and vj € E;(x) one has that:

( Dfrv;  Dfnv; )
1D froill” 1D frvsll

1
lim —logsin £

n—too n
Some explainations are in order:

2.4.1. Lyapunov exponents. The numbers y; appearing in the statement of Theo-
rem 2.3 are usually called Lyapunov exponents of p.

In general, for any diffeomorphism f a point = € M is called regular (or Lyapunov
regular) if there exists a splitting T, M = Ei(z) © ... ® Eyy)(x) and numbers
x1(z) < x2(x) < ... < Xg(e)(x) such that for any vector v € E; \ {0} one has that

1
lim —log |[Df;v[| = xi(z).

n—+oo n

Exercise. Show that if z € M is a regular point and v € 69;:1 E;(x) \@1711 E;(x)

j:
then

o1 n
lim —log ||Df;v]| = xi(x).
n— n

—+oo
In particular, every regular point verifies that every vector has a well defined
Lyapunov exponent for the future (and the past). The bundles E; are the ones on
which both coincide.

The set of regular points R(f) is f-invariant and Oseledets theorem implies
that it has measure 1 for every f-invariant probability measure (one sometimes
calls these sets full measure sets). It also holds that all the involved functions are
measurable with respect to any invariant measure.

Notice that every periodic point has positive measure for an invariant measure
(namely the one that gives equal weight to each point in the orbit) and therefore
must be regular. Of course, one does not need Oseledets theorem to prove this,
this follows exactly from the considerations in the previous section. Notice that if
f™(p) = p, then the Lyapunov exponents of p are the logarithms of the modulus of
the eigenvalues of D f)} divided by n.

The Pesin set of f is the set of regular points for which all Lyapunov exponents
are different from 0, that is, the set of points € R(f) such that y;(x) # 0 for all
1 < i < k(z). We shall see later why these points are relevant. A measure y is
called (non-uniformly) hyperbolic if all its Lyapunov exponents are non-zero: One
should be careful with this name, the non applies to the uniformity and not to the
hyperbolicity and it should be understood as “not necessarily uniformly hyperbolic
but still with a non-uniform form of hyperbolicity” .

For an ergodic (non-uniformly) hyperbolic measure p for which one has Lyapunov
exponents y; < ... < x; < 0 < x441 < ... < xx one can group the bundles
depending on the sign of the Lyapunov exponent. In this case, we denote E*(z) =
Ei(z)® ... ® Ei(z) and E%(z) = Eiy1(z) ® ... ® Er(x). One has that if v® €
E*(x)\ {0} and v* € E*(x) then:
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1 1
lim —log||DfIv°|| <0< lim —log||Dfrv"
n—oo N n—oo N
So that vectors in E*(x) are the ones which are exponentially contracted in the
future by D f and vectors in E* are exponentially contracted in the past by Df.

2.4.2. Angles and measurability. We remark that, differently from the case of pe-
riodic orbits, the concept of norm and angle are essential in this setting as they
provide a way to compare vectors which do not belong to the same vector space.
However:

Exercise. The values of the Lyapunov exponents are independent of the choice of
the Riemannian metric in T'M.

The Riemannian metric also provides a way to compute angles between vectors
and this is the sense one has to give to the last part of the statement of Theorem
2.3. Tt is possible to show that this last part is a consequence of the rest, but it is
so important that it merits to appear explicitly in the statement.

Another relevant comment is about the notion of measurability of the functions
x +— E;(z). This should be understood in the following way: the arrow defines a
function from M to the space of subspaces of TM. This can be thought of as a
fiber bundle over M in the following way, for a given j < d = dim M one considers
G;(M) to be the fiber bundle over M such that the fiber in each point is the
Grasmannian space of T, M of subspaces of dimension j. This is well known to
have a manifold structure and provide a fiber bundle structure over M (). This
gives a sense to measurable maps from M to some of these Grasmannian bundles,
and since one does not a priori require that the bundles have constant dimension
one can think of the function E; to be a function from M to the union of all these
bundles and then the measurability of the function makes sense as both the domain
and the target of the function are topological spaces.

2.4.3. Non-ergodic measures. There is a statement for non-ergodic measures which
is very much like the one we stated but for which the constants k& and y; become
functions of the points and some other parts become more tedious. Look [KH,
Supplement] or [M4, Chapter IV.10] for more information.

2.5. Sketch of the proof of Oseledets theorem in dimension 2. This section
should be skipped in a first reading. For more details, see [AvB].

Consider f : M — M a C*-diffeomorphism of a closed surface M. Let pu be an
ergodic invariant measure.

Consider the sequence of functions ¢, : M — R defined as ¢, (x) = log || Df7].
The chain rule together with the fact that the norm of a product of matrices is less
than or equal to the product of their norms implies that the sequence @, () is suba-
ditive and thus Theorem 2.1 applies. Therefore, there exists x2 = lim,, + log ||D 7|
for p-almost every = € M.

The same argument applied to f~! implies the existence of

.1 n
X1=—11711n510g||Dfx |

for p-almost every x € M. Since ”fo_(i)Hil < ||Dfzll, one has that x2 > x1.

3For example, if 7 = 1 this is the projective bundle over M.
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Exercise. Show that if x = x; = x2 then for p-almost every x € M and every
v € T, M \ {0} one has that

. 1 o
Jim -~ log || Dol = x-

We shall then concentrate on the case x2 > x1. The first remark is the following:

Exercise. Show that if A : R? — R? is an invertible linear transformation verifying

|A|l # [|A=Y)| 7L, where || - || is associated to a given Euclidean metric. Then there
exists orthogonal unit vectors s L u such that As 1 Au and
[Aull = Al 5 [ As| =A™

The key to the proof is then to consider, for x € M such that the limits
lim,, 2 log || Df2|| and lim,, 1 log || D f; || exist*, the sequence of unit vectors sy, u,
in T, M defined such that s,, L uy, Dfl's, L D fIu, and such that

IDfFunll = IDLEN 5 1D sull = DL THIT

One shows that the angle between s, and s,11 converges exponentially to 0
by using the fact that the limits above exist and the fact that || D f]| is uniformly
bounded. Therefore there exists a limit s = lim s,, which verifies that

1
lim — log || Df}s|| = x1 -
non
It also follows that, for every unit vector v different from s one has that
1
lim —log||Dflv| = x2-
n—oo N
The same argument for the past® gives the existence of u € T, M such that
) 1
lim = log [ Dfrull = x.
n——oo N

One must then show that s # u. Then one can easily show that the angle
between s(f™(x)) and u(f™(z)) decreases at subexponential rate with n because
one has that for v # w € T, M \ {0}:

sin £(D frv, D fyw)
sin £ (v, w)

and therefore the function z — logsin £(s(f(z)),u(f(x))) — logsin £L(s(z), u(x)) is

bounded (and thus integrable). The details can be found in [AvB] in the more

general case of linear SL(2,R) cocycles.

IDf 72 < <|IDf.|?

2.6. Pesin’s reduction. Oseledets Theorem 2.3 can be thought of as giving the
“eigenvalues” of the derivative over an ergodic measure. We shall now present a
result, due to Pesin, which can be then compared to “diagonalizing” the derivative
over the measure (or putting it in Jordan form). Again, we treat a special case in
dimension 2 for simplicity. See [KH, Supplement S] for more general versions.

4Notice that this is an f-invariant set.

5Notice that the limit of u, exists and is orthogonal to s. However, this is not the vector we
are interested in, since it might grow also for the past. We have to make a symmetric argument
for f~1 to find the correct subspace.
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Theorem 2.4 (Pesin’s v-reduction). Let f : M — M be a C'-surface diffeomor-
phism and let p be a ergodic measure with Lyapunov exponents x1 < x2. Then, for
every v > 0 there exists a measurable function C,, such that® C,(z) € GL(R?, T, M)
and:

e (Diagonalization) There exists measurable functions functions a, : M —

(exp(x1 — v),exp(x1 +v)) and b, : M — (exp(x2 — v),exp(x2 + v)) such
that for p-almost every point x € M one has that:

e (Subexponential decay of coordinate size:) One has that for p-almost
every x € M

lim dog (/|G (f" (@) + I(C (F7(2))) ) =0

The key part of the Theorem, which follows from the subexponential decay of
the angles given by Oseledets theorem, is the fact that the norm of the matrices
C,(f™(x)) and (C,(f™(x)))~! cannot grow to much along the orbit of generic points.

SKETCH Let E; and E5 be the measurable bundles given by Oseledets theorem
associated to the exponents y; and xo.

For a p-generic point & € M one defines the vectors v; as vectors in F;(x) of
norm:

(Z IDf

2
2 —2ny; ,—v|n
B2l e e l)
nez

The series converges for p-almost every point thanks to the existence of Lyapunov
exponents (and the extra term e~¥I"!). If one considers the linear transformation
that sends the canonical base of R? to vy,vs one sees that the diagonalization
hypothesis is easily verified.

Since ||v;|| is bounded from below, one has that the norm of C(z) is uniformly
bounded. On the other hand, the subexponential decay of of the angles given by
Oseledets theorem as well as the fact that the Lyapunov exponents are the desired
ones implies that the norm of C(f™(x))~! is subexponential. See [KH, Theorem
S.2.10] for more details.

O

3. PASSING THE INFORMATION TO THE MANIFOLD

We shall restrict to dimension 2 for simplicity. So, in this section M will be a
closed surface and f : M — M a diffeomorphism of M.

One can look at [KH, Section 6 and Supplement S] for more general statements.
We remark that the proofs are quite similar in the higher dimensional context albeit
more tedious in notation. The reader will notice that the calculations are already
quite tedious in dimension 2.

6As above, one can define the function as a function from M to the bundle of linear maps
from R2 to T M to make sense to the measurability. Alternatively, one can trivialize the tangent
bundle of M up to a zero measure subset and then C, becomes a function from M to the space
of 2 X 2 matrices.
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The main point of this section is to show how one can recover the behavior seen
at the level of the derivative in the dynamics in the manifold itself. The most
detailed part will be the easiest one: the case of fixed points. Then, we shall try to
explain how the other cases are simply complicated versions of the first one.

3.1. Fixed points. We shall work with p € M such that f(p) = p. Since we are
in dimension two, we have the following possibilities:
e Both eigenvalues have modulus < 1 or both have modulus > 1.
e One eigenvalue has modulus < 1 and the other has modulus > 1 or one
eigenvalue has modulus > 1 and the other < 1.
e Both eigenvalues have modulus 1.

The first case is the easiest to treat:

Exercise. Show that if both eigenvalues have modulus < 1 then p is a sink, i.e.
there is a neighborhood U of p such that f(U) C U and for every = € U one has that
f™(z) — p exponentially fast. Symmetrically, if both eigenvalues have modulus > 1
the point p is a source (i.e. a sink for f=1).

When both eigenvalues have modulus 1 less can be said. However, in dimension
2 there exist some results of topological flavor when the fixed point is isolated (see
for example [LeR]).

When one non-zero Lyapunov exists, it is possible to reduce the dimension of
the study via the following classical result:

Theorem 3.1 (Stable Manifold Theorem I). Let p be a fixzed point of a diffeo-
morphism f : M — M such that Df, has one eigenvalue of modulus < 1 and the
other has modulus > 1. Then, there exists an embedded C* curve Wi (p) with the
following properties:

e (Invariance) One has f(W; .(p)) C Wi,.(p)

e (Convergence) For every x € Wi .(p) one has that d(f™(z),p) — 0.

e (Tangency) The curve Wi (p) is tangent to the subspace of T,M corre-
sponding to the eigenvalue of modulus < 1.
(Uniqueness) If a point © € M satisfies that d(f™(x),p) — 0 exponentially
fast, then there exists ng such that f™(z) € Wi .(p).

The curve W} _(p) is called the local stable manifold at p. One can consider the
following:

U f Wloc )
n>0
which we call the stable manifold of p.

Exercise. Show that WW?*(p) is an injectively immersed curve diffeomorphic to R.
Give an example on which the manifold WW#(p) has finite length and an example
where it has infinite length.

We shall give a quite detailed proof of Theorem 3.1 since many of the ideas will
re-appear plenty of times later.

ProoF. Consider a small neighborhood U of p and a chart ¢ : U — R? such that
o(p) = 0. By composing with a linear transformation, one can assume that Dy
sends the eigenspaces of Df, to the axes of R%. Assume that the eigenvalue of
modulus < 1 is sent to the horizontal axis.
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Since there exists another neighborhood V' of p such that V. C U and f(V) C U
we get that in ¢(V) one can define: f = po fop!:p(V)— R2.

We can therefore write f in ¢(V) as:

f(z,y) = ax +alz,y), Ay + B(z,y))

where A\; <1 < Ay are the eigenvalues of Df,, and one has that «(0,0) = 5(0,0) =
Va(0,0) = VB(0,0) = 0. The functions o and 3 are C! on ¢(V) and therefore,
given € > 0 there exists § > 0 such that the C''-size of a and f3 is smaller than ¢ in
B(0,6). Here the C! size is the maximum value between the images of the function

and the norm of its partial derivatives. Notice that D fo = ( >E)1 )(\) )
2

Consider a smooth bump function 1 : R? — [0, 1] with the following properties:
o n(z,y) = 1if ||(z,y)l| < 5.
o n(z,y) =0if || (z,y)]| =
o [[Vi(z,y)|| < § for every (z,y).

We consider then the function f : R2 — R2 defined as f = nf + (1 —n)Dfo, i.e.:

F,y) =n(z,y)f(,y) + (1= n(z,9) Mz, \ay)
One can thus write:

f(@,y) = (ax +alz,y), Aoy + B(z,y))
with |a(z,y) — a(z,w)| < émin{é, [[(z,y) — (z,w)||} and |B(z,y) — B(z,w)| <
emin{d, ||(z,y) — (z,w)||}. The value of & can be chosen to be as small as de-
sired by choosing 8, and ¢ correctly’. The advantage is that now we have a globally
defined diffeomorphism of R?. Notice however that we can only say that the orbits
by f represent orbits of f (or of f) while the point remains in B(0, g)

One can write f~!: R? - R? as:

FH @ y) = A2+ 0(x,), 05y + 9(2,y))
again (maybe after re-choosing § and ¢) with the C'-size of both § and ¥ bounded
by €.
Now, let us consider first the existence of a (unique) Lipschitz invariant curve
for f tangent to the z-axis which is contracting.
Consider then the following complete metric space:

Lip; = {p: R =R : |p(t) —@(s)] < |t —s], Vt,s; »(0) =0}

endowed with the metric d(p, ¢') = sup, soer M.

For a given ¢ € Lip; one can define a new function figo as the function whose
graph is the preimage by f of the graph of ¢, i.e. graph f.¢ = f~Y(graph o).
Let us precise the construction of f.p a little further. Let G, : R — R the

function defined by G, (t) = Mt + @(t, ¢(t)). One has:

Claim. If € is small enough, the function G is an increasing homeomorphism of
R which verifies (A1 — V28)|t — 8| < |Gy (t) — Go(s)] < (A1 + V28)|t — 5| .

"This is the well known fact that the C 1—top9logy is invariant under rescaling. Given & there
exists 0 such that ||a(z,y)|l o1 + [|1B(z,v)|lor < % whenever ||(z,y)|| < J. Now, one has that the
Cl-distance of f and Df is the C? size of n(f — Dfo) which smaller than & as desired.
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PROOF. Assume that v/22 < (1 — ;). One computes:

Ait+ Gt (1) = Aus — als, 9(s))| > At — s| = V2e[t — 5| > (A = V28)|t — 5|

this follows from the fact that |a(t, o(t)) — a(s, ¢(s))| < /[t — 52 + |o(s) — @(t) ]2
and that ¢ is 1-Lipschitz.
On the other hand, it is easy to see that [\t + a(t, p(t)) — A\1s — a(s,¢(s))] <
(A1 + V28|t — s|.
¢
Then, the function f.p verifies (¢, fup(t)) = Gy (t), p(Gy(t))) (see figure 1)
and therefore:

Fep(t) = A3 1 0(Go(1) + D(Gy(t), 0(G (1))

Jep

FIGURE 1. The graph transform of .

We have the following properties:

Claim. If ¢ is small enough, for ¢ € Lip,, the function f.o € Lip,.

PROOF. Intuitively, this follows directly from the fact that Df~! contracts hori-
zontal cones. Let us do the calculations (which should be skipped in a first reading).
First notice that f.((0) = 0 from its definition.

Recall that for ¢, s € R one has |Gy (t) — Gy (s)] < (A +V28) 7Lt — 5]

Given t, s € R one has that:
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A5 o(Go (1) +9(Gy(t), p(Gyu(1))) —

25 10(G(9) + 9(Gy(s), p(Gyl(s)))]
A5 He(Gy (t)) P(Gyp(s))| + [9(t, G () — (s, (Gy(s))]
MG () = Gu(9) + 21 9(Gu(1) = (5, 9(Go(s)
(/\;1(/\1 —V28) + fé) It — s|

and if ¢ is small enough, one gets that A\; ' (A\; — v/28) + /26 < 1 as desired®.

| fuip(t) — fuip(s)]

IAINA

IN

o

Claim. For sufficiently small €, there exists v € (0,1) such that if ¢,¢" € Lip;
then d(fup, fx') < vd(p, ¢').

PROOF. Again, this is a consequence of the contraction of horizontal cones by
Df~!. Let us perform the computations (the reader should skip them in a first
reading).

[fop(®) = £’ (D] = ID370(Go(t) +9(Go(t), 0(Go(1))) —
—A 19 (G () + (G (1), ¢ (G (1))
A (G (t) — ¢ (G ()] +
HI(Go (1), (G (1)) = VG (1), ' (G (1)) -

IN

Now, one has that
[p(Gy(t) — ' (G (1)) [p(Gu(t) — @' (G| + 19" (Gy(t) — ' (G (1))
d(p, )G ()] +[Gy(t) — Gy (t)]
(M + V22)d(p, @)t + |alt, o (1) — alt, ¢ (1))
(A1 + V28)d(p, )t + V2ed(, ') It]
= (M +2v28)d(p, @) It]

VAN VAN VAN VAN

Moreover, one has that
[ 9(Gy(t),0(Gp(1) — (G (1), ¢ (Ge (1)) | <

< 0(Ge (1), 9(Go (1)) — 9(Go (), ¢'(Go ()] +
(G (1), ¢ (G (1)) = NG (), ¢ (G (1))

< edlp, @)t + V2| Gy(t) — Gy (t)]

< (2V2+ Dad(e, )t

Putting all the estimates together it follows that if Ay ' (A +2v/28) + (2v/2+ 1) =
v < 1 one has the desired statement.

¢

We deduce that there exists a unique function ¢ in Lip,; whose graph is f-
invariant. We call W} _ to the restriction of the graph to B(0, %) The rest of the

8Notice that indeed, one does not need that Ao > 1 but rather, it is enough that A1 < A2 as
long as one chooses & correctly.
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proof is devoted to showing that this graph (which is identified with a curve in M)
verifies the conclusions of the theorem.

Invariance and convergence: This follows quite easily from the fact that if |y| < ¢
the map t — Ajt+a(t,y) is contracting if £ < (1— Ay), therefore, since ¢ € Lip; one
gets contraction for the map ¢t — A\t + a@(t, §(¢)) is contracting. This also implies
that for every (t,(t)) one has that f™(¢,@(t)) — 0 exponentially fast and that if
(t,@(t) € B(0,%) (ie. (t,@(t)) € Wy ) then® the same holds for f(t,3(t)).

Smoothness: We must show that the curve W} _ is C' and tangent to the x-axis
in (0,0). To do so, notice that at each ¢y € R one has that the set of accumulation
points of

o(t) — o(to)

t—to

is an interval contained in [—1,1] because @ € Lip;. This is equivalent to say that
at each point (to, @(to)) the graph of @ is tangent to a cone of bounded width and
transverse to the y-axis. The form of f implies that the angle of such a cone is
contracted by an uniform amount by Df. Using the fact that the graph of @ is f-
invariant, one deduces that the cones must degenerate at each point, or equivalently,
the function @ is everywhere differentiable. A similar argument shows that these
tangent spaces have to vary continuously with the point since otherwise one would
obtain another invariant cone (by comparing the limits of different subsequences)
by Df of positive width.

In (0,0) it is clear that the unique direction transverse to the y-axis which is
D f-invariant is the z-axis and therefore the derivative of @ at 0 is 0 or equivalently,
the curve W} _ is tangent to the z-axis at (0,0) as desired.

as t— ity

Uniqueness: Assume that there is a point which converges exponentially fast
to p for f. Then, one can construct a point (to,so) € B(0,5) which converges
exponentially fast to (0,0) for f. Since Ay > 1 one has that if (¢,,5s,) = f"(to, so)
then f—" converges to zero since otherwise, the rate of convergence of (¢, s,,) to zero
is governed by \g at first order'®. Then, it is possible to construct a subfamily of
Lip, consisting of functions such that ¢(¢,) = s, for every n and one gets that it
is a closed f.-invariant subset of Lip; and therefore, it contains the (unique) fixed

point of the contraction. This proves the uniqueness.
O

Remark 3.2. Notice that the only place where we used that A\; < 1 is to show
uniqueness (on the other hand, we used A\; < A2 everywhere). Otherwise, we would
get a locally invariant curve which depends on the way we choose the extension
(which is not canonical) and uniqueness only holds for points whose forward orbit

remains in B(0, %) This is the content of the well known center manifold theorems
([Sh, HPS]).

Exercise (Chapter 5.III of [Sh]). Consider the time one map of the differential
equation & = —z and § = y? in R%. Show that W} (0,0) is the horizontal axis but

9The reader might be worried with the fact that the ball is round and therefore the contraction
of the z-coordinate might not imply that the point remains in the ball. However, we notice that
the intersection of a 1-Lipschitz graph through (0,0) with a ball must be connected.

10Indecd, it is enough to show that f—: < 1. Notice that if A2 > 1 then the argument is simpler

since points (to, sp) such that so > to verify that its iterates by f leave B(0, g)
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that uniqueness of the manifold tangent to the other direction is not ensured in the
place where the dynamics tangent to the y-axis is contracting.

FIGURE 2. The flow of the equation & = —z and 3 = y* in R

3.2. The case of all Lyapunov exponents negative. It is easy to pass from the
information we gathered for fixed points to periodic points. The motivation from
now on is to try to understand what kind of behavior is forced for general ergodic
measures. It is natural to expect that zero-Lyapunov exponents will not provide
much information, but when the measure is hyperbolic, one expects to obtain some
information on the local dynamics for generic points of the measure.

This is an easier version of what follows, we shall see the first relatively easy
consequence of a measure having non-zero Lyapunov exponents.

Theorem 3.3. Let i be an ergodic measure of a C*-diffeomorphism f of a surface
M such that both Lyapunov exponents are megative. Then, p is supported in a
periodic sink.

Of course a symmetric statement holds for measures having all Lyapunov exponents
positive where one obtains a periodic source applying the previous result to f 1.

PROOF. One has that there exists x < 0 such that for p-almost every x € M and
every v € T, M \ {0} one has that:

1
limsup — log || Df7v] < x < 0.
n n

Claim. There exists Ny > 0 such that for p-almost every x € M and N > Ny one
has that

k—1
1 _
B ;bg IDFY(F N @I = X () < x
PRrROOF. We assume that p is ergodic for fV for every N > 0. Notice that it might

be that it has (finitely) many ergodic components, the proof in this more general
case is a little bit more tedious (see [AbBC, Lemma 8.4]).
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The fact that all Lyapunov exponents are smaller than x implies that

1 . .
;/logllDf ldw — x < x

as n — oo. In particular, for sufficiently large Ny one has that if N > Ny then
1
~ [1o8 1D au < .

Now, the result follows from applying Birkhoff’s theorem to the dynamics f&
and the function z — log | DfN (x)]|.
¢

Let us fix ¢ < I—(’f, a value of N > Ny as given by the previous claim and let
Aj > maxg [|Df(z)].
There exists dg > 0 such that if d(x,y) < dy then for every vector v € Ty M one

has that

IDFN (y)oll < eNeIDFN ()|l
Let R: M — R be defined as'!:

k—1
R(z) = max {e—’“m*s) 11 IIDfN(fiN(af))II} > 1

k>0 -
=0

Notice that the previous claim implies that the value of R(z) is well defined'?
on generic points with respect to p since for sufficiently large %k the value of
[T IDFN(FN (@) < eFN O,

Now consider d; < A;N dp and for p-almost every x € M consider p(x) = R‘ilx).
We have the following (compare with [AbBC, Lemma 8.10]):

Claim. For p-almost every x € M and n > 0 one has f™(B(x, p(z))) C B(z,d).
Moreover, the diameter of f™(B(x,p(x))) converges to zero exponentially fast as
n — oo.

PROOF. Let us first prove that f"(B(z, p(z)) C B(x,dp). Assume that this is the
case for k < n — 1. Consider £ > 0 the largest integer for which /N < n. By
induction and noticing that the derivative in f!(x) is approximately the same in
points in B(f%(x), o) one shows that:

-1
diam(f"(B(z, p(a))) < (A}V ] IIDfN(fiN(xH) p(x) < b,
=0
One deduces using the definition of R(z) that:

diam(f™(B(x, p(z)))) < A;VeZN(X+25)R(x)R671x < eZN(XHE)A}Vél < do
But we have also established that

diam(f"(B(x, p(x))) < eNOF2) AN 5,
1We make the convention that H?:O a; = 1.

121pdeed, standard arguments give that the sequence R(f"(z)) is subexponential. See [AbBC,
Lemma 8.7].
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for every n > 0 which implies that the diameter goes to zero exponentially fast.
¢

Consider a generic point x for p, which is recurrent, i.e. there exists n; — oo
such that f(z) € A; and f™ (z) — z and verifies the conditions of the previous
claim. Such a point exists thanks to Poincare’s recurrence theorem.

For large enough j, one has that d(f"i (x),x) < p(x) and therefore

[ (B(x, p(x))) C Bz, p(x))
and distances are contracted uniformly. This implies that f"i| g, ,(z)) has a unique
(attracting) fixed point p and that f*"i(y) — p for every y € B(xz,p(z)). Since
x was recurrent, this implies that x = p, which must be a periodic sink and this

concludes the proof.
O

Exercise. Prove Poincare’s recurrence theorem (the statement used in the proof
of Theorem 3.3) using Birkhoff’s ergodic theorem.

3.3. A result on sequences of diffeomorphisms. We treat in this section a sit-
uation similar to the one we reduced in the fixed point case. Instead of dealing with
a unique global diffeomorphism of R? which is C'-close to a linear transformation,
we shall deal with a sequence of such maps and “notice” that we never really used
the exact properties of the global diffeomorphism but instead we used the fact that
the bounds were uniform. The reader can try to predict what purpose the result in
this subsection will serve: one will consider charts around each point and extend
the maps to global diffeomorphisms by using a bump function to glue the map with
its derivative.

Let us introduce the context on which we shall work: A sequence {f,}nez of
diffeomorphisms of R? is called a (A1, A2, €)-hyperbolic sequence of diffeomorphism
if it satisfies the following properties:

o fu(z,y) = (anz+an(x,y), bpy+Ln(z,y)) where 0 < a, < A1 <1< A <b,
and a,(0,0) = 3,(0,0) = Ve, (0,0) = V3,(0,0) = 0.

e The maps a, : R? = R and 3, : R2 = R are C! and their C''-distance to
0 is < e. That is, for every (z,y) € R? one has that

lan(@,y)l, [Bn(z,y)l, [Von(z,y)ll and [V (z,y)ll

are all smaller than e.

The main result of this subsection is:

Theorem 3.4 (Stable Manifold Theorem for Hyperbolic Sequences). Given A1 <
1 < Ay, there exists € > 0 such that if {fn}nez is a (A1, A2, )-hyperbolic sequence
of diffeomorphisms, then, there exists a family of C* functions ¢, : R — R such
that:

e (Invariance) The graphs are f,-invariant, i.e. for everyn € Z andt € R
there exists s € R such that fn(t, pn(t)) = (s, ont+1(5)).
e (Convergence) For every n € Z and t € R one has that

Jin S o0 fults @n(8) | = 0.

e (Tangency) The derivative ¢, (0) =0 for every n € Z.
e (Uniqueness) The family is the unique family with the first two properties.
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Indeed, the proof of this Theorem follows exactly the same lines as the proof we
did in subsection 3.1. When looking at the proof of Theorem 3.1 one can identify
two stages:

e First, one fixes a small chart around the fixed point where one can construct
a global diffeomorphism of R? which is C'-close to a linear diagonal matrix
with an eigenvalue smaller than one in the z-axis and larger than one in
the y-axis.

e Then, one proves a result which is equivalent to Theorem 3.4 for a constant
sequence (A1, Az, €)-hyperbolic sequence of diffeomorphisms f,, = f for all
n € Z (to keep the notation of the proof of Theorem 3.1).

There is a minor difference on how to implement the proof. Instead of working
with the space of Lipschitz functions (which has no longer much sense since the it-
erative process has to take place in “different” R?s), one has to work with sequences
of Lipschitz functions. That is, one works with the space:

Lipi™ = {{@n}tn + ©n(0) =0, |pn(t) —pnl(s)| < [t — |}
endowed with the metric d({¢n}, {¢),}) = sup,,cz d(¢n, ¢,,) which is also a complete
metric space. One defines a graph transform of the form {f,}.{on} = {¢n} so that
1y, is the function whose graph is the graph of (f,)~!(¢n+1). The rest of the proof
follows more or less verbatim as this graph transform preserves the space Lip]
and contracts its metric giving a unique fixed point which will satisfy all the desired
properties.

Exercise. Try to implement the same proof as in Theorem 3.1 to recover Theorem
3.4.

Theorem 3.4 is known as Hadamard-Perron’s theorem. See [KH, Section 6.2] for
more information and a complete proof in any dimension.

3.4. Pesin charts. The following result is the place where the C't® hypothe-
sis appears in Pesin’s theory. It allows to lift the dynamics to a subexponential
neighborhood of a generic point for a hyperbolic measure p and therefore obtain
a hyperbolic sequence of diffeomorphisms. This allows to construct stable and un-
stable manifolds for those points using Theorems 2.4 and 3.4. By inspection of the
proof one can see that the key place where the Holder continuity of the derivative
is used is to control the fact that angles can be very small (i.e. the norm of C, or
C; ! of Theorem 2.4 can be very large).

Theorem 3.5 (Pesin-Lyapunov Charts). Let f : M — M be a C**% diffeomor-
phism of a closed surface M. Let i be an ergodic measure with Lyapunov exponents
X1 > X2. Then, for every po > 0 and v > 0 there exists a measurable function
p: M — (0,p0) and a family of smooth charts &, : B(0,p(p)) C R? — M indezed

in a full p-measure set of z € M with the following properties:
e (Lift of the dynamics:) The map f. : B(0, %) — B(0,p(f(2))) defined
as f, = f;(lz) o fo&, is well defined and can be extended to a diffeomorphism

f. i R2 = R? of the form:
felw,y) = (a2 + olx,y), by + B(z,y))

where loga, € [x2 — v, x2 + v] and logh, € [x1 — v, x1 + V] and «(0,0) =
5(0,0) = Va(0,0) = V3(0,0) = 0.



INTRODUCTION TO NON-UNIFORM AND PARTIAL HYPERBOLICITY 145

e (Extension:) One can choose the extension fz in such a way that the maps
a:R?2 3R and B:R2 = R are C! and their C1-distance to 0 is less than
v. That is, for every w € R? one has that |a(w)], |S(w)], [|[Va(w)| and
|IVB(w)|| are all smaller than v.

e (Subexponential decay of size:) The function p: M — (0, po) satisfies
that p(f(=)) € (e~"p(=), €”p(2)) and lim, L log p(f"()) = 0.

PrOOF. Let exp : TM — M be the exponential mapping with respect to a given
Riemannian metric. We know that exp, : T,M — M verifies that exp,(0) = z and
D(exp,)o = Id. Using compactness of M we know that there exists Ry > 0 such
that exp, : B(0, Ryp) — M is a diffeomorphism verifying that

I(D exp.)uwll, [(Dexp.)w) 7" <2

for every w € B(0, Ry) C T, M.
Consider the linear change of coordinates C,(z) € GL(R? T, M) given by 2.4
such that for p-almost every point z € M one has that:

@ﬁ@r“DﬂfM@:<%y)m%>

and a, : M — (exp(x1 —v),exp(x1+v)) and b, : M — (exp(x2 — V), exp(x2 +V)).
One can choose C,(2) so that lim,, 4. log(||C.(f*(2))|| + [[(C,(f*(2)))"Y) = 0
for p-almost every z € M.

The function &, will be the restriction of &, := (exp, oC,(z)) : R2 = M to a
convenient neighborhood of 0.

First we shall define p; : M — (0, 1] to be a function verifying that for z € M
the value pp(z) is the maximal value < 1 such that:

e C,(2)(B(0,p1(2))) C B(0,Rp) and
o Cu(f(2)) "t oexpy of oexp, oC,(2)(B(0,p1(2))) C B(0, Ro).
Technically, the function p; is only defined in points where C), is defined, but
these form a full y-measure set, so it is no problem for our purposes. In these
points, the function is clearly positive and well defined. Moreover, the function ENZ
is a diffeomorphism when restricted to B(0, p1(z)) and we can therefore define:

f:BO,p1(2)) 2 R?, fo=¢5 0 fo0&

The key difficulty is to obtain that the lift of f is C'-close to its linear part
D(f.)o=C,(f(2))"'-Df. - Cy,(2) (i.e. that the functions o and S are C''-close to
0). It is for this that we shall restrict p further and use the C*** hypothesis.

We write f, = D(f.)o + h. where the function h, = («(z),3(z)) and «a and S
verify «(0,0) = 3(0,0) = Va(0,0) = V5(0,0) = 0.

In B(0, Ry/||Df.||) we can write eXp;(lz) of oexp, = Df, + g, where g, is C1T2
with similar constant as f (notice that exp is C* and Ry is chosen so that the
derivative is controlled). So, there exists ¢ > 0 such that for w € B(0, Ro/||Df-|)
one has:

1(Dgz)wll < cllw][
Since h, = C,(f(2)) "t 0 g, 0 C,(z), we have that
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D(hz)w = D(Cu<f(z))_1 ©0g-0° CV(Z))UJ = Cu(f(z))_l © D(gz)Cu(z)w

SO

ID(h2)wll < NIC(F(2)THIID(g:) e, yull < ellCu(F(2))HIIC ()] ]|
Notice that from the hypothesis on C,, we know that

k(z) = c|Cu (F(2)) M Cu(2) 1
has subexponential decay (i.e. lim,, + logk(f™(z)) = 0) and if we choose py : M —
(0, po) small enough so that the norm of [|D(h;), | is smaller than v it is not hard
to extend the functions f, to satisfy the extension property.
It remains to show that one can now choose p: M — (0, pg) such that:

e p(z) < pa(z) for every z € M,

o p(f(2)) € (e7"p(2),e"p(2))

e lim, Llogp(f"(z)) = 0.
The third condition follows immediately from the second. To construct p verifying
the first two properties, it is enough to consider

v|n|

p(z) i= Inf e™1 pa(f"(2))

which is well defined since lim,, 2 log p2(f™(z)) = 0 and verifies the desired proper-
ties. This concludes the proof of the Theorem.
([

Remark 3.6. By construction, one sees that there exists a measurable K : M —
[1,00) such that if w,w’ € B(0, p(z)) then

d(8z(w), & (w) < w —w'[| < K(2)d(E-(w), & (w"))
and such that lim, 2 log K(f"(2)) =0

One obtains the following result applying Theorems 3.4 and 3.5 (and Remark
3.6) which provides the so called Pesin’s stable and unstable manifolds.

Theorem 3.7 (Pesin stable manifold theorem). Let f : M — M be a C'T2 dif-
feomorphism of a closed surface and p a hyperbolic measure for f with Lyapunov
exponents x° < 0 < x*. Then, there exists an f-invariant subset R C M such that
w(R) =1 and:

e (Existence:) for every x € R there exists a C*-curve W5 (z) centered at

x and tangent to E*(x) with length 2p(x),

o (Invariance:) one has that f(W5,  (x)) C Wi (f(2)),
(Convergence:) for y € Wi, (x) one has that ~log(d(f™(z), f"(y))) —
x° for n — +o0,
(Uniqueness:) if a point y € M verifies that L log(d(f™(z), f*(y))) = x°
as n — +oo then there exists n, such that f™(y) € Wp,,(f™(x)),
(Size:) the function p: M — (0, po) verifies that

p(f(z)) € (e"p(x),e"p(x))
for v < min{|x*|,x"} and therefore lim + log p(f™(z)) = 0.
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3.5. The C'™ hypothesis. In [BoCS] an example is constructed showing the
importance of the Holder continuity of the derivative in order to construct the stable
and unstable manifolds for generic points with respect to a hyperbolic measure. In
their example, the measure is hyperbolic but every point in the support of the
measure verifies that their stable (resp. unstable) manifold is reduced to a point.
We refer the reader to that paper to see the construction which in higher dimensions
(> 3) gives also open sets of diffeomorphisms where C!-generic diffeomorphisms in
those open subsets have these pathological type of hyperbolic measures. We remark
that their examples verify that the measures have zero entropy, and it is possible
in principle that positive entropy allows to recover some of the Pesin theory in the
Cl-context. We also refer the reader to [AbBC] for other contexts where Pesin
theory holds for C'-diffeomorphisms.

4. ENTROPY AND HORSESHOES IN THE PRESENCE OF HYPERBOLIC MEASURES

4.1. Shadowing for hyperbolic sequences of diffeomorphisms. Again, for
simplicity, we shall restrict to the case of surface diffeomorphisms.

Consider a hyperbolic sequence of diffeomorphism {f, : R? — R?},, as defined
in section 3.3. It is not hard to see that for every R > 0 and z € R? \ {0} there
exists n such that either f,0...0 fo(2) ¢ B(0,R) or f=1, 0...0f;'(z) ¢ B(0,R).
Indeed, the only points for which is necessary to consider “negative iterates” are
the points lying in the stable manifold of 0.

Here we shall consider small perturbations of the diffeomorphisms f,, and try
to show that the existence of a bounded orbit remains true. This is usually called
shadowing (at least, its applications as we shall see in subsection 4.3).

Let {fn}n be a (A1, A2, €)-hyperbolic sequence of diffeomorphisms and let {v,, =
(T, Yn)}n C R? be a sequence of vectors. We consider the following sequence of
diffeomorphism {f%},, defined as:

f;i(xay) = (anx + Ozn(x,y), bny + 5n(:1:,y)) + (In,yn)
= (anx + xn + Oén(xay)a bny + yn + ﬂn(aj)y))

We say that a sequence {z,} C R? is an orbit of U if one has that f¥(z,) = 211
for every n € Z. An orbit {2}, is bounded if sup,,c; ||z.|| < oc.

Theorem 4.1 (Exponential Shadowing for hyperbolic sequences). Let f, be a
(A1, A, €)-hyperbolic sequence of diffeomorphisms (with 0 < A1 < 1 < Ag and
e < min{A2 — 1,1 — A\ }). Then, there exists Ry := Ro(X, i, €) such that for every
§ > 0 one has that if {v,}n C R? is a sequence of vectors satisfying sup,, ||va|| < &
then there exists a unique bounded orbit {z, }n of {f¥}n which verifies the following:

o SupnGZ ”Zn” S R05 and,

e the orbit {z,}n is uniformly hyperbolic, that is, one has that for every m €
Z there exist subspaces ES, and EY in T. R? such that D} ES, = EJ, 4

Zm

(for o = s,u) such that for every n > 1 one has
ID((fr)" )z Bl < (A1 +58)" 5 [[D((f5)"™) 20 Bl = (A2 — 5€)"

Moreover, zf{fn}n is another (A1, Ag, €)-hyperbolic sequence of diffeomorphisms and
{Un}n another sequence of vectors such that sup,, ||U,] < 0 verifying that fi = f
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and T = vy for every —M < k < M then one has that if {Z,}n is the bounded
orbit of {f} then

llzo — Zo|| < Rod((A1 4 58)™ + (\g — 5e) ™M)

Remark 4.2. It follows from uniqueness that if for some m > 1 one has f, ,, = f/
for every n € Z then z,,, = z, for every n € Z.

ProoF. Consider Ry large enough so that if one considers the square @ of side
25 Ry around (0,0) one has that f7(Q) is a rectangle which traverses @ (see figure
3). It is clear that this can be done and the value of Ry is independent of §.

n(Q)

—

FIGURE 3. The image of Q by fr.

As in the proof of Theorem 3.1 the square @ can be foliated by horizontal and
vertical Lipschitz curves which allow to define a width of f7(Q). This width is
contracted by a factor of A\; + . Moreover, the same argument for (f¥)~! implies
that the height of (f2)~1(Q) N Q is contracted by (A2 —&)~!. By an inductive
argument one can show the existence of the desired orbit {z,}, whose orbit stays
always in @ (and therefore sup,, ||z, || < Rod). Moreover, its localization depends
on the intersection of the iterates of the square, so the precision on which we know
the location of z, is exponential in M if we know the form of f; for —M <k < M.

To show uniform hyperbolicity of the orbit {z,} it is enough to make a cone-field
argument which is similar to the one that it is possible to make to construct stable
and unstable manifolds for the orbit {z,}, as in Theorem 3.4.

Finally, to show uniqueness, consider two different orbits {wy,}, and {w/},. If
wp differs from w{ in the second coordinate more than in the first, it is not hard
to see using the form of f,, that ||w, — w},|| = oo as n — co. Similarly, if the first
coordinate differs more than the second, then |w, —w) || = oo as n — —oo. This
implies that sup,, ||w, — w},|| = co so that only one orbit can be bounded.

(]



INTRODUCTION TO NON-UNIFORM AND PARTIAL HYPERBOLICITY 149

4.2. Metric entropy and Lyapunov exponents. There exists an important
relation between the entropy of an ergodic measure and its positive Lyapunov ex-
ponents. In a nutshell, entropy measures the exponential growth of the number of
different segments of orbits of length n at a given precision as n goes to infinity.
Lyapunov exponents measure the exponential speed at which points get separated.

It is therefore natural to expect that the entropy of a measure is bounded from
above by the sum of its positive Lyapunov exponents (this is usually called Ruelle’s
inequality). Also, one expects that if a measure has positive Lyapunov exponents
and the measure can “see” the unstable manifolds, then its entropy will be positive
(this is also a well known general principle which can be attributed among others to
Pesin and Ledrappier-Young). We shall only briefly review a small part of this rich
theory and we refer the reader to [BaP] and references therein for a more complete
account on this theory.

Before we define entropy of a measure and topological entropy we need some
preliminaires. Let f : M — M be a diffeomorphism of a closed manifold M
endowed with a distance d. We consider the dynamical or Bowen balls defined as:

By(z,e) ={ye M : d(f'(x), [ (y)) <e, 0<j<n}
One defines the topological entropy hiop(f) of f as:

1
hiop(f) = gl_r)n lim sup - log N¢(n,e)

n—oo
where N (n,¢) is the smallest number k& > 0 such that there exist points z1,...,zx
verifying that M = Ule B, (zi,¢€).
For an ergodic f-invariant measure u one defines® the entropy hyu(f) as:

h,(f) = — lim lim sup 1 log u(By,(x,€)) , for p-almost every x € M
e300 nsco N
One can check that all the involved limits are well defined, etc (see [KH] or [My]).
It is a well known fact, known as the Variational Principle (see [My] for a proof)
that the topological entropy is the supremum of the values of the entropies of the
ergodic measures invariant under f, i.e.:

htop(f) = sup h/l (f)

n ergodic
This will be used in the two senses:

e if one knows that a diffeomorphism has positive topological entropy (for
example, by knowing that the action in the first homology group is hyper-
bolic) then there exist measures with positive entropy,

e if there exists a measure with positive entropy, then the topological entropy
is positive.

Entropy of a measure is related to Lyapunov exponents via the following results
which we state for diffeomorphisms of surfaces for simplicity. See [BaP] for more
general statements and proofs.

13This definition is due to Brin and Katok.
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Theorem 4.3 (Ruelle’s inequality). Let f : M — M be a C*-diffeomorphism of a
surface M. For an ergodic f-invariant measure ji one has that if hy,(f) > 0 then p
is hyperbolic with exponents x° < 0 < x* and moreover:

hu(f) < min{[x*], x"}.

In general, the inequality can be strict. For example, if i is a Dirac delta measure
on a hyperbolic fixed saddle p then it is ergodic, invariant and clearly hyperbolic.
On the other hand, it is easy to see that h,(f) = 0 since u(By(p,e)) = 1 for every
n and €.

To obtain entropy of a measure one needs that the measure “sees” the expansion.
This can be formulated in the following form for surfaces (again, this is far from
being optimal, see [BaP] for more general statements). The following result will
follow from Katok’s theorem which we shall review in the next section, but it admits
more quantitative versions (which depend on desintegration of measures along a
lamination and that is why we refer the interested reader to read this elsewhere,
for example [BaP]).

Theorem 4.4. Let i be a hyperbolic measure of a C'T diffeomorphism whose
support is not finite. Then h,(f) > 0.

There is however one case where the desintegration of the measure can be ex-
cluded from the statement and which is important in some contexts. We recall that
a diffeomorphism is conservative if it preserves a volume form wvol. In general, it is
too restrictive to assume that vol is ergodic, so, in general, the Lyapunov exponents
of vol are f-invariant functions instead of constants.

Theorem 4.5 (Pesin’s entropy formula). Let f : M — M be a conservative C1 -
diffeomorphism of a surface M. Then one has that

huot (f) :/XudUOZZ —/Xsdvol.

See [Ms] for a hands on proof which does not rely (explicitely) on the absolute
continuity of the unstable lamination of the measure. In particular, this proof is
one of the first instances where the use of the subexponential size of Pesin charts is
used to study the dynamics without the need to construct the invariant manifolds
first.

4.3. Katok’s theorem on the existence of horseshoes. In this subsection we
shall explain a stronger version of Theorem 4.4. It is by now a classical result due
to Katok (see [KH, Supplement], [Ge] or the appendix of [AvCW] for more general
versions and some improvements) that the existence of a hyperbolic measure which
is not periodic implies the existence of horseshoes in the C''*® context.

The following is the precise statement in the surface case:

Theorem 4.6 (Katok). Let f : M — M be a CY*t* diffeomorphism of a closed
surface M and pu an ergodic f-invariant measure whose support is not finite. Then,
hu(f) > 0 and for every e > 0 there exists a compact f-invariant subset A contained
in the support of u such that:

e the set A is uniformly hyperbolic,

e the topological entropy hiop(f|a) of [ restricted to A is close to hy(f), i.e.

htOP(f|A) > hu(f) —€
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For the definition of uniform hyperbolicity we refer the reader to section 5. In a
uniformly hyperbolic set with positive topological entropy there are infinitely many
hyperbolic periodic orbits and it is not hard to show the existence of a transverse
homoclinic intersection which is well known to produce a horseshoe (regardless
of the definition of horseshoe that we have not given). We refer the reader to
[KH, Chapter 6.5] for a more complete account. We shall explain now the main
ingredients of the proof of Theorem 4.6.

The key point is to work on what are sometimes called Pesin blocks or uniformity
blocks. These are subsets on which the constants are uniform (the choice of what
constants are chosen to be uniform vary in the literature). For example, in this
case, one can consider, for a given K > 0 the set Ax of points x € M such that
the value of p(z) > + of Theorem 3.5 as well as ||C, ()| + |C,(z) || 7! < K of
2.4. By reducing Ag up to an arbitrarily small measure subset, one can assume
that Ak is compact. Moreover, for given € > 0 there exists K such that A verifies
that u(Ag) > 1 —e. Also, it is a standard fact that one can assume that all the
involved functions (p, C,, etc) are continuous on Ag (this is the classical Luisin’s
theorem).

If the set Ax were f-invariant this would conclude since it can be chosen as to
have entropy as close to h,,(f) as one desires. However, in general there is no reason
to expect that Ag will be f-invariant.

One proceeds then as follows: one considers first a finite covering of the support
of u by Pesin charts which has a Lebesgue number and covers Ag. In A one has
uniform charts where the constants of C,, are bounded, and there remains a finite
number of transition charts where points go when the iterates do not belong to Ag.
In such a way one can construct a large number of “adapted orbits” of f which
“see” almost all the entropy of p and return to Ag quite frequently.

This allows to construct enough periodic pseudo-orbits which will be shadowed
by periodic orbits of f which are uniformly hyperbolic because they belong to Ag.
The way to “shadow” these orbits is using Theorem 4.1 by looking at orbits that
remain always in the places where the lift of the dynamics given by Theorem 3.5
coincides with f. This step is the most delicate since to ensure that the orbits
remain in the Pesin charts at all times one has to carefully choose the orbit one
wishes to shadow in order to control its orbit. See [KH, Lemma S.4.10] for more
details.

The fact that the periodic orbits one construct are hyperbolic and sufficiently
close to each other allows one to show that they are all homoclinically related and
therefore belong to the same f-invariant compact subset A which is transitive and
uniformly hyperbolic. The entropy is as close to h,(f) as desired.

Recently, in [Sar], these arguments have been improved to construct sets which
see all the entropy of p. The idea is consider a Pesin chart at each point and
consider a countable subcovering. Then, one considers the possible itineraries that
orbits make through those charts and constructs a countable Markov partition
with similar ideas as those of Bowen for constructing Markov partitions. The sets
constructed in [Sar] cease to be uniformly hyperbolic but enjoy coding properties
for which much information is known. See [Sar] for more details on this and the
previous construction.
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4.4. When is a measure hyperbolic? Clearly, because of Ruelle’s inequality
(Theorem 4.3) positive entropy is a sufficient condition for a measure to be hy-
perbolic in dimension 2. There are some times where one does not have enough
information on the invariant measure in order to compute its entropy. It is there-
fore important to have other methods to guarantee existence of positive Lyapunov
exponents. Here it is important to remark that in some (very important) applica-
tions one deals with non-ergodic (or a priori non-ergodic) measures where positive
entropy only guarantees some ergodic component to have positive Lyapunov expo-
nents. I would like to mention three known methods for establishing hyperbolicity
of a measure.

The first one has been developed independently by Lewowicz and Wojkowski
(see [Potg, Section 2.1] and references therein) and it is the method of measurable
cone-fields or quadratic forms. This has been quite useful to establish hyperbolicity
(and more recently the Bernoulli property) to a large class of billiards (see [DeM]).

The second is also related to cone-fields but it deals more with the notion of
critical points and extends the ideas which were developed in the setting of one-
dimensional dynamics. This was done famously by Benedicks-Carlesson ([BeC]) to
study the parameters for which the Hénon family admits non-uniformly hyperbolic
attractors and has been used largely since then (see [Berz| for improvements of that
result as well as a panorama of the works related to this).

More recently, in the setting of conservative twist maps, Arnaud has developed
some techniques to compute Lyapunov exponents for such maps and discovered
some interesting relations of these with the shape of the so called Aubry-Mather
set and Green bundles. Explaining this is possibly the objective of Marie-Claude’s
minicourse, but we also refer to her lecture notes [Arn] (and references therein) for
more information.

5. UNIFORM ESTIMATES

In this section we shall briefly present the concepts of dominated splitting, partial
hyperbolicity, normal hyperbolicity, etc. Essentially, one can think these concepts
as uniform versions of the hyperbolicity of measures: If a compact set admits a
continuous splitting of the tangent bundle such that for every measure supported in
the compact set, there is a positive gap between the Lyapunov exponents along each
of the bundles, then, the compact set is said to admit a dominated splitting. Under
this conditions, it is no longer needed to have control on the modulus of continuity of
the derivative in order to perform the graph-transform arguments. Moreover, under
some assumptions of hyperbolicity, one obtains results of persistence of invariant
manifolds which are quite useful in many applications; particularly (in view of the
interests of this conference) we mention the use of normally hyperbolic cylinders in
the recent proofs of Arnold diffusion ([BeKZ, GK, KZ] and references therein).

M will denote a d-dimensional manifold and f : M — M a C'-diffeomorphism.

5.1. Dominated splittings. Let A C M be a compact f-invariant set. We say
that it admits a dominated splitting of index i if there is a continuous splitting
TAM =E®F (ie. for every x € A one has T, M = E(x) @ F(x) and E and F are
continuous functions) such that the bundle E(x) has dimension ¢ and verifies the
following properties:
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e (Invariance) The bundles are D f-invariant, that is, for every z € A one
has D, (E(x)) = E(f(2)) and Df,(F(x)) = F((x).

e (Domination) There exists N > 0 such that for every z € A and vectors
vy € E(z)\ {0} and vp € F(z) \ {0} one has that:

IDfvell _ 1D orll
vl [or|
It follows from compactness that there exists A € (0, 1) such that

DfN DfN
IDsN vl _ | IDSNor]
oz Jor]

It is possible to choose an adapted metric for which the value of N is equal to 1
(see [Gou]). The fact that the splitting is dominated is independent of the choice
of the Riemannian metric.

Exercise. Show that a continuous D f-invariant decomposition TAM = E & F is
dominated if and only if there exists v > 0 such that for every ergodic measure
€ Meyg(f) supported on A one has that the largest Lyapunov exponent x7 (i)
of p along E and the smallest Lyapunov exponent xx(u) of p along F' verify:

X5 (R) < xp(p) — v

In particular, show that if the splitting is dominated, then the Oseledets splitting
respects (and refines) the splitting £ @ F.

It is not hard to show that when there is a dominated splitting on a subset A,
the angle between the subbundles of the domination is uniformly bounded from
below, this follows directly by continuity of the bundles and compactness of A. We
remark here that the continuity of the bundles is not essential in the definition of
domination and it follows from the rest of the properties (see [BoDV, Appendix
B)).

A key property of dominated splitting is that it is robust:

Proposition 5.1. Let A C M be a compact set admitting a dominated splitting
of the form TaM = E @ F for a diffeomorphism f : M — M of class C*. Then,
there exists a compact neighborhood U of A in M and a neighborhood U of f in the
C*-topology such that every g € U verifies that the set A, = Nnez 9" (U) admits a
dominated splitting Ty,M = E, ® Fy with dim £, = dim E.

We shall not prove this result since it is not in the spirit of this notes, the proof
is not hard, see for example [BoDV, Appendix B]J.

If Df preserves a continuous subbundle E C Ty M we say that E is uniformly
contracted (resp. wuniformly expanded) if there exists N > 0 such that for every
x € A and every unit vector v € E(x) one has that

1
IDFYol <5 (resp. = 2)

Exercise. Show that a continuous D f-invariant subbundle £ C Tj M is uniformly
contracted if and only if every ergodic measure p supported on A has all Lyapunov
exponents corresponding to vectors in E negative.
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5.2. Plaque families. When one has a dominated splitting on a compact subset
A C M, as we mentioned, one can assume that for every f-invariant ergodic mea-
sure verifies that its Oseledets splitting respects the splitting given by the domina-
tion. So, in a sense, this means that when considering linear change of coordinates
which make the bundles orthogonal these changes of coordinates become uniformly
bounded. It is in a sense as if the norm of the maps €, and C, ! of Theorem 2.4
are uniformly bounded. This is not exactly true since the norm of C,, and C;! also
depend on how quickly the derivative starts behaving as its “limit behaviour”.

Let us state another result ([HPS, Theorem 5.5]) which is still in the spirit of
the graph transform argument. We shall only sketch its proof. We denote as DF
to the k-dimensional disk of unit radius in R¥ and Emb'(D*, M) to the space of
Cl-embeddings of D* into M. We denote as D¥ C D* to the disk of radius » < 1

Theorem 5.2 (Plaque Families). Let f : M — M be a C*-diffeomorphism and A C
M a compact f-invariant subset admitting a dominated splitting of the form TaM =
E & F. Then, there exists a continuous"® family Dg : A — Emb*(DY™ F | M) with
the following properties:

e (Tangency:) for every x € A one has that Dg(x)(0) = z and the image of
Dgr(x) is tangent to E(z) at x.
¢ (Local invariance:) there exists 1o < 1 such that for every x € A one has
that f(Dp(x)(DEmE)) C Dy(f(x)) (DI E),
SKETCH Using continuity of the bundles one can choose'® a continuous linear change
of coordinates C(z) : RY — T,,M (recall that d = dim M) such that C(z)(RY™E x
{0}4im Iy = B(x) and C(z)({0}4mE x R4m F) = F(z). Using the exponential map
exp : TM — M one can construct uniform charts around each point x € A of the
form &, := exp, oC(z) : B(0,R) — M verifying that for y,y" € B(0, R) one has
that %d(&:(y), &(y') < lly = ¥/l < Kd(&:(y),&(y')). Here R > 0 and K > 0 are
fixed constant independent of x.
One can, by using the same technique as in the proof of Theorem 3.1 lift the
dynamics by extending the map f, = 5;&) ofo&, : B(0,R/K|Df.|) = B(0,R)

to a diffeomorphism f, : R* — R% which in coordinates RY = RImE g RAmE 5y
be expressed as:

fo(v,w) = (A0 + az (v, w), Byw + By (v, w))
where A, : RImE _ RIME and B, : RIMF 5 RIMF are linear transformation
which by the domination'® condition satisfy ||A,|| < A||[B; || =" for some A € (0,1)
and such that the C" size of a, and 3, is smaller than € < 1 — \.
Now, for a given z € A we can consider the sequence {f,}, of diffecomorphisms
of R? defined as f, = ffn(x). For this sequence it is possible to consider the

MNotice that this has only sense when the bundle £ C T) M is trivializable (for example,
when A is totally disconnected). Technically, it would be more correct to write that Dg : A —
Emb!(E;, M) such that Dg(x) is an embedding of Fj(x) in M where F1(z) denotes the disk of
radius 1 in E(x).

15This is not strictly true if the bundle is not trivializable over A. But we shall ignore this
technical (and unimportant) issue.

16\We remark that here we are assuming for simplicity that the dominated splitting comes with
an adapted norm. This is no loss of generality, but the same argument can be adapted not to use
it.
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space of graphs of Lipschitz functions from RY™F to R¥™F ~ Ag in the proof of
Theorem 3.4 one shows that the graph transform induced by the sequence f, is a
contraction for a suitable metric and so there exists a unique sequence of graphs
which is invariant under the sequence {f,}, and it is indeed by C'-graphs which
are tangent to RI™E x {0}dm F a4t (0,0).

Sending the intersection of the graphs with B(0, R) by &, to M one obtains the
desired embedding and notice that the intersection with B(0, R/K|Df;||) is sent
to the next graph since it remains in the place where fx coincides with fz This
concludes the proof.

O

Remark 5.3. This result does not provide uniqueness of the plaque families since
there is no natural way to lift f to the functions fm This means that for each
choice of lift { f, }zea of the dynamics one obtains an a priori different plaque family.
However, if there are dynamical conditions, for example if y € Dg(z)(DY™ ) and
f"(y) € &na)y(B(0,R)) for every n > 0 then the point y will belong to every
sufficiently large plaque family.

Notice that one can perform the graph transform argument by starting with a fo-
liation of a neighborhood of x and obtain locally invariant local foliations which are
almost tangent to E (or F'). This is done in [BuWj, Section 3] where fake foliations
are constructed. Those fake foliations have some technical applications (notably to
the study of stable ergodicity when the center direction is not integrable). One
should not be confused by the existence of these local foliations almost tangent to
E since it is possible that the bundle F is not locally integrable at any point of the
manifold (see [BuW] for examples).

Exercise. By combining Theorem 5.2 and the ideas used for Theorem 3.3 try to
show that Theorem 3.7 is valid for C'-diffeomorphisms of surfaces if the support
of the measure admits a dominated splitting.

The previous exercise is a particular case of a more general result which states
that much of Pesin’s theory works in the C'-setting if one assumes domination
on the support of the invariant measures. See [AbBC] for precise statements and
proofs.

5.3. Uniform hyperbolicity and partial hyperbolicity. Consider a compact
f-invariant set A and assume that D f-preserves a continuous splitting of Th M into
three bundles of the form:

TAM = E°® E°® E"
where E° is uniformly contracted, E* is uniformly expanded and the splittings
E° @ (E°® E") and (E° ® E°) ® E" are dominated. We say that:
e A is uniformly hyperbolic if E¢ = 0.
e A is partially hyperbolic if either E® or E* is non-zero.
e A is strongly partially hyperbolic if both E° and E" are non-zero.

The study of diffeomorphisms for which their limit set (more precisely their
chain-recurrent set) is uniformly hyperbolic is one of the milestones of study of
dynamical systems from the pioneering work of Anosov and Smale in the 60’s to
the present. Its study has interacted with the study of geometry and topology
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as well as it has been the starting point to many advances in different areas of
mathematics. One of the main tools of its study is the following classical result.

Theorem 5.4 (Shadowing Theorem). Let f : M — M be a C'-diffeomorphism
and A C M a compact f-invariant hyperbolic subset. For every € > 0 there exists
0 > 0 such that if {z}n C A is an d-pseudo orbit (i.e. a sequence such that
d(zn+1, f(2n)) < 0) there exists a pointy € M such that its orbit e-shadows {z }n
(i.e. one has d(f"(y),zn) < e). Moreover:

e one has that 6 — 0 ase — 0,

e if £ is small enough, the point y whose orbit shadows {2z}, is unique,

o if there exists m > 0 such that zp4m = 2z, for all n € Z one can choose y
to be a periodic orbit of period m,

e if A is locally maximal (i.e. if there exists a neighborhood U of A such that
A=\, f*(U)) then the point y can be chosen to belong to A.

SKETCH The proof follows exactly the same lines as the proof of Theorem 4.6 but
it is much easier. Indeed, one chooses uniform charts and applies exactly the same

argument as in the proof of Theorem 4.1.
O

It has been necessary to understand the global panorama of dynamical systems to
consider weaker notions of hyperbolicity. In some cases, non-uniform hyperbolicity
has been the right generalization, but in many others, it turns out that dominated
splittings or partial hyperbolicity have been more suitable. They verify the following
general theorem in the same lines as the results we present in this notes.

Theorem 5.5 (Stable Manifold Theorem). Let f : M — M be a C*-diffeomorphism
and let A C M be a compact f-invariant set with a partially hyperbolic splitting of
the form TaAM = E*® & E°* where the bundle E* is uniformly contracted. Then,
there exists a continuous family WS . : A — Emb! (DY E* MY with the following
properties:

e (Tangency:) for every x € A one has that Wi (x)(0) = = and the image

of Wi () is tangent to E*(z) at x,
e (Invariance:) for every x € A one has that

FWine(@) (DT ET)) € Wi, (f () (DHF7),

e (Convergence:) if y is in the image of Wi, .(x) then d(f™(z), f*(y)) = 0
exponentially fast as n — +oo,
e (Uniqueness:) if one considers for each x € A the strong stable set

Wes = Wi (f™ () (@I F))

it follows that for x,y € A the sets W;* and Wy* are injectively immersed
submanifolds which are either disjoint or coincide.

ProoF. It follows almost directly from Theorem 5.2 and Remark 5.3. Indeed,
one can consider any plaques family given by Theorem 5.2 and use the fact that
IDfzlE| < A <1 to see that the diameter of the forward iterates of the plaques
converges exponentially fast to zero. This gives invariance and convergence. Unique-
ness follows from the fact that independently on the choice of lift, the plaque families
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will coincide up to their size (see Remark 5.3) so that when considering the set of

points that eventually lie in a plaque one has uniqueness.
O

Remark 5.6. It is possible to show that graph transform argument varies continu-
ously with the diffeomorphism in compact sets so that if f,, — f then the strong
stable manifolds (resp. strong unstable manifolds) for f,, converge in compact sub-
sets to those of f.

5.4. Normal hyperbolicity and persistence. It is sometimes useful to perform
the graph transform method in a more global way. This is the case in the proof of
persistence of normally hyperbolic submanifolds or foliations. We refer the reader
to [HPS] or [Ber] for detailed proofs.

Consider f : M — M a C'-diffeomorphism and A C M a compact f-invariant
set. We shall assume that A is laminated by an f-invariant lamination £. This
means that for each z € A there exists a C'-injectively immersed submanifold
L(x) C A with the following properties:

o if £(x)NL(y) # 0 then L(x) = L(y),

e if z,, — x then L(x,) converges to £(x) uniformly in the C'-topology in
compact subsets,

o the map x — T,L(z) C T, M defines a continuous distribution.

The f-invariance means that f(L(z)) = L(f(z)).

We say that the lamination £ is normally hyperbolic if f admits a partially
hyperbolic splitting TA M = E* @ E¢ ® E* where E¢(z) = T, L(x) for every x € A.
Moreover, we say it is normally expanded (resp. normally contracted) if E* = {0}
(resp. E* = {0}).

Remark 5.7. Notice that if £ is a lamination by points, normal hyperbolicity of £
is equivalent to have that A is uniformly hyperbolic.

Whenever there is a normally hyperbolic lamination, one has the following per-
sistence result:

Theorem 5.8 (Stability of normally hyperbolic laminations). Let f : M — M be
a Ct-diffeomorphism, leaving invariant a normally hyperbolic lamination £ on a
compact set A. Then, there exists a C'-neighborhood U of f such that for every
g € U there exists a compact g-invariant set Ay close to A such that:

¢ (Continuation of leaves:) for every x € A there exists a manifold Ly dif-
feomorphic to L(x) such that if one considers an immersion iy : L(x) — M
there is an immersion i : Ly — M (possibly no longer injective) such that

iy and il are Ct-close and Lg is everywhere tangent to E (the continuation
of the bundle E° of f for g in Ay),

e (Invariance:) one has that f(i3 (L)) = ’?(z) (Lg(m)),
e (Continuity:) The leafs i(L%) with x € A saturate Ay and vary continu-

ously in the C*-topology in compact subsets.

The idea of the proof is to perform a graph transform argument in an entire
neighborhood of the immersion. This involves unwrapping the immersion to an
abstract immersion into a neighborhood of the leaf which depends on the point and
then applying arguments very similar to the ones we have already done albeit more
technical.
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This result is not completely satisfactory since in principle leafs of the new “lam-
ination” could merge. One sometimes calls this branching laminations (sometimes,
they are useful for some purposes, see [Bul, Pots, HP, HP5] for use of this notion).

Under a technical condition (which is always satisfied in case the lamination can
be extended to a neighborhood into a C'-foliation) it is possible to improve The-
orem 5.8 to have a true lamination for diffeomorphisms close to f. This condition
is known by the name of plaque-expansiveness and we refer the reader to [HPS]
and [Ber] for more information about it. We also refer the reader to [BuW] for
information on the related notion of dynamical coherence.

We make the following remarks on Theorem 5.8 since we shall not enter in
the details of its proof. The first remark is that to be able to perform a global
graph transform one uses strongly the fact that the dynamics are C°-close (not
only that the invariant bundles are close), this can be noticed by the fact that
(a strong version of Theorem 5.8, the one appearing in [HPS]) implies that after
C'-perturbation, the f-invariant foliation remains homeomorphic to the initial one
while there might be very different topological type of foliations which are tangent to
closeby distributions (just think about linear foliations on tori). The other remark
is that even in the simplest case of a closed submanifold N C M which is normally
hyperbolic, the graph transform must be performed with some care since does not
have a priori a fixed point on which to “center” the graph transform argument. We
refer the reader to [BerB] for a short proof in this particular and easier case.

5.5. Reducing the dimension. Possibly, the most important information given
by the existence of a dominated splitting or of the existence of a partially hyperbolic
splitting comes with the fact that Theorem 5.2 allows one to “reduce the dimension”
of the study. In general, if one has a strong partially hyperbolic splitting, one can
use Theorem 5.2 to reduce the situation to a kind of skew-product over a hyperbolic
set, at least, one can think the skew-product over a hyperbolic set as a toy model
for the general situation. This approach has been very successful when dim F¢ =1
(see [Cr]).

However, there are some cases where the reduction of dimension is even more
drastic, instead of obtaining a sequence of maps of a lower dimensional manifolds,
one can in some cases deal with a unique one. This is the case when the dynamics
one is interested in lives in a normally hyperbolic submanifold. As we have seen,
this is a robust property, and we shall quickly review in this subsection a result due
to Bonatti and Crovisier ([BoC2]) which allows to detect this situation.

Let us state their result.

Theorem 5.9 (Bonatti-Crovisier). Let A be a compact f-invariant set admitting
a partially hyperbolic splitting of the form TaxM = E° & E“. Assume moreover
that for every x € A one has that W*“(x) N A = {x}. Then, there exists a C*-
submanifold X C M containing A and tangent to E® at every point of A such that
it is locally invariant (i.e. one has that f(X) N2 is a neighborhood of A relative to
).

Exercise. Show that if A is partially hyperbolic and it is contained in such a

submanifold, then one has that W**(z) N A = {z} for every z € A.

5.6. When can you guarantee the existence of a dominated splitting?
One has the classical cone-field criteria (see [BoGo]) which ensures domination and
can be checked with only finitely many iterates (notice that the explicit bundles
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depend on the complete orbit of the point). This criteria is the one used to prove
Proposition 5.1.

There are also criteria to ensure domination when one has information on certain
robust properties of the diffeomorphism, a classical result in this line is [BoDP] (see
also [BoDV, Chapter 7]). Also, in the lines of a celebrated conjecture due to Jacob
Palis, one knows that far from homoclinic tangencies, the dynamics is partially
hyperbolic (see [CrSY] and references therein).

In the same spirit as the critical points of Benedicks-Carleson, for surface dy-
namics there exists the critical point criteria to admit dominated splitting first
introduced in [PuRH] and further improved by Crovisier and Pujals [CrPu] (see
also [Va] for developments in the holomorphic setting).

6. ATTRACTORS AND THE GEOMETRY OF UNSTABLE LAMINATIONS

In this section we give a glimpse in further topics which use the tools developed
in this notes. They represent a very biased choice based on the author’s interests.

The main point is to show some of the results of the notes in “action”. First,
we shall explain how (with help of some results we will just cite) the ideas in
the text allow to show that in dimension 2 there is an open and dense subset of
diffeomorphisms in the C! topology admitting a hyperbolic attractor. This result
is part of Araujo’s thesis [Ara]. His proof had a gap, and the result became folklore
after the results of Pujals-Sambarino ([PuS]). We shall present the proof that
appeared in [Pot] (which uses [PuS] but also some other recent results, notably
[BoC]).

After we have presented the proof of this result in dimension 2, we shall try to
present quickly (with much less details) a recent joint result with Sylvain Crovisier
and Martin Sambarino on finiteness of attractors for certain differentiable dynamics
which explores the geometry of the strong unstable manifolds.

We refer the reader to [Poty, Chapter 3] for a wider panorama on attractors for
differentiable dynamics. We also strongly recommend [Crs] for a more global point
of view of differentiable dynamics on manifolds with plenty of pertinent references.
At this point we wish to point out the important influence of the work of Mané in
this type of results, we mention in particular two landmark papers of his [My, Ms].
Also, recently we have written some notes with S. Crovisier which complement and
extend the material presented here [CrPo].

6.1. Some preliminaries. We start by introducing some preliminaries in the
study of differentiable dynamics. We consider C'-diffeomorphism f of a closed
d-dimensional manifold M.

A topological attractor is a compact invariant set A such that there exists an
open set U verifying f(U) C U and A =(),,~, f"(0).

Exercise. Assume that A is a partially hyperbolic topological attractor with split-
ting TAM = E°® @& E" where E" is uniformly expanded. Show that:

e The set A is saturated by strong unstable manifolds W** (i.e. the strong
stable manifolds for f=1, c.f. Theorem 5.5).

e There exists an ergodic invariant measure p such that the sum of its Lya-
punov exponents is < 0. As a consequence, p has at least one strictly
negative Lyapunov exponent.
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In fact, one can see that the first assertion of the second item does not need the
fact that A is partially hyperbolic.

Topological attractors are not completely satisfying, for example, it always holds
that the whole manifold M is a topological attractor. In general, one adds some
sort of indecomposability hypothesis to the definition of attractor'”. We say that A
is an attractor for f if it is a topological attractor and f|, is transitive. The basin
of A is the set of points whose omega-limit set is contained in A. In the case where
A is an attractor it is |J,, f~"(U).

Exercise. Show that if A C M is an uniformly hyperbolic attractor of f then:

e its basin is an open set of M,
e there exists a neighborhood U of f and a neighborhood U of A such that for

g € U one has that g(U) C U and Ay =, 9" (U) is a uniformly hyperbolic
attractor.

Attractors do not always exists (even for C"-generic dynamics, see [BoLY, Pots]).
So, one sometimes uses the notion of quasi-attractors. We say that a compact f-
invariant set is a quasi-attractor if:

e (Intersection of topological attractors:) there exist a basis of neigh-
borhoods U,, of A such that f(U,) C U,,
e (Indecomposability:) if U is an open set such that f(U) C U and ANU #

@ then A C U.

The second hypothesis is equivalent to A being chain-transitive which we shall not
define here. A remarkable result due to Bonatti and Crovisier states the following:

Theorem 6.1 (Bonatti-Crovisier [BoC]). There exist a residual (i.e. Gs-dense)
subset G C Diff' (M) such that if f € G then:

o There exists a residual subset Ry C M such that for every x € Ry the
omega-limit set of x for f is contained in a quasi-attractor.

e If a quasi-attractor A contains a periodic point p then it coincides with
its homoclinic class H(p) (i.e. the closure of the transverse intersections
between the orbits of W*(p) and W*(p)).

Exercise. Let p be a hyperbolic saddle and H(p) its homoclinic class. Show that
flr(p) is transitive.

6.2. Attractors in surfaces. The point of this subsection is to explain the fol-
lowing result:

Theorem 6.2 (Araujo [Ara]). For a given closed surface M, there exists a residual
subset G4 of Diff (M) such that if f € G4 then:

e cither there are infinitely many attracting periodic points (sinks),
e cither there are finitely many uniformly hyperbolic attractors whose basins
cover an open and dense subset (of full Lebesque measure) of M.

By the robustness properties of hyperbolic attractors one deduces as a conse-
quence that there exists an open and dense subset of Diff'(M) for which there
exists hyperbolic attractors. This contrasts with the situation in higher dimensions
([BoLY]).

17\We warn the reader that there are plenty of possible definitions of attractors, the one we
choose, even if quite common, is far from being the unique.
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Let us explain the main ideas of the proof. Since having infinitely many sinks is a
Gs-property, we shall assume that f cannot be approximated by a diffeomorphism
with infinitely many sinks. Moreover, we can without loss of generality assume that
f € G of Theorem 6.1 and that the number of sinks that f has is constant'® in a
neighborhood of f.

Now let A be a quasi-attractor for f. Notice that since f € G such a quasi-
attractor exists. We shall assume that A is not a sink, otherwise there is nothing
to prove. We must show that A is uniformly hyperbolic. The key point is to show
that A admits a dominated splitting since in that case it follows as a consequence
of the results of [PuS] that it is uniformly hyperbolic.

So let us show:

Proposition 6.3. A admits a dominated splitting.

ProoF. This proof is in the lines of what is discussed in subsection 5.6.

Since there exists a neighborhood U of f such that for g € U one has that g has
finitely many sinks, one can assume that one cannot create a sink in a neighborhood
U of A by perturbing f.

We use first that there must exist a measure p supported in A whose sum of
Lyapunov exponents is < 0. To show that f admits a dominated splitting in the
support of 1 we use classical arguments (see for example [AbBC]) which imply that
otherwise one can create a sink in an arbitrarily small neighborhood of the support
of p by a small perturbation of f.

Notice that in principle, the support of i may be smaller than A itself. However,
we know that f admits a dominated splitting on the support of 1 and that the sum
of Lyapunov exponents is < 0. This implies that u is hyperbolic, since otherwise,
using Theorem 3.3 one would get a sink!. Even if f is only C!, since it admits a
dominated splitting in the support of p one deduces that one can apply Theorem 4.6
to show that A contains periodic points and thus, using again that f € G conclude
that A is the homoclinic class of a periodic point such that the sum of its Lyapunov
exponents is < 0.

A classical argument of transitions (see [BoDV, Chapter 7]) implies that there
is a dense set of periodic points in A such that the sum of Lyapunov exponents is
< 0. If there were not a dominated splitting in A, then a small perturbation (see
again [BoDV, Chapter 7]) allows one to construct a sink. This concludes.

O

As we mentioned, by [PuS] this implies that A is a hyperbolic attractor. It
remains to show that there are finitely many. But the argument is very similar, if
this were not the case, one would obtain a sequence A,, — T" of hyperbolic attractors.
One can take the measures u,, with Lyapunov exponents adding < 0 and obtain a
similar measure p in I'. This allows to show that I' admits a dominated splitting
(one needs to use a stronger version of [BoC] which deals with classes which are
not necessarily quasi-attractors) and therefore is uniformly hyperbolic according to
[PuS]. This is a contradiction and one obtains finiteness.

18The number of sinks of a diffeomorphism is a semicontinuous function to the natural numbers
and oco. Therefore, it is continuous (and therefore locally constant) in a residual subset.

9T here could be a zero Lyapunov exponent, but again using Mané’s ergodic closing lemma
and Franks Lemma ([AbBC]) one would create a sink by small perturbation.
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The fact that the basin is open and dense is direct from the fact that the basins
of hyperbolic attractors is open and Theorem 6.1. To show that the basins cover a
full Lebesgue measure subset one has to use a semicontinuity argument on the size
of basins and use the fact that for C2-diffeomorphisms hyperbolic sets have zero
Lebesgue measure. See [Ara] or [San] for details.

6.3. Partially hyperbolic attractors with one dimensional center. We ex-
plain here part of a work in progress joint with S. Crovisier and M. Sambarino
which studies the geometry of partially hyperbolic sets saturated by strong unsta-
ble manifolds. This study is motivated by the fact that attractors are saturated by
strong unstable manifolds.

Together with recent results of [CrPuS] and [CrSY] (which use completely dif-
ferent techniques) our main result gives as a consequence the following result which
is a step towards the understanding of dynamics far from homoclinic tangencies.
It also improves (in dimension 3) a result announced®’ in [BoGLY] (though their
result holds in any dimension).

Theorem 6.4 ([CrPoS], [CrPuS], [CrSY]). Let M be a 3-dimensional manifold.
Then, there exists an open and dense subset U of Diffl(M) such that if f € U then:

e cither f has robustly finitely many quasi-attractors,

o or f can be Cl-approzimated by a diffeomorphism g which has a hyper-
bolic periodic point p whose stable and unstable manifolds intersect non-
transversally (i.e. g has a homoclinic tangency ).

Let us call HT'(M) the set of diffeomorphisms of M admitting a homoclinic
tangency. Putting together the results of [CrPuS] and [CrSY] one can show?! the
following:

Theorem 6.5 (Crovisier,Pujals,Sambarino,D.Yang). There exists a residual sub-
set Gopsy of Diff'(M) \ HT' (M) such that if f € Gepsy one has the following
property:
e there exists a filtration ) = Uy C Uy C ... C Uy_1 C Up = M of open
subsets such that f(U;) C U; and such that for every i, if A; = Nnez U\
Ui—1) then A; verifies one of the following three possibilities:

— A; is a sink,

— A; is a source, or,

— A; admits a strongly partially hyperbolic splitting Ta, M = E*GE‘@E"
where both E° is uniformly contracted and non-zero, E* is uniformly
expanded and non-zero and E€ admits a subdominated splitting into
one-dimensional bundles.

The advantage of working in dimension 3 is that we always know that the di-
mension of E¢ is at most 1. The strategy of the proof is showing that each A; can
contain at most finitely many quasi-attractors, so, we are reduced to showing that
in a compact f-invariant subset with a strong partially hyperbolic splitting with

20py [BoGLY] they show that there exists a residual subset G of diffeomorphisms far away from
homoclinic tangencies such that if f € G then all quasi-attractors of f are isolated from each other
(but might in principle accumulate in a set which is not a quasi-attractor). They call essential
attractors to such quasi-attractors since it can be shown that their basin contains a residual subset
of a neighborhood.

21 These result also rely on other results, see [Cr3] for a more complete account.
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dim F¢ = 1 one can have at most finitely many quasi-attractors. This is also a
consequence of the results of [CrPoS] and what we shall try to briefly explain in
what follows.

6.3.1. Minimal W*"-saturated sets. Let f : M — M be a C'-diffeomorphism.
Consider a set A which is of the form A = (1,,., f™(U\ V) where U and V' are open
subsets of M verifying that f(U) C U and f(V) C V.

The open set U\ V is a neighborhood of A and we know that if a point x € U\ V
verifies that f(z) ¢ U\ V (resp. f~!(z)) then f*(z) ¢ U\ V for all n > 1 (resp.
n < —1). This allows one to prove the following.

Exercise. Show that if a quasi-attractor @ intersects U \ V then Q C A.

We shall assume moreover that A admits a partially hyperbolic splitting Th M =
E° & E° @ E* where both E° and E" are non-zero and such that dim £ = 1.
Our goal is to show that there are finitely many quasi-attractors in A. Recall that
quasi-attractors are WW"“-saturated.

Exercise. Use Theorem 5.5 to show that if {Q,} is a sequence of quasi-attractors
in A converging to © in the Hausdorff topology, then ©® C A is W*"-saturated.

We say that a (non-empty) compact f-invariant and W4%-saturated subset I'
of A is a minimal W¥%-saturated set if for every IV strictly contained in I' which
is compact f-invariant and W“%-saturated one has that IV = (). That is, a subset
I' C A is a minimal W%%-saturated set if it is minimal for being compact, f-invariant
and W""-saturated.

Exercise. Show that if A contains a non-empty compact W"%-saturated subset
A’, then there exist minimal W¥“-saturated sets. Moreover, show that every quasi-
attractor () C A contains at least one minimal W""-saturated set.

Notice that if Q and Q' are two different quasi-attractors then QNQ’ = @). There-
fore, there are fewer quasi-attractors in A than there are minimal W"%-saturated
sets. The main result on [CrPoS] is the following.

Theorem 6.6 ([CrPoS]). There is an open and dense subset O of Diff' (M) such
that if f € O and A a compact f-invariant set admitting a strong partially hyperbolic
splitting TaAM = E®* & E° & E* with dim E¢ = 1 then A contains at most finitely
many W""-saturated sets.

The proof of this Theorem has two stages. First, a perturbation result which
provides a geometric property of W""-saturated laminations for diffeomorphisms
in a C'-open and dense subset of diffeomorphisms. The second stage is to show
that this geometric property forbids the minimal W*"-saturated sets to accumulate
and since (unlike quasi-attractors) minimal W*¥-saturated sets are closed in the
Hausdorff topology, this concludes.

6.3.2. Geometry of strong connections. We start by explaining the consequence
of our perturbation result. The proof of this result is the most delicate part of
[CrPoS] and it is the part which we shall omit in this notes. It is not (only) because
of laziness but because the techniques are farther away from the interests of this
notes.

The statement is the following:



164 R. POTRIE

Theorem 6.7. There exists a Gs-dense subset G of Diffl(M) such that for every
fe€Gand N € M a compact f-invariant partially hyperbolic set which is YW""-
saturated and for every r,r't,y > 0 sufficiently small, there exists 6 > 0 with the
following property.
If x,y € N satisfy y € W35(x) and ds(x,y) € (r,1'), then there is ' € W™ (x)
such that:
OV ('), W (y)) > 6

By ds we refer to the distance inside W?** and W? (x) (o0 = ss,uu) to denote the
e-ball around z in W7 (z) with the intrinsic metric. We could have used W/, .(x) in
each of the places, but the way we have formulated is a bit more explicit.

Using the continuity of the strong manifolds with respect to the diffeomorphism
(see Remark 5.6), one sees that at a given scale (i.e. if one fixes the values of r, 1/ ¢
and 7), this property holds for small perturbations of f € G and therefore, in an
open and dense subset of Diff!(M).

FIGURE 4. The stable manifolds of the minimal sets must intersect.

6.3.3. Finiteness of minimal saturated sets. Now, we use Theorem 6.7 as well as
the results in the previous sections of this notes to conclude the proof of Theorem
6.6.

Let A’ C A be a compact f-invariant and W4%%-saturated set. We must show
that there are finitely many minimal YW“%-saturated sets in A’.

Exercise. Show that if A has infinitely many minimal W"“"*-saturated sets, then
there exists A’ C A compact, f-invariant and W*%-saturated containing infinitely
many minimal W"%-saturated sets.

The following remark will be important in the proof.

Exercise. Show that if I', T C A’ are different minimal W¥“-saturated sets, then
their stable manifolds are disjoint. That is, if I' and I are minimal W¥%%-saturated
sets and there exists « € T’ such that there exists y € I such that d(f"(z), f"(y)) —
0 as n — 400 then T' =T".

First, we shall show the following.
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Proposition 6.8. In A’ there are at most finitely many minimal W**-saturated
sets T' with the property that for every x € T' one has that W**(z) NT' = {z}.

PRrROOF. Assume by contradiction that there are infinitely many such subsets and
denote them as {I',},. Notice that thanks to Theorem 5.9 we know that for each
n one has that I',, is contained in a locally invariant submanifold ¥,, tangent to
E€® E" at each point of T',,.

Notice moreover that there exists h > 0 such that huop(f|r,) > h for every n.
This follows from the following argument: consider a finite covering of I',, by balls
of radius e where ¢ is small enough (independent on n) so that any disk tangent to a
small cone around E* of diameter 1 contains at least two disks of radius € contained
in different balls of the covering. Now, we know that given any disk tangent to a
small cone around E" its iterates grow so that the internal radius multiplies by an
uniform amount (independent of n). We can choose such a disk D to be contained
in T, (since it is W*""-saturated). We get that for some k¢ (independent of n),
the image f*0(D) contains two such disks. Therefore, inside D one has that in kg
iterates we duplicate the number of “different” orbits and therefore the entropy of
fin [, is larger than k%, log 2 (independent of n).

Now, using the variational principle and Ruelle’s inequality (Theorem 4.3) for
f~! we obtain that T, has a measure p, whose Lyapunov exponent for f~! along
E° (recall that T',, “lives” in 3,,) is larger than h. This means that I',, has points
whose stable manifold has uniform size?? along E*@® E°¢. This implies that for every
n, there is an open ball B,, of uniform volume such that no other I';,, can intersect
for m # n. This is impossible if there are infinitely many IT',.

O

Now we are in conditions to complete the proof of Theorem 6.6. Consider f € G
given by Theorem 6.7 (or in a small neighborhood so that the same properties hold
at a given scale).

Assume by contradiction that there are infinitely many different minimal W**-
saturated sets {I',}, in A’. By Proposition 6.8 we can assume that for every n
there exists x,, € T';, such that W?**(x,,) N T, # {x,}.

By iteration, we can assume that we have points x,,y, € ', such that y, €
W3 (2,,) and ds(zy,yn) € (r,7') for some 1’ > Ar where A > max,{|| D, f*!(}.

Then, these pairs of points converge to points x,y € A’ which belong to the
same local stable manifold (y € W**(x) and ds(z,y) € (r,7’)). Since the strong
unstable manifolds get separated by projection by stable holonomy, it is possible
to show?? that this configuration forces the strong stable manifold of one of the T',,
to intersect some other I',, (see Figure 4) contradicting the fact that the minimal
sets where different. This concludes.
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