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SEMIPROJECTIVITY AND SEMIINJECTIVITY IN DIFFERENT

CATEGORIES

HANNES THIEL

Abstract. Projectivity and injectivity are fundamental notions in category

theory. We consider natural weakenings termed semiprojectivity and semiin-
jectivity, and study these concepts in different categories.

For example, in the category of metric spaces, (semi)injective objects are

precisely the absolute (neighborhood) retracts. We show that the trivial group
is the only semiinjective group, while every free product of a finitely presented
group and a free group is semiprojective.

To a compact, metric space X we associate the commutative C∗-algebra

C(X). This association is contravariant, whence semiinjectivity of X is related
to semiprojectivity of C(X). Together with Adam Sørensen, we showed that
C(X) is semiprojective in the category of all C∗-algebra if and only if X is an
absolute neighborhood retract with dim(X) ≤ 1.

1. Introduction

While being fundamental in category theory, the concepts of projectivity and
injectivity are often very restrictive. It is therefore natural to consider weaker
versions of these notions.

For example, injective objects in the category of metric spaces and continuous
maps are precisely the absolute retracts introduced by Borsuk in 1931. He also
defined a generalization, called absolute neighborhood retracts; see Definition 3.10.
Therefore, being an absolute neighborhood retract is a weak form of injectivity
in the category of metric spaces. While not many spaces are absolute retracts,
numerous naturally occurring spaces are absolute neighborhood retracts, including
topological manifolds, polyhedra and CW-complexes.

Given a compact, metric space X, we associate the algebra C(X) of continuous
complex-valued functions on X. This is a C∗-algebra with the supremum norm and
pointwise operations. The category CMetr of compact, metric spaces, and the cat-
egory AbSC

∗
1 of abelian, unital, separable C∗-algebras are (contravariantly) equiv-

alent. We therefore think of C∗-algebras as ‘noncommutative topological spaces’.
Using the contravariant correspondence between CMetr and AbSC

∗
1, injectivity

of a compact, metric space X corresponds precisely to projectivity of C(X) in
the category AbSC

∗
1. However, projectivity within the category C∗

1 of unital C∗-
algebras and unital ∗-homomorphisms is more restrictive - since there are more
lifting problems to be solved.

The author was partially supported by the Deutsche Forschungsgemeinschaft (SFB 878).

c©2019 PMU

263



264 HANNES THIEL

In 1985, Blackadar used the contravariant correspondence between CMetr and
AbSC

∗
1 to translate the concept of an absolute neighborhood retract to (noncom-

mutative) C∗-algebras. He hence introduced a weak form of projectivity in the cat-
egory of C∗-algebras, called semiprojectivity ; see [Bla85a, Definition 2.1], [Bla85b,
Definition 2.10].

It is straightforward to generalize Blackadar’s definition of semiprojectivity to
general categories; see Definition 3.4. The dual notion is called semiinjectivity.
Semiinjective objects in the category of metric spaces are precisely the absolute
neighborhood retracts.

We characterize semiprojectivity and semiinjectivity in the category of groups:
A group is semiprojective if and only if it is a retract of a free product of a finitely
presented group and a free group; see Proposition 3.7. On the other hand, only the
trivial group is semiinjective; see Proposition 3.9.

One motivation to consider semiprojectivity and semiinjectivity is shape theory,
which is a machinery to study an object by approximating it by better-behaved
ones. Absolute neighborhood retracts are the building blocks of shape theory of
topological spaces. Analogously, semiprojective C∗-algebras are the building blocks
of noncommutative shape theory. In this context, it is of general interest to study
semiprojective C∗-algebras.

More specifically, semiprojectivity is a concept that is used at many different
places in the theory of C∗-algebras. For instance, it is often used that a C∗-algebra
that is ‘locally approximated’ by a certain class of semiprojective C∗-algebras is
already isomorphic to an inductive limit of such C∗-algebras; see [Thi11, Section 3].
Further, semiprojective C∗-algebras are used to study and classify C∗-algebras given
as inductive limits or as crossed products of dynamical systems. For example,
Elliott’s seminal classification of AF-algebras (inductive limits of finite-dimensional
C∗-algebras) by K-theory relies on the semiprojectivity of finite-dimensional C∗-
algebras. Semiprojectivity also plays a crucial role in the analysis of the structure
of crossed products by actions with the Rokhlin property in [OP12] and [Gar17].

Blackadar asked to determine, in terms ofX, when C(X) is semiprojective among
all C∗-algebras. It is easy to see that X must be an absolute neighborhood retract,
but is that sufficient? Surprisingly, a dimensional restriction appears. Together
with Adam Sørensen we showed in [ST12] that C(X) is semiprojective if and only
if X is an absolute neighborhood retract with dim(X) ≤ 1; see Theorem 4.8.

This article is based on a talk presented at the conference ‘VI Coloquio Uruguayo
de Matemática’, held during December 20 to 22, 2017, in Montevideo, Uruguay.
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2. Concrete categories, Monomorphisms, Epimorphisms

Let C be a category. Given objects X and Y in C, we use HomC(X,Y ) to
denote the morphisms in C from X to Y .

Let ϕ : X → Y be a morphism in C. Then ϕ is an epimorphism (for short, ϕ is
epi), denoted ϕ : X ։ Y , if for every object Z and morphisms ψ1, ψ2 : Y → Z with
ψ1 ◦ ϕ = ψ2 ◦ ϕ, we have ψ1 = ψ2. Dually, ϕ is a monomorphism (for short, ϕ is
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mono), denoted ϕ : X →֒ Y , if for every object Z and morphisms ψ1, ψ2 : Z → X
with ϕ ◦ ψ1 = ϕ ◦ ψ2, we have ψ1 = ψ2.

Example 2.1. Let Set denote the category of sets and (ordinary) mappings. A
morphism in Set is epi (mono) if and only if it is surjective (injective).

Recall that C is said to be locally small if HomC(X,Y ) is a set for any objects
X and Y . In this case, for each object X we obtain a covariant hom functor
HomC(X,_ ) : C→ Set and a contravariant hom functor HomC(_ , X) : C→ Set.

A concrete category is a category C together with faithful functor U : C→ Set.
In this case, we think of an object X in C as a set (namely U(X)) with additional
structure, and a morphism ϕ : X → Y is a mapping (namely U(ϕ) : U(X)→ U(Y ))
that preserves the structure of the objects. In a concrete category, we usually
identify an object with its underlying set, and we identify a morphism with its
underlying set mapping.

A faithful functor reflects epimorphisms and monomorphisms. It follows that
in a concrete category, every surjective (injective) morphism is epi (mono). The
converse need not hold; see Examples 2.3 and 2.4.

Of particular interest is the case that C is locally small and that there exists an
object G in C (called a generator) such that HomC(G,_ ) : C → Set is faithful;
see [Bor94, Corollary 4.5.9, p.155]. In that case, a morphism is mono if and only
if it is injective. As noted above, the backward implication holds in every concrete
category. To show the forward implication, let ϕ : X → Y be a monomorphism. To
show that ϕ is injective, let x and y be elements in the set underlying X such that
ϕ(x) = ϕ(y). Note that x is an element of HomC(G,X) and that ϕ(x) is just the
composition of morphisms ϕ ◦x in C. Thus, the equality ϕ(x) = ϕ(y) really means
ϕ ◦ x = ϕ ◦ y. Now it follows directly from the definition of monomorphism that
x = y, as desired.

Dually, if a category has a cogenerator (an object K such that HomC(_ ,K) is
faithful), then a morphism is epi if and only if it is surjective.

Example 2.2. Let Gp denote the category of discrete groups and group homo-
morphisms, with the usual concretization that sends a group to its underlying set.
Then the group Z is a generator for Gp. Indeed, given a group G, there is a nat-
ural bijection between elements in G and group homomorphisms Z→ G. See also
[Bor94, Example 4.5.17.c, p.160]. It follows that a morphism in Gp is mono if and
only if it is injective.

The category Gp has no cogenerator; see [Bor94, Proposition 4.7.3, p.169]. Nev-
ertheless, a morphism in Gp is epi if and only if it is surjective. The forward
implication is not obvious; see [Lin70].

Example 2.3. Let Mon denote the category of monoids and monoid homomor-
phisms. The inclusion map ϕ : N → Z is a non-surjective epimorphism. To show
that ϕ is epi, let M be a monoid, and let ψ1, ψ2 : Z → M be morphisms with
ψ1 ◦ ϕ = ψ2 ◦ ϕ. Then ψ1(k) = ψ2(k) for all k ≥ 0. We have 1M = ψ1(0) =
ψ1(−k)ψ1(k) and 1M = ψ2(k)ψ2(−k) for all k ≥ 0. We deduce that

ψ1(−k) = ψ1(−k)ψ2(k)ψ2(−k) = ψ1(−k)ψ1(k)ψ2(−k) = ψ2(−k),

for all k ≥ 0. Thus, ψ1 = ψ2, as desired.

Example 2.4. Consider the category of pointed, path connected spaces with
pointed, continuous maps. We let T = {z ∈ C : |z| = 1} be the circle with
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base point 1. Let π : (R, 0) → (S1, 1) be given by π(t) := exp(2πit), for t ∈ R.
Then π is a non-injective monomorphism. To show that π is a monomorphism, let
(X,x0) be a path connected space, and let f1, f2 : (X,x0)→ (R, 0) be two pointed,
continuous maps satisfying π◦f1 = π◦f2. Then f1(x0) = 0 = f2(x0). Given x ∈ X,
choose a path from x0 to x, that is, a continuous map p : [0, 1]→ X with p(0) = x0
and p(1) = x. Then f1 ◦ p and f2 ◦ p are two paths in R starting at 0. We further
have π ◦ f1 ◦ p = π ◦ f2 ◦ p. Since π is a covering, it has the unique path lifting
property. It follows that f1 ◦ p = f2 ◦ p and hence

f1(x) = (f1 ◦ p)(1) = (f2 ◦ p)(1) = f2(x).

Thus, f1 = f2, as desired.

Example 2.5. Let CMetr be the category of compact, metric spaces and con-
tinuous mappings, with the usual concretization sending a topological space to its
underlying set. The one-point space is a generator for CMetr. The interval [0, 1]
with its usual Hausdorff topology is a cogenerator for CMetr; see [Bor94, Proposi-
tion 4.7.8, p.173]. Thus, epimorphisms (monomorphisms) in CMetr are precisely
surjective (injective) continuous mappings.

3. Semiprojective and semiinjective objects

The following definition is standard in category theory.

Definition 3.1. Let C be a category, and let X be an object in C. Then X is said
to be projective if for every epimorphism π : Y → Z and every morphism ϕ : X → Z
there exists a morphism ϕ̃ : X → Y such that π ◦ ϕ̃ = ϕ. The morphism ϕ̃ is called
a lift of ϕ.

Dually, X is said to be injective if for every monomorphism ι : Z → Y and every
morphisms ϕ : Z → X there exists a morphism ϕ̃ : Y → X such that ϕ̃◦ ι = ϕ. The
morphism ϕ̃ is called an extension of ϕ.

Thus, X is projective (injective), if in the left (right) diagram below, for given
solid arrows, the dashed arrow exists making the diagram commutative:

Y

π
����

Y
ϕ̃

~~
X

ϕ
//

ϕ̃

>>

Z X Z.
ϕ

oo ?�

ι

OO

Examples 3.2. (1) A group G is projective (in Gp) if and only if G is free. The
backward implication is easy to prove. To show the forward implication, choose a
free group F and a surjective group homomorphism π : F → G. Using that G is
projective, we obtain a morphism ϕ̃ : G → F that lifts the identity on G, that is,
such that π ◦ ϕ̃ = idG. This is shown in the following commutative diagram:

F

π
����

G
idG

//

ϕ̃

>>

G.

It follows that ϕ̃ is injective, and thus G is (isomorphic to) a subgroup of F . By the
Nielsen-Schreier theorem, every subgroup of a free group is again free. It follows
that G is free, as desired.
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(2) Eilenberg and Moore showed that the trivial group is the only injective object
in Gp. We include a short proof, which is a variation of the proof in [Nog07].

Let G be an injective group, and let g ∈ G. Let F2 denote the free group of
rank two, with generators x and y. Let ϕ : F2 → G be the morphism satisfying
ϕ(x) = 1 and ϕ(y) = g. Let σ : F2 → F2 be the automorphism of F2 satisfying
σ(x) = y and σ(y) = x. We consider the semidirect product F2 ⋊σ Z2. Let
ι : F2 → F2⋊σZ2 denote the natural inclusion morphism. Use that G is injective to
obtain an extension ϕ̃ of ϕ. This is shown in the following commutative diagram.

G

F2

ϕ

OO

� �

ι
// F2 ⋊σ Z2.

ϕ̃

dd

To simplify, we consider F2 as a subgroup of F2 ⋊σ Z2. Let u ∈ F2 ⋊σ Z2 be the
element implementing σ. Then uxu−1 = y. We have ϕ̃(x) = ϕ(x) = 1 and hence

g = ϕ(y) = ϕ̃(uxu−1) = ϕ̃(u)ϕ̃(x)ϕ̃(u)−1 = ϕ̃(u)ϕ̃(u)−1 = 1.

Thus, G = {1}, as desired.

Recall that a partially ordered set I is said to be upward directed (downward
directed) if for all i, j ∈ I there exists k ∈ I with i, j ≤ k (with k ≤ i, j). The
following definition is standard.

Definition 3.3. A direct system (an inverse system) in a category C is an upward
directed (downward directed) set I, together with objects Xi for i ∈ I and mor-
phisms πi,j : Xi → Xj for i, j ∈ I with i ≤ j, satisfying πi,i = idXi

for every i ∈ I
and satisfying πi,k = πj,k ◦ πi,j for all i, j, k ∈ I with i ≤ j ≤ k. The morphisms
πi,j are called the connecting morphisms of the system.

Given a direct system (I,Xi, πi,j), a direct limit (also called inductive limit) is
an object X together with a family π = (πi,∞)i∈I of morphisms πi,∞ : Xi → X
satisfying πj,∞ ◦ πi,j = πi,∞ for all i, j ∈ I with i ≤ j, and such that (X,π) is
universal with these properties. Dually, given an an inverse system (I,Xi, πi,j), an
inverse limit is an object X together with a family π = (π∞,i)i∈I of morphisms
π∞,i : X → Xi satisfying πi,j ◦π∞,i = π∞,j for all i, j ∈ I with i ≤ j, and such that
(X,π) is universal with these properties.

The following definition of semiprojectivity was introduced by Blackadar in the
sequential setting for the category of C∗-algebras; see [Bla85a, Definition 2.1]. See
also [Bla85b, Definition 2.10]. The general (nonsequential) definition has also been
considered in [CLT18].

Definition 3.4. Let C be a category, and let X be an object in C. Then X is said
to be semiprojective if for every inductive system (I, Yi, πi,j) in C with connecting
epimorphisms and for which the direct limit lim

−→
Yi exists, and for every morphism

ϕ : X → lim
−→

Yi, there exist i ∈ I and a morphism ϕ̃ : X → Yi such that πi,∞ ◦ ϕ̃ = ϕ.
The morphism ϕ̃ is called a partial lift of ϕ.

Dually, X is said to be semiinjective if for every inverse system (I, Yi, ιi,j) in C

with connecting monomorphisms and for which the inverse limit lim
←−

Yi exists, and
for every morphisms ϕ : lim

←−
Yi → X, there exist i ∈ I and a morphism ϕ̃ : Yi → X

such that ϕ̃ ◦ ι∞,i = ϕ. The morphism ϕ̃ is called an partial extension of ϕ.
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Given objects X and Y in a category, we say that X is a retract of Y if there
exist morphisms α : X → Y and β : Y → X with β ◦ α = idX . The proof of the
following result is straightforward.

Lemma 3.5. Let C be a category, and let X and Y be objects in C. Then:

(1) If X is a retract of Y , and if Y is (semi)projective, then so is X.
(2) If X and Y are (semi)projective, then so is the coproduct X

∐

Y (assuming
it exists).

Remarks 3.6. (1) Under suitable countability assumptions, it is usually enough
to consider sequential direct limits in Definition 3.4. For example, a countable
group G is semiprojective if and only if for every sequential direct system (N, Dk) of
countable groups and with connecting epimorphisms, every morphism G→ lim

−→k
Dk

has a partial lift.
To show the backward implication, let (I,Hi, πi,j) be an arbitrary direct system

with connecting epimorphisms in Gp, and let ϕ : G→ lim
−→i

Hi be a morphism. Then

there exist an increasing sequence of indices i(0) ≤ i(1) ≤ . . . in I, and countable
subgroups Dk ⊆ Hi(k) for all k ∈ N, such that the restriction of πi(k),i(k+1) to Dk

maps onto Dk+1, and such that ϕ factors through lim
−→k

Dk. This means that there

exists a morphism ψ : G→ lim
−→k

Dk such that ϕ = γ◦ψ, where γ : lim
−→k

Dk → lim
−→i

Hi

is the morphism obtained by the universal property of lim
−→k

Dk applied for the

morphisms (πi(k),∞)|Dk
: Dk → lim

−→i
Hi. Given a partial lift ψ̃ : G → Dk for ψ, we

obtain a partial lift for ϕ by composing ψ̃ with the inclusion Dk ⊆ Hi(k).
The situation is shown in the following commutative diagram:

Dk

����

� � // Hi(k)

πi(k),∞
����

G
ψ //

ψ̃
::

ϕ

33
lim
−→k∈N

Dk

γ // lim
−→i∈I

Hi.

(2) Similarly, a separable C∗-algebra A is semiprojective if and only if every ∗-
homomorphism from A to the direct limit of a sequential direct system of separable
C∗-algebras with surjective connecting maps has a partial lift.

(3) The concept of direct and inverse limits in a category can be generalized
to filtered (co)limits; see [Bor94, Section 2.13, p.75ff]. In some categories, it may
be appropriate to modify Definition 3.4 and consider filtered (co)limits instead of
direct and inverse limits.

Proposition 3.7. A group is semiprojective if and only if it is the retract of the
free product of a finitely presented group and a free group.

Proof. Let us show the backward implication. Using Lemma 3.5, it remains to
prove that every finitely presented group H is semiprojective. Choose a finitely
generated free group F and a finitely generated normal subgroup N ⊳ F such that
H is isomorphic to F/N . We identify H with F/N . Let r1, . . . , rn ∈ N be a set of
elements that generate N as a normal subgroup of F .

To show that H is semiprojective, let (I,Hi, πi,j) be a direct system in Gp with
connecting epimorphisms, and let ϕ : H → lim

−→
Hi be a morphism. Let γ : F → H

be the quotient map. Since F is free, and hence projective, we can choose i0 ∈ I
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and a lift ψ : F → Hi of ϕ ◦ γ. Given k ∈ {1, . . . , n}, we have

πi,∞
(

ψ(rk)
)

= (πi,∞ ◦ ψ)(rk) = (ϕ ◦ γ)(rk) = 1,

which allows us to choose ik ≥ i0 such that πi,ik
(

ψ(rk)
)

= 1. Choose i′ ∈ I with
i1, . . . , in ≤ i′. Then πi,i′ maps ψ(r1), . . . , ψ(rn) to 1. It follows that ψ(N) ⊆
ker(πi,i′). Thus, πi,i′ ◦ γ factors through H, which provides the desired partial lift.

To show the forward implication, assume that G is a semiprojective group.
Choose a set X and a surjective group homomorphism γ : F (X)→ G, where F (X)
denotes the free group on the set of generators X. Set N := ker(γ). Given a subset
A ⊆ X, we identify F (A) in the obvious way with a subgroup of F (X). Set

I :=
{

(A,B) : A ⊆ X finite, B ⊆ N finite, B ⊆ F (A)
}

.

For (A,B) ∈ I set G(A,B) := F (A)/〈B〉, where 〈B〉 denotes the normal subgroup
of F (A) generated by B. Let γ(A,B) : F (A)→ G(A,B) denote the quotient map.

We define a partial order on I by setting (A′, B′) ≤ (A,B) if A′ ⊆ A and B′ ⊆ B.
Then I is an upward directed set. For (A,B) ∈ I we set

I(A,B) :=
{

(Ã, B̃) ∈ I : (Ã, B̃) ≥ (A,B)
}

,

and

H(A,B) := G(A,B) ⋆ F (X × I(A,B)).

Given (A′, B′) ≤ (A,B), let us define a surjective morphism π
(A,B)
(A′,B′) from

H(A′,B′) to H(A,B). The inclusion F (A′) → F (A) induces a morphism G(A′,B′) →
G(A,B). We let R be the subset of X × I(A′,B′) such that X × I(A′,B′) is the
disjoint union of A × {(A′, B′)}, X × I(A,B), and R. The first coordinate projec-
tion A × {(A′, B′)} → A induces a morphism F (A × {(A′, B′)}) → F (A) that we
postcompose with γ(A,B) to obtain a surjective morphism F (A × {(A′, B′)}) →

G(A,B). We define π
(A,B)
(A′,B′) as the free product of the morphisms G(A′,B′) → G(A,B),

F (A × {(A′, B′)}) → G(A,B), the identity on F (X × I(A,B)) and the trivial map
F (R)→ {1}. This is shown in the following diagram:

H(A′,B′) :=

π
(A,B)

(A′,B′)

��

G(A′,B′) ⋆

��

F (A× {(A′, B′)}) ⋆

xxxx♣♣♣
♣♣
♣♣
♣♣
♣♣

F (X × I(A,B)) ⋆

∼=

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠

F (R)

H(A,B) := G(A,B) ⋆ F (X × I(A,B))

It is straightforward to verify that the maps π
(A,B)
(A′,B′) are surjective and define an

inductive system (over the index set I). Moreover, there is a natural isomorphism
ϕ : G→ lim

−→(A,B)∈I
G(A,B).

Using that G is semiprojective, we find (A,B) ∈ I and a partial lift ϕ̃ : G →
G(A,B) of ϕ. This shows that G is a retract of G(A,B), which is the free product of
the finitely presented group H(A,B) and a free group. �

Corollary 3.8. Every finitely presented group is semiprojective. Moreover, every
group is a direct limit of semiprojective groups (and one may also assume that the
connecting morphisms are surjective).

Proposition 3.9. The trivial group is the only semiinjective object of Gp.
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Proof. Let G be a semiinjective group. We show that G is injective, whence it is
trivial as noted in Examples 3.2.

To show that G is injective, let H ⊆ K be an inclusion of groups, and let
ϕ : H → G be a morphism. We let ⋆n∈NK denote the free product of countably
many copies of K, and for each m ∈ N we let ιm : K → ⋆n∈NK be the natural
inclusion. The amalgamated free product ⋆n∈N,HK is defined as the quotient of
⋆n∈NK by the normal subgroup generated by ιn(h)ιm(h)−1, for n,m ∈ N and h ∈ H.
For each m ∈ N we let ⋆n≥m,HK denote the subgroup of ⋆n∈N,HK generated by
all except the first m copies of K. This defines a decreasing sequence of subgroups
whose intersection is isomorphic to H.

Since G is semiinjective, there exist m and a partial extension ϕ̃ : ⋆n≥m,HK → G.
Composing with the morphism ιm : K → ⋆n≥m,HK, we obtain a morphism K → G
that extends ϕ, showing that G is injective. �

The following definition is due to Borsuk. For more details we refer to the books
[Bor67] and [Hu65]. Recall that a retract from a topological space Y to a subspace
X is a continuous map r : Y → X that satisfies r(x) = x for all x ∈ X.

Definition 3.10. Let X be a metric space. Then:

(1) X is called an absolute retract if whenever X is embedded as a closed subset
of another metric space Y , there exists a retract Y → X.

(2) X is called an absolute neighborhood retract if whenever X is embedded as
a closed subset of another metric space Y , there exist a neighborhood U of
X in Y and a retract U → X.

The equivalence between (1) and (2) in the following result is a standard fact
about absolute neighborhood retracts; see for example [Hu65, Theorem III.3.1,
III.3.2, p.83f]. The equivalence between (2) and (3) follows using that compact,
metric spaces are normal.

Proposition 3.11. Let X be a compact, metric space. Then the following are
equivalent:

(1) X is an absolute (neighborhood) retract.
(2) Given a compact, metric space Y and a closed subset Z ⊆ Y , and given a

continuous map ϕ : Y → X, there exists an extension of ϕ to a continuous
map ϕ̃ : Y → X (there exists a closed neighborhood C of Z in Y and an
extension ϕ̃ : C → X).

(3) X is a (semi)injective object in the category CMetr.

4. C∗-algebras

A C∗-algebra is a Banach algebra A with an involution such that ‖a∗a‖ = ‖a‖2

for all a ∈ A. A ∗-homomorphism between C∗-algebras is a multiplicative, ∗-
preserving, linear map. We let C∗ denote the category of C∗-algebras and ∗-
homomorphisms. The naive concretization of C∗

1 associates to every C∗-algebra
its (usual) underlying set. However, this functor C∗ → Set is not representable.

Nevertheless, C∗ has a generator. Indeed, let G := C∗(x : ‖x‖ ≤ 1) be the
universal C∗-algebra generated by a contraction. Given a C∗-algebra A, there is a
natural bijection between HomC∗(G,A) and the elements in the unit ball of A. To
see that G is a generator, we note that two ∗-homomorphisms A→ B are equal if
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and only if they agree on the unit ball of A. Hence, a morphism in C∗ is mono if
and only if it is injective.

The category C∗ has no cogenerator. (The proof is analogous to that for Gp.)
Nevertheless, a morphism in C∗ is epi if and only if it is surjective. As for Gp, the
forward implication is not obvious; see [Rei70, Proposition 2] and [HN95].

It follows that isomorphisms in C∗ are exactly the bijective ∗-homomorphism,
also called ∗-isomorphisms, and such maps are automatically isometric.

For simplicity, we will restrict attention to the subcategory SC∗
1 of unital, sep-

arable C∗-algebras and unital ∗-homomorphisms. We let AbSC
∗
1 denote the full

subcategory of SC∗
1 of abelian, unital, separable C∗-algebras.

Examples 4.1. (1) Given a Hilbert space H, the algebra B(H) of bounded lin-
ear operators on H, equipped with the operator norm and the natural involution,
is a unital C∗-algebra. By the Gelfand-Naimark theorem, every C∗-algebra is ∗-
isomorphic to norm-closed ∗-subalgebra of B(H) for some Hilbert space H; see
[Bla06, Corollary II.6.4.10, p.109].

(2) For the Hilbert space H = ℓ2({1, 2, . . . , n}), we obtain that B(H) ∼= Mn(C),
the algebra of complex n × n-matrices, has the structure of a C∗-algebra. By the
Artin-Weddenburn theorem, a C∗-algebra is finite-dimensional (as a complex vector
space) if and only if it is isomorphic to a finite direct sum of matrix algebras.

(3) Let X be a compact, metric space. Set

C(X) :=
{

f : X → C : f is continuous
}

,

equipped with pointwise addition, multiplication and involution, and with the norm

‖f‖ := sup
{

|f(x)| : x ∈ X
}

,

for f ∈ C(X). Then C(X) is a unital, commutative, separable C∗-algebra.
If Y is another compact, metric space, and if ϕ : X → Y is a continuous map,

then ϕ∗ : C(Y )→ C(X) given by ϕ∗(f) := f ◦ϕ is a unital ∗-homomorphism. This
defines a contravariant functor C(_ ) : CMetr→ AbSC

∗
1.

Proposition 4.2 (Gelfand; [Bla06, Theorem II.2.2.6, p.61]). Every abelian, uni-
tal, separable C∗-algebra is isomorphic to C(X) for some compact, metric space
X. Moreover, the functor C(_ ) : CMetr → AbSC

∗
1 defines a (contravariant)

equivalence of categories.

Remark 4.3. Projectivity and semiprojectivity of C∗-algebras is defined with re-
spect to the category C∗ of all C∗-algebras. When considering the category C∗

1, the
notion of projectivity changes. On the other hand, a unital C∗-algebra is semipro-
jective (in C∗) if and only if it is semiprojective in C∗

1.

Remark 4.4. Let X be a compact, metric space. If C(X) is (semi)projective in C∗
1,

then it is also (semi)projective in AbSC
∗
1 - since there are fewer lifting problems

to solve. Using the (contravariant) equivalence between AbSC
∗
1 and CMetr from

Proposition 4.2, we deduce that C(X) is (semi)projective in AbSC
∗
1 if and only if

X is (semi)injective in CMetr. Thus, if C(X) is (semi)projective in C∗
1, then X

is an absolute (neighborhood) retract.

Examples 4.5. (1) C = C(pt) and C([0, 1]) are projective in C∗
1.

(2) Set S1 := {z ∈ C : |z| = 1}, the unit circle. The C∗-algebra C(S1) is
semiprojective, but not projective in C∗

1.
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(2) Set D2 := {z ∈ C : |z| ≤ 1}, the two-disc. Then D2 is an absolute retract.
However, the C∗-algebra C(D2) is not even semiprojective.

(3) If X is a compact, metric space with S1 ⊆ X, then C(X) is not projective
in C∗

1. Indeed, assume that ι : S1 →֒ X is an embedding. Let ϕ : S1 → D2 be the
inclusion map. Since D2 is an absolute retract, there exists an extension of ϕ to
a continuous map ϕ̃ : X → D2. This is shown in the left commutative diagram
below.

D2 T

π
��

S1

ϕ

OO

� �

ι
// X

f̃
bb❉
❉
❉
❉

C(D2)
ϕ̃∗

%%▲▲
▲▲

▲▲
▲▲

ϕ∗

// C(S1)

C(X).

ι∗
99ssssssss

We let T denote the Toeplitz algebra, that is, the sub-C∗-algebra of B(ℓ2(N)) gen-
erated by the unilateral shift on ℓ2(N). Sending this shift to the identity map
id ∈ C(S1) induces a surjective ∗-homomorphism π : T → C(S1). The situation is
shown in the right commutative diagram above.

If C(X) were projective in C∗
1, then there would exist a lift ψ : C(X)→ T for ι∗.

Then ψ ◦ ϕ̃∗ is a lift for ϕ∗. The image of the identity map id ∈ C(D2) under ψ ◦ ϕ̃∗

is a normal element in T that lifts the unitary id ∈ C(S1). Using the Fredholm
index one can show that no such lift exists, showing that C(X) is not projective in
C∗

1.
(4) IfX is a compact, metric space withD2 ⊆ X, then C(X) is not semiprojective

in C∗
1. This is shown similarly as in (3); see [ST12, Remark 3.3].

Let X be a compact, metric space such that C(X) is (semi)projective in C∗
1. As

observed in Remark 4.4, it follows that X is an absolute (neighborhood) retract.
The above examples show that the converse does not hold.

Conjecture 4.6 (Blackadar, [Bla06, II.8.3.8, p.163]). Let X be a compact, metric
space. Then C(X) is semiprojective if and only if X is an absolute neighborhood
retract with dim(X) ≤ 1.

The analog of this conjecture for projectivity was solved by Chigogidze and
Dranishnikov:

Theorem 4.7 ([CD10, Theorem 4.3]). Let X be a compact, metric space. Then
C(X) is projective in C∗

1 if and only if X is an absolute retract with dim(X) ≤ 1.

Let us sketch the proof of the forward implication of Theorem 4.7. Assume that
C(X) is projective in C∗

1. Then X is an absolute retract; see Remark 4.4. To
show that dim(X) ≤ 1, assume that dim(X) ≥ 2. By [CD10, Proposition 3.2], it
follows that S1 ⊆ X. As sketched in Examples 4.5(3), this implies that C(X) is
not projective.

We remark that the topological result that S1 embeds into X uses both that X
is an absolute (neighborhood) retract and that dim(X) ≥ 2. Indeed, the space [0, 1]
is an example of an absolute retract that does not admit an embedding of the circle.
On the other hand, there exist compact metric spaces with dim(X) =∞ such that
every closed subset of X satisfies either dim(X) = 0 or dim(X) =∞. In particular,
such a space does not admit an embedding of the circle. The point is that such a
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behaviour is not possible for ‘well-behaved’ spaces such as absolute (neighborhood)
retracts.

Together with Adam Sørensen, we confirmed Blackadar’s conjecture.

Theorem 4.8 ([ST12, Theorem 1.2]). Let X be a compact, metric space. Then
C(X) is semiprojective if and only if X is an absolute neighborhood retract with
dim(X) ≤ 1.

Let us sketch the proof of the forward implication of Theorem 4.8. Assume
that C(X) is semiprojective in C∗

1. Then X is an absolute neighborhood retract;
see Remark 4.4. To show that dim(X) ≤ 1, assume that dim(X) ≥ 2. If we
could deduce that D2 embeds into X, then we would conclude that C(X) is not
semiprojective as mentioned in Examples 4.5(3).

The problem is that dim(X) ≥ 2 does not imply D2 ⊆ X. Indeed, Bing and
Borsuk constructed an absolute retract Y such that dim(Y ) = 3, but such that D2

does not embed into Y ; see [BB64]. Thus, we cannot assume that a disc embeds
into X. Instead, we use the following topological result:

Lemma 4.9 ([ST12, Remark 3.4]). Let X be a compact, metric space that is an
absolute neighborhood retract. Assume that dim(X) ≥ 2. Then X contains either
the space C1 of disjoint ‘smaller and smaller circles’, the Hawaiian earrings space
C2, or the space C3 that is a variant of the Hawaiian earrings, each given as subsets
of R2: (S(x, r) denotes the circle of radius r around x.)

C1 =
{

(0, 0)
}

∪
⋃

k≥1

S((1/2k, 0), 1/(4 · 2k)), C2 =
⋃

k≥1

S((1/2k, 0), 1/2k),

C3 =
{

(x, x), (x,−x) : x ∈ [0, 1]
}

∪
⋃

k≥1

{1/k} × [−1/k, 1/k].

(a) Space C1 (b) Space C2 (c) Space C3

A boosted version of the argument in Examples 4.5(3) shows the following result,
which together with Lemma 4.9 shows the forward implication of Theorem 4.8.

Lemma 4.10 ([ST12]). Let X be a compact, metric space. If X contains any of
the spaces C1, C2, or C3 from Lemma 4.9, then C(X) is not semiprojective.
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