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THE HAMILTON JACOBI EQUATION, THE FEYNMAN-KAC
FORMULA AND THE CLASSICAL LIMIT

HENRYK GZYL AND JOSÉ R. LEÓN

Abstract. We present a simplified approach to the problem of obtaining
classical mechanics from a classical diffusion equation. It so happens that
when the diffusion constant tends to 0 the diffusing particles move along the
trajectory of a Newtonian particle. At the end we present a list of examples
including particles in a static electro-magnetic field

1. Introduction and preliminaries

Our goal in this review is to give some insight to what is now a well known theme:
To obtain classical mechanics as the asymptotic limit ~ → 0 of non-relativistic
quantum mechanics. We collected a series of results that were obtained by a large
number of researchers over time. Perhaps we can say that the originality of this
presentation lies on the simplification of proofs.

Let us begin with some introductory preliminaries. When the quantum mechanical
description of microscopic phenomena based on Schrödinger’s equation replaced the
classical description based on the Newtonian-Hamiltonian formalism, the natural
question to ask was: how is the later to be understood with regards to the former.

This was the birth of the ~ → 0 asymptotic procedures by means of which
classical mechanics was to be recovered from quantum mechanics. A few exposés of
techniques and interconnection with a variety of problems can be seen in [1], [6],
[16], [17] and [24]. By the way, [17] contains an analytic approach to what we do
here.

The simplest interesting Schrödinger’s equation, that which describes the quantum
behavior of a point particle of mass one in a potential V (x), is

i~
∂ψ

∂t
= −~2

2
∆ψ + V ψ.(1.1)

where ∆ is the Laplace-Beltrami operator in the Euclidean metric in Rn and ~ = h
2π ,

with h being the Planck’s constant. This equation can be transformed into a diffusion
equation by means of the replacement of t by t

i , thus obtaining

~
∂ρ

∂t
=

~2

2
∆ρ− V ρ,(1.2)

where ρ(·, t) = ψ(·, ti ). This (formal) replacement is interesting for the simple reason
that a well developed theory of functional integration exists, and which allows to
represent solutions to (1.2) as path integrals, whereas path integration starting from
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(1.1) is not a clear affair. How to relate both techniques? Different approaches have
been tried and most listed in the references [1], [6], [16], [17] and [24], but we may
single out a few, namely [5], [8], [11], [14] and [18].

A few of the references deal with the ~→ 0 limit from various related points of
view are [3], [8], [9], [10], [12], [20] and we are not going to improve on the results
presented there in various degrees of generality. What we are going to do instead is
to play around the initial step, namely the representation of the solution of (1.2)
as a path integral and take things to the point where the ~→ 0 limit becomes an
obvious and clear fact, and the conditions under which it is valid become quite
transparent.

The end product is similar but not identical to the approaches developed in [9]
and [10], and we feel this makes a good preamble to that line of work. Let us now
to prepare the stage.

We want to relate the solutions to the Hamilton-Jacobi equation, [2],
∂S0

∂t
+

1

2
(∇S0)2 + V (x) = 0, S0(x, P, 0) =< x,P >,(1.3)

to the asymptotic behavior of the solutions of (1.4) as h→ 0. Where h is a positive
real number and ∇ is the gradient operator. It is important to remark above the
sign of the function V , that < ·, · > denotes the Euclidean scalar product in Rn and
as in physical literature we use (x)2 = ||x||2 for x ∈ Rn.

h
∂ψh
∂t

=
h2

2
∆ψh + V (x)ψh ψh(x, 0) = e−

<x,P>
h ,(1.4)

The connection between (1.3) and (1.4) being via the substitution

ψh(x, t) = e−
Sh(x,P,t)

h ,(1.5)

which requires Sh(x, P, t) to satisfy
∂Sh
∂t

=
1

2
(∇Sh)2 + V (x) =

h

2
∆Sh, Sh(x, P, t) =< x,P > .(1.6)

Why (1.5)? In the trivially integrable case, this is that of a particle in a Hamiltonian
H(p). Below in section 2 we will study in more generality the movement of such a
particle and in the particular case that we are considering we get the equation

∂S0

∂t
+H(∇S0) = 0, S0(x, P, 0) =< x,P > .

Which has S0(x, P, t) =< x,P > −H(P )t, as solution. Consider now the solution of

h
∂ψh
∂t

= H(−h∇)ψh, ψh(x, 0) = e
<x,P>

h ,

which is by the theory of semigroups

ψh(x, t) = (e
tH(−h∇)

h ψh(·, 0))(x) = e−
S0(x,P,t)

h .

Then the function S0(x, P, t) can be recovered from the above solution by means of

S0(x, P, t) = lim
h→0
−h logψh(x, t).

Another reason is that the solution of equation (1.4) admits a representation in
terms of path integrals via the Feynman-Kac formula, see for example [21],

ψh(x, t) = E x
h[e(− 1

h (<P,Bh(t)>−
∫ t
0
V (Bh(s))ds))].(1.7)
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This expression can be computed in a variety of simple cases and is a good starting
point for theoretical analysis. Here, as usual, the symbol E x

h denotes the expectation
with respect to the Brownian motion starting at the point x ∈ Rn and Bh(t) denotes
this process at time t with variance h.

2. Some classical mechanics

For completeness we are going to take a small digression into classical mechanics.
The reason for the initial condition S0(x, P, 0) =< x,P > is the following. For a
mechanical system on Rn, the function S0(x, P, t) generates a canonical transforma-
tion that brings the system to rest, that is, it maps the current state of the system
(denoted by (x, p) to the initial state (denoted by (X,P )).

When S0(x, P, t) is known the state of the system at time t can be obtained from
the state t = 0 by solving the transformation equations

Xi =
∂S0

∂Pi
, pi =

∂S0

∂xi
.(2.1)

We shall assume that there exists an appropriate time interval [0, T ] in which
S0(x, P, t) is defined and the transformation (2.1) is well defined. It is plain to check
that for a dynamical system with Hamiltonian H(p) we have S0(x, P, t) =< x,P >
−H(P )t with S0(x, p, 0) =< x,P >, and (2.1) hold.

In general, see [2], a mechanical system on R2n is specified by giving the Hamilton-
ian H(x, p), and the trajectories of the system are obtained by solving the Hamilton
equations.

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
, i = 1, . . . , n.(2.2)

which is always possible, when the derivatives appearing in (2.2) are locally Lipschitz,
bounded, in a local sense.

In general the problem of solving (2.2) can be translated into the problem of
solving

∂S0

∂t
+H(x,∇S0) = 0, S0(x, P, 0) =< x,P > .(2.3)

The connection and much more can be seen in [2].
The problem with (2.3) being the apparition of singularities which make the

global existence of solutions a problem. Even though the curves (x(t), y(t)) may
exist and be unique as curves in R2n, their projection x(t) on Rn may cross which
makes it impossible in general to propagate an initial condition for (2.3) without
the appearance of singularities.

Quite a lot on these matters can be found in [17].
What we do next is quite straight forward and is similar to, but shrouded in a less

sophisticated jargon, the material in [10]. To begin with, suppose that S0(x, P, t)
satisfies (1.3), and consider the curves defined for 0 ≤ s ≤ t as the solutions to:

γ̇(s) = (∇S0)(γ(s), P, s) γ(t) = x,(2.4)

which will always possible when there is a T ≤ ∞, such a γ satisfying (2.4) exists if
∇S0 is Lipschitz and bounded as function in x for 0 ≤ t ≤ T. When we differentiate
(2.4) once more and make use of (1.3) we obtain that

γ̈(s) = −∇V (γ(s)).(2.5)
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Consider for each t, the curve x(s) defined on [0, T ] by x(s) = γ(t − s). Then
x(0) = x, ẋ(t) = −γ(0) = −P . Form F (s) = S0(x(s), P, t − s), differentiate with
respect to s to obtain

dF

ds
= −{1

2
(∇S0)2(x(s), P, t− s)− V (x(s))},

and now integrate from 0 to t to obtain

S0(x, P, t) =< x(t), P > +

∫ t

0

(
1

2
ẋ2(s)− V (x(s)))ds.(2.6)

For some of the results in section 3 we need the following

Lemma 1. Let x(s) be as above and define

U(x, P, t) =< x(t), P > +

∫ t

0

(
1

2
ẋ2(s)− V (x(s)))ds,

then we have U(x, P, t) = S0(x, P, t).

Remark 1. This is implicit in (2.6), but the conceptual meaning is different, for in
order to compute the right hand side of (2.6) one only has to solve ẍ(s) = −∇V (x(s)),
x(0) = x, ẋ(t) = −P , and then integrate to obtain the solution to (1.3).

Proof. Notice to begin with that

∂U

∂t
=< ẋ(t), P > +

1

2
ẋ2(t)− V (x(t)) = −{1

2
ẋ2(t) + V (x(t))},

since ẋ(t) = −P . Compute now

∂U

∂xi
=

n∑
j=1

Pj
∂xj(t)

∂xi
+

∫ t

0

n∑
j=1

{ẋj(t)
∂ẋj(s)

∂xi
− ∂V

∂xj
(x(s))

∂xj(s)

∂xi
}ds

=

n∑
j=1

{Pj
∂xj(t)

∂xi
+

∫ t

0

{ d
ds

(ẋj(s)
∂xj(s)

∂xi
)ds}}

=

n∑
j=1

{Pj
∂xj(t)

∂xi
+ ẋj(t)

∂xj(s)

∂xi
− ẋj(0)δij} = −ẋi(0),

where in the second step we used ẍj(s) = −( ∂V∂xj
(x(s)) and in the third we again

used ẋ(t) = −P .
Given that x(0) = γ(t) = x. Now a simple application of the law of the

conservation of energy yields,

∂U

∂t
(x, t) +

1

2
(∇U)2(x, t) + V (x)

= −(
1

2
ẋ2(t) + V (x(t))) + (

1

2
ẋ2(0) + V (x(0))) = 0,

which together with the fact that at t = 0 , U(x, P, 0) =< x,P > yields the desired
result.
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3. The Classical limit

As we said above, what do here is similar in spirit to the methods in [8] and [10].
We shall proceed with formal manipulations to the very end, point at which we
state the necessary qualifiers. We are interested in the behavior of (1.7) this is, of

ψh(x, t) = E x
h[e−

1
h (<P,Bh(t)>−

∫ t
0
V (Bh(s))ds)],

as h becomes small.
Consider S0(Bh(s), P, t− s) for 0 ≤ s ≤ t. From Itô formula

S0(Bh(s), P, t− s)

= S0(Bh(0), P, t) +

∫ s

0

(
∂S0

∂t
(−) +

h

2
∆S0(−)du+

∫ s

0

< ∇S0(−), dBh(u) >,

where (−) stands for (Bh(u), P, t − u). Now set s = t, use S0(x, P, 0) =< x,P >
and (1.3) to rewrite (1.7) as

ψh(x, t) = e−
1
hS0(x,P,t)E x

h[Zh(t)e−
1
2

∫ t
0

(∆S0)(Bh(s),P,t−s)ds](3.1)

where Zh(s) is the exponential martingale given by

Zh(t) = e−
1
h

( ∫ t
0
<(∇S0)(Bh(s),P,t.s),dBh(s)>+ 1

2

∫ t
0

(∇S0)2(Bh,P,t−s)ds
)
.(3.2)

A different way to reach (3.1) is to make ψh(x, t) = Λ(x, t)e−
1
hS0(x,P,t) and verify

that Λ(x, t) has to satisfy
∂Λ

∂t
=
h

2
∆Λ− < ∇S0,∇Λ > −∆S0

2
Λ, Λ(x, 0) = 1(3.3)

and we see that (3.1) expresses the solution to (3.3) as a path integral combining
the Cameron-Martin-Girsanov and Feynman-Kac formula, see [21] for example.

Had we rigged things up so Schilder’s conditions for his theorem A in [20] be
satisfied we could at this point conclude that

lim
h→0

E x
h[Zh(t)e−

1
2

∫ t
0

∆S0(Bh,P,t−s)ds] = e−
1
2

∫ t
0

∆S0(x(s),P,t−s)ds.(3.4)

where x(s) is the curve maximizing the following functional

L(ξ) = −
∫ t

0

(
< ∇S0(ξ(s), P, t− s), ξ̇(s) >

+
1

2
(∇S0)2(ξ(s), P, t− s) +

1

2
ξ̇2(s)

)
ds

= −1

2

∫ t

0

(
ξ̇(s) +∇S0(ξ(s), P, t− s)

)2
ds(3.5)

which is obviously the curve x(s) introduced in section 2, this is the curve solving

ẋ(s) = −(∇S0)(x(s), P, t− s) x(0) = x,(3.6)

which makes (3.5) attain its maximum value.
We would thus obtain

lim
h→0
−h logψh(x, t) = S0(x, P, t),

as well as the limit

lim
h→0

e
1
hS0(x,P,t)ψh(x, t) = e−

∫ t
0

∆S0(x(s),P,t−s)ds.
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But if we did not know about Schilder’s result we could proceed as follows. Let
Xh(t) be the solution of the stochastic equation

dXh(t)(s) = −(∇S0)(Xh(s), P, t− s)ds+
√
hdB1(s)(3.7)

and now use the Cameron-Martin-Girsanov formula to rewrite ψh(x, t) as

ψh(x, t) = e−
1
hS0(x,P,t)E x

1 [e−
1
2

∫ t
0

(∆S0)(Xh(s),P,t−s)ds](3.8)

and we can now state the

Theorem 1. Assume that V (x) is such that for t in [0, T ], (1.7) is finite and that
the solution to (1.3) exits, is smooth and ∇S0 is Lipschitz or bounded and that ∆S0

is smooth and bounded. Then Xh defined by (3.7) exists and

lim
h→0
−h logψh(x, t) = S0(x, P, t),

lim
h→0

e
1
hS0(x,P,t)ψh(x, t) = e−

1
2

∫ t
0

∆S0(x(s),P,t−s)ds.

Proof. The existence and uniqueness of Xh(s) is standard and Xh(s) tends
uniformly in probability to x(s) as h tends to zero. All this can be seen in [12]. The
first limit is not a problem and for the second use the smoothness of ∆S0.

Remark 2. In [12] we can also find the expansion of Xh(s) in powers of
√
h and

this combined with the smoothness of ∆S0 allows us to obtain asymptotic expansions
of ψh(x, t). The whole point in doing things this way is to go around the heavy
limiting procedures as appearing in [9], [10] and [20], since all that is involved are
estimates in [12] that are typical of the theory of ordinary differential equations.

What come next is a rehash of a standard theme, see [9] but we say it differently.
As above let start from (1.7) and rewrite it by means of the Cameron-Martin-Girsanov
translation formula as

e−
1
h b(t)E x

h[e−
1
h

∫ t
0

∑
ij B

i
h(s)Bj

h(s)Hij(Bh(s))ds],(3.9)

where

b(t) =< P, x(t) > +

∫ t

0

(
1

2
ẋ2(s)− V (x(s)))ds.

We have seen in Lemma 2.6, equals S0(x, P, t), and where

Hij(Bh(s)) =

∫ 1

0

(1− u)
∂2V

∂xi∂xj
(u+Bh(s) + x(s))du,

here x(t) has been introduced in section 2. To arrive at (3.9) we use the fact that
x(s) maximizes the following functional

−(< P, ξ(t) > +

∫ t

0

(
1

2
ξ̇2(s)− V (ξ(s)))ds),

over the set of trajectories that have square integrable velocity, ξ(0) = 0 and
ξ(t) = −P which can be seen in [10]. Then the first variation of this functional
vanishes at x(s) and we also make use of the fact that for a f ∈ C2(Rn), and any
b ∈ Rn we have

f(b+ y) = f(y) +

n∑
i=1

bi
∂f

∂xi
(y) +

∑
i,j

bibj
∫ 1

0

(1− u)
∂2f

∂xi∂xj
(u+ b+ y)du.
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Now rescale the Brownian motion in (3.9) to obtain

ψh(x, t) = e−
b(t)
h E x

1 [e−
∫ t
0

∑
i,j B

i
1(s)Bj

1(s)Hij(
√
hB1(s))ds].(3.10)

Then we see that any condition insuring integrability of (3.10) and smoothness of
Hij would yield what we want.

For example, when Hij(x) is a positive form for every x and is continuous we are
in business. Also when Hij(x) has negative eigenvalues, we may pull things through
by restricting t to an interval such that (3.10) is finite. It suffices to take

4 inf |
∑
ij

ξiξjHij(x)| < T.

The connection with the previous result being that

e−
1
2

∫ t
0

∆S0(x(s),P,t−s)ds = E x
1 [e
− 1

2

∫ t
0
Bi(s)Bj(s) ∂2V

∂xi∂xj
(x(s))ds

].

As can be seem in [15] pages 13-14.

4. More general conditions

We may want to consider (1.4) with the initial condition

ψh(x, 0) = f(x)e−
1
hS(x).(4.1)

as in [8] say. Proceeding as above, we would have to start studying
∂S0

∂t
+

1

2
(∇S0)2 + V (x) = 0, S0(x, 0) = S(x),

and we may assume the same hypothesis as in Theorem 1 to hold. As before, we
can write the solution to (1.4) with initial condition (4.1) as

ψh(x, t) = Exh[f(Bh(t))e−
1
h

(
S(Bh(t))+

∫ t
0

∆S0(Bh(s),P,t−s)ds
)
],

which can, as in section 3, be transformed into

ψh(x, t) = e−
1
hS0(x,P,t)Exh[f(Xh(t))e−

1
h

∫ t
0

∆S0(Xh(s),P,t−s)ds],

where Xh(s) was introduced in (3.7). At this point, with boundedness and continuity
assumptions on f , the standard limit and asymptotic expansions can be obtained.

The alternative procedure described in section 3, goes along the same lines. The
only difference is that now we have to maximize the functional∫ t

0

(
V (ξ(s))− 1

2
ξ̇2(s)

)
ds− S(ξ(t)),(4.2)

over the curves with square integrable derivative in [0, T ], for a convenient T . Such
curves would satisfy

ẍ(s) = −∇V (x(s)), x(0) = x, ẋ(s) = −∇S(x(t)),

for 0 ≤ s ≤ t. That they maximize (4.2) can be obtained by standard methods of
calculus of variations.

Considering now

ψh(x, t) = Exh[f(Bh(t))e−
1
h

(
S(Bh(t))+

∫ t
0
V (Bh(s))ds

)
]

and applying the argument in section 3, it can be transformed into

ψh(x, t) = e
1
h b(t)Exh[f(x(t) +Bh(t))e−

1
h

∫ t
0

∑
i,j B

i
h(u)Bj

h(u)Hi,j(Bh(u))du],
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by means of the Cameron-Martin-Girsanov formula and a Taylor expansion about
x(u) up to second order. The term of first order in Bh(·) drop away due to the
maximizing property of x(s).

From this point on, the same comments as in the section 3 apply.

5. Particle in a static electro magnetic field

The description of a particle moving through an electro-magnetic field is described
by the Hamiltonian

H(x, p) =
1

2
(p−A(x))2 + V (x),(5.1)

with A(x) being a smooth vector field on R3 and V (x) being a smooth scalar
function. We assume that ∇ × A(x) and ∇V (x) are either bounded or satisfy a
growth condition such that either Newton’s equations

ẋ(s) = ẋ(s)× (∇×A(x(s)))−∇V (x(s)),(5.2)

or Hamilton’s equations

ẋi = pi −Ai(x), ṗi = − ∂V
∂xi

+ (pj −Aj)
∂Aj
∂xj

(5.3)

have a unique solution for every initial condition (x(0), p(0)). The Hamilton-Jacobi
equation corresponding to (5.1) is

∂S0

∂t
= +

1

2
(∇S0 −A(x))2 + V (x) = 0, S0(x, 0) = S(x).(5.4)

We assume that for all t ∈ [0, T ] it exists, has enough smoothness and ∇S0, ∆S0

are smooth and bounded.
We shall furthermore make the simplifying assumption (usually called the transver-

sality condition or gauge in the physical literature) that

< ∇, A(x) >= 0.(5.5)

Consider now the diffusion satisfying

h
∂ψh
∂t

=
1

2
(h∇+A)2ψh + V ψh, ψ(x, 0) = f(x)e−

1
hS(x),(5.6)

for x ∈ R3 and t > 0. Under a variety of assumptions on V (x) and A(x), see [21]
for example, the solution of (5.6) can be written as

ψh(x, t)=E x
h[f(Bh(t))e

1
h

∫ t
0
<A(Bh),dBh(s)>+ 1

h

∫ t
0
V (Bh(s))ds−Sh(Bh(t))](5.7)

by means of a combination of the Feynman-Kac and Cameron-Martin-Girsanov
translation formula.

Remark 3. Let us explain how one can obtain (5.7). For this, it suffice to compute
the infinitesimal generator of the semigroup defined by :

Pt(F )(x) = E x
h[F (Bh(t))e

1
h

∫ t
0
<A(Bh),dBh(s)>+ 1

h

∫ t
0
V (Bh(s))ds],

and P0(F )(x) = f(x)e−
1
hS(x). See (5.7) for more on this. From the definitions and

rearranging the terms, we obtain
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1

t
[Pt(F )(x)− F (x)]

=
1

t
E x
h[(e

1
2h

∫ t
0
A2(Bh(s))ds+ 1

h

∫ t
0
V (Bh(s))ds

×(F (Bh(t))e
1
h

∫ t
0
<A(Bh),dBh(s)>− 1

2h

∫ t
0
A2(Bh(s))ds − F (x))

+e
1
h

∫ t
0
<A(Bh),dBh(s)>− 1

2h

∫ t
0
A2(Bh(s))ds[F (x)e

1
2h

∫ t
0
A2(Bh(s))ds+ 1

h

∫ t
0
V (Bh(s))ds−F (x)]

→t→0
h

2
∆F (x) +A(x)∇F (x) +

1

2h
A2(x)F (x) +

1

h
V (x)F (x)

=
1

2h
(h∇+A(x))2F (x) +

1

h
V (x)F (x).

Recall that < ∇, A >= 0. Moreover, we have used above the following facts. Let A
be a smooth vector field and consider the stochastic differential equation

dXh(s) = A(Xh(s))ds+ dBh(t)
L
= A(Xh(s))ds+

√
hdB1(t),

then
dYh(s) :=

1√
h
Xh(s) =

1√
h
A(
√
hYh(s)) + dB1(t).

Now by using Girsanov’s formula we get

E x
h[G(Xh(·))] = E x

h[G(
√
hYh(·))]

= E x
1 [G(
√
hB1(·))e

1√
h

∫ t
0
<A(
√
hB1(s)),dB1(s)>− 1

2h

∫ t
0
A2(
√
hB1(s))ds

]

= E x
h[G(Bh(·))e

1
h

( ∫ t
0
<A(Bh(s)),dBh(s)>− 1

2

∫ t
0
A2(Bh(s))ds

)
].

We can now proceed as in section 3. That is, we compute dS0(Bh(s), t− s) as
function of s for each t ∈ [0, T ] and then transform (5.7) into

ψh(x, t) = E x
h[f(Bh(t))Zh(t)e−

1
2

∫ t
0

∆S0(Bh(s),t−s)ds]e−
1
hS0(x,t),(5.8)

with Zh(t) being

Zh(t) = e−
1
h

( ∫ t
0
<(∇S0+A)(Bh(s),t−s),dBh(s)>+ 1

2

∫ t
0

(∇S0+A)2(Bh(s),t−s)ds
)
ds,

which is a martingale by the Novikov’s criterion whenever

E x
h[e

1
2

∫ t
0

(∇S0+A)2(Bh(s),t−s)ds
)
ds] <∞.

Rescale Bh(t) as to have a fixed set of probability laws and consider the stochastic
differential equation

dXh(s) = −[∇S0(Xh(s), t− s) +A(Xh(s))]ds+
√
hdB1(s),(5.9)

with initial condition Xh(0) = x. From our assumptions on A and ∇S0 we obtain
the uniqueness and existence of Xh(s). Now rewrite (5.8) as

ψh(x, t) = e−
1
hS0(x,t)E x

h[f(Xh(t))e−
1
2

∫ t
0

∆S0(Xh(s),t−s)ds](5.10)

by making use of the Cameron-Martin-Girsanov theorem. Again, from the conver-
gence of Xh(s) as h tends to zero to the solution of

ẋ(s) = −(∇S0(x(s), t− s) +A(x(s))), x(0) = 0,

we obtain the desired limiting behavior of (5.8) and using the expansion of the
solutions of Xh(s) of (5.9) in terms of

√
h we can get asymptotic expansions of

ψh(x, t).



90 HENRYK GZYL AND JOSÉ R. LEÓN

6. Examples

In this section we present a few examples, some of which are rather simple, so
much seemingly nobody has cared to write them down. We do so never the less.

(1) The case of the free particle with Hamiltonian H(p) = p2

2 was mentioned in
section (3). In this case

ψh(x, t) = Exh [e−<P,Bh(t)>] = e−
1
h (<x,P>− 1

2 tP
2).

Then we obtain that

− lim
h→0

h logψh(x, t) =< x,P > −1

2
tP 2 = S0(x, P, t).

(2) Consider now the case V (x) = ax in R. The general case V (x) =< a, x >
in Rn can be deduced from this by rotation. In this case the solution of
(1.4) is given by

ψh(x, t) = e−
1
h

(
xP+axt+ a2t3

6 + P2t
2 + at2P

2

)
,

from which it follows that

S0(x, P, t) = xP − axt− a2t3

6
− P 2t

2
− at2P

2
.

To finish with this short list of well known cases consider now the model in
R when V (x) = −x

2

2 . Thus

ψh(x, t) = e−
1
h

(
x2

2 coth t−(P− x
sinh t )2 tanh t

2 −h log(cosh t)
1
2

)
,

and we see as h tends to zero we get

− lim
h→0

h logψh(x, t) = S0(x, P, t) =
xP

cosh t
− P 2 − x2

2
tanh t.

(3) In this part we will consider the second order partial differential operator

∆ = e2x ∂
2

∂x2
+ e2x ∂

∂x
.

Acting on the class of smooth real valued functions. That is the Laplace-
Beltrami operator for the metric g11 = e−2x. And it is associated to a
geodesic flow on the line, with Hamiltonian H(p, x) = e2x p

2

2 see [10] for
diffusion on manifolds. The corresponding Hamilton-Jacobi equation is

∂S0

∂t
+
e2x

2
(
∂S0

∂x
)2 = 0.(6.1)

Being the associated diffusion equation

∂ψh
∂t

=
h

2
∆ψh,(6.2)

We shall take as initial condition for S0(x, t) the datum s(x) = e−2xp where
p is a real number and put ψh(x, 0) = s(x)

h . A simple computation shows
that the solution to (6.1) is given by

S0(x, t) = e−2x p

1 + 2pt
.
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Therefore the solution is defined when p < 0 only if t < 1
2|p| . To find the

diffusion with generator h
2 ∆ we have to solve

dXh(t) = eXh(t)dBh(t) +
h

2
e2Xh(t)dt,(6.3)

which for the law P x is given by

Xh(t) = − log(e−x + x−Bh(t)).

The last assertion is readily verified by using the Itô’s formula. Hence the
solution is defined until an explosion time

Th(e−x) = inf{t ≥ 0 : Bh(t) ≥ e−x} =
1

h
T1(e−x),

the last equality holds by scaling and T1 refers to the same object for
standard Brownian motion.

From all this we see that

ψh(x, t)

= E x
h[e−

p
h e
−2Xh(t)

] = E 0[e−
p
h (e−x−Bh(t))2 ; t <

1

h
T1(e−x)}]

= E 0[e−
p
h (e−x−Bh(t))2 ]− E 0[e−

p
h (e−x−Bh(t))2 ; t ≥ 1

h
T1(e−x)]

= E 0[e−
p
h (e−x−Bh(t))2 ] + o(1) = e−

1
hS0(x,t) + o(1).

For general conditions two problems arise: first there appear singularities
in S0(x, t) besides the explosions in Xh(t), and a general statement would
have take both of these facts into account.

7. Final Comments

• Things seem so much easier than in [20] only because here the functionals
involved are much simpler than those considered by Schilder.

• Apart from the important problem related to the limit log−hψh(x, t), there
is a class of problems related to the study of the eigenfunctions of h2 ∆ + V
as h tends to zero. See for instance [17] and [19].

• When a path integral representation for the solution of (1.1) exists see [3],
a similar analysis can be performed.

• It is necessary to add that as far as asymptotic expansions goes, it is easier
to start with an asymptotic expansion for A in (3.3) and solve the simple,
linear, recursive set of equations that appears when an expansion in powers
of h is considered.

• We want to observe that this exposition is a lengthening and an update of
a previous article [13] written by the authors, that appeared in the already
distant 1989.

• Last but non least. In statistics it is important to consider the transition
density for a general diffusion when the step of discretization h tends to zero.
This type of problem was considered for the first time by Dacunha-Castelle
& Florens-Zmirou in [7] in the case of a general diffusion and n = 1. Recently
this has become a subject of active research, because of its implications
in approaching the likelihood in several applied problems. The difference
with the approach developed here consists of, that instead of functionals
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of Brownian motion, there it is necessary to study functionals of Brownian
bridges.

References

[1] S. Albeverio and T. Arede. The relation between quantum mechanics and classical mechanics.
A survey of some mathematical aspects. Bibos prepint 28 (1983), Bielefeld.

[2] V.I. Arnold, Méthodes Mathématiques de la Mechanique Classique. MIR (1976), Moscow.
[3] R. Azencott, A. Doss. L’équation de Schrodinger quand h tend vers zéro, une approche

probabilistique. LNM Vol 1109 (1985).
[4] J.M. Bismut. Large deviations and Malliavin Calculus. Birhäuser (1989), Berlin.
[5] R.H. Cameron. A family of integrals serving to connect the Wiener and Feynman integrals.

Jour. Math Phys. 34, 126-141 (1961).
[6] R.D. Carlitz, D.A. Nicole. Classical paths and quantum mechanics. Annals of Physics, V. 164,

Issue 2, Pages 411-462 (1985).
[7] D. Dacunha-Castelle and D. Florens-Zmirou. Estimation of the coefficients of a diffusion from

discrete observations, Stochastics. Volume 19, 1986-Issue 4 263-284 (1986).
[8] H. Doss. Sur une resolution stochastique de l’équation de Schroedinger à coefficients analytiques.

Comm. Math Phys. V. 73 247-269 (1980).
[9] H. Doss. Démonstration probabiliste de certains développements asymptotiques quasi clas-

siques. Bull. Sci. Math., V. 109 (No. 2), pp. 179-208 (1985).
[10] D. Elworthy and A Truman. Classical mechanics, the diffusion (heat) equation and the

Schrödinger equation on a Riemannian manifold. Jour. of Math Physics 22, 2144 (1981).
[11] J. Feldman. On the Schrödinger and heat equations for nonnegative potentials. Tran Am

Math Soc, V. 108,251-269 (1963).
[12] M. Freindlim and A.D. Wentzel. Radom perturbations of dynamical systems. Springer-Verlag.

Berlin. (1984).
[13] H. Gzyl and J.R. León. Classical limits via Brownian Motion. Notas de Matemáticas del

Departamento de Matemáticas de la Universidad de los Andes. Venezuela No. 100 (1989).
[14] K. Itô. Wiener integral and Feynman integral. Proc. Fourth Berkeley Symposium on Prob.

and Stat. V. 2, 277-238. Univ. California Press (1961).
[15] J.R. León, S. Yosleff. High frequency approximation for the Helmholtz equation a probabilistic

approach. Reports on Mathematical Physics. V. 40 1-16 (1997).
[16] R.G Littlejohn. The semiclassical evolution of wave packets. Phys. Reports 138. 4,5, 193-291

(1986).
[17] V.P. Maslov and M,V. Fedoniuk. Semiclassical approximation in Quantum Mechanics. D.

Reidel Pubs. Co, (1981), Dordrecht.
[18] E. Nelson. Feynman integrals and the Schroedinger equation. Jour. Math. Phys. V 5, 332-343

(1969).
[19] D. Robert. Autour de l’approximation semi-classique. Progress in Mathematics No. 68,

Birkhäuser, (1987).
[20] M. Schilder. Some asymptotic formulas for Wiener integrals. Trans. Am. Math. Soc. V.125

63-85 (1966).
[21] B. Simon. Functional integration and quantum physics. Academic Press, (1979), New York
[22] D.W. Strook. An introduction to the Theory of Large Deviations. S‘ringer-Verlag,(1985),

Berlin.
[23] S.R.S. Varadhan. Diffusion problems and partial differential equations. Tata Lecture Series.

Springer Verlag,(1980), Berlin.
[24] A. Voros. Semiclassical approximations. Ann. IHP V. XXIV. No 1. 31-90 (1986).

Centro de Finanzas, IESA, Caracas, Venezuela.
Email address: henryk.gzyl@gmail.com

IMERL, Facultad de Ingeniería, Universidad de la República. Montevideo, Uruguay.
Escuela de Matemática UCV, Venezuela.
Email address: rlramos@fing.edu.uy


	1. Introduction and preliminaries
	2. Some classical mechanics
	3. The Classical limit
	4. More general conditions
	5. Particle in a static electro magnetic field
	6. Examples
	7. Final Comments
	References

